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I11.

SECOND SUPPLEMENT TO AN ESSAY ON THE
THEORY OF SYSTEMS OF RAYS

Read October 25, 1830.
[T'ransactions of the Royal Irish Academy, vol. 16, part 2 (1831), pp. 93-125.]

INTRODUCTION

The present Supplement contains the integration of some partial differential equations, to which
I have been conducted by the view of mathematical optics, proposed in my former memoirs.
According to that view, the geometrical properties of an optical system of rays may be deduced
by analytic methods, from the form of one characteristic function; of which the partial differen-
tial coefficients of the first order, taken with respect to the three rectangular coordinates of any
proposed point of the system, are, in the case of ordinary light, equal to the index of refraction
of the medium, multiplied by the cosines of the angles which the ray passing through the point
makes with the axes of coordinates: and as these cosines are connected by the known relation
that the sum of their squares is unity, there results a corresponding connexion between the
partial differential coefficients to which they are proportional. This connexion is expressed by an
equation which it is interesting to study and fo integrate, because it contains a general property
of ordinary systems of rays, and because its integral is a general form for the characteristic func-
tion of such a system. The integral which I have given in the present memoir, is deduced from
equations assigned in my former Supplement; an elimination which had been before supposed,
being now effected, by the theorems which Laplace has established in the second Book of the
Mécanique Céleste, for the development of functions into series. The development thus obtained,
proceeds according to the ascending powers of the perpendicular distances of a variable point from
the tangent planes of the two rectangular developable pencils which pass through an assumed
ray of the system, and according to the descending powers of the distances of the projection of the
variable point upon the assumed ray, from the points in which that ray touches the two caustic
surfaces. In the case of rays contained in one plane, or symmetric about one axis, the partial differ-
ential equation takes simpler forms, of which I have assigned the integrals, and have given an
example of their optical use, by briefly shewing their connexion with the longitudinal aberrations
of curvature. I hope, in a future memoir, to point out other methods of integrating the general
equation for the characteristic function of ordinary systems of rays, and other applications of the

resulting expressions, to the solution of optical problems.*
; WILLIAM R. HAMILTON.

Observatory,
October, 1830.

* [See footnote to p. 165.]
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SECOND SUPPLEMENT

Statement and Integration of the Partial Differential Equation, which deter-
mines the Characteristic Function of Ordinary Systems of Rays, produced by
any Number of successive Reflexions or Refractions.

1. Suppose that rays of a given colour diverge from a given luminous origin, and undergo
any number of successive changes of direction, according to the known laws of ordinary reflexion
and refraction, at surfaces having any given shapes and positions, and enclosing media of any
given refractive indices. Let @, B, v, be the cosines of the angles which the direction of a final
ray makes with three rectangular axes, and let «, ¥, z, be the three rectangular coordinates,
referred to the same axes, of a point upon this final ray; then e, 3, ¢, will in general be functions
of , v, z, such that if u denote the refractive index of the final medium, for rays of the given
colour, the expression

p(ede + Bdy + ydz)
is equal to the differential of a certain function ¥V, of which I have shewn the existence and the
meaning in former memoirs, and which I have called the characteristic function of the final
system. The design of the present Supplement, is to point out some new properties and uses of
this function, resulting from the partial differential equation

dV\e (dV A% ,
(;1;) +( ) +(dz) = p?, (A)
which we obtain by eliminating the three cosines e, 3, ry, between the three equations
av d V av
Tn = =pB, o=k (B)

by the help of the known relation
2+ R+yr=1.
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2. The equation (A)is a particular case of a more general differential equation, for all optical
systems of rays, ordinary or extraordinary, obtained by eliminating the same three cosines,
a, B, v, by the same known relation between the three following equations, assigned in my former
memoirs, ¥

gr v &V b ay S
de ~8a’ dy 8B’ dz oy’

in which V is the characteristic function of the system, and » is a homogeneous function of
a, B, v, of the first dimension, representing the velocity of the light, estimated on the hypothesis
of emission, and differentiated as if @, 8, v, were three independent variables. Aud the integral
of (A) is a particular case of a more general integral, extending to all optical systems of straight
rays, and consisting of the following combination of equations, assigned in my former Supplement :*
& S dv

SW_ & &% PR &%

oa =% 52 1Y dadpB " " dady’

L L LA

58 " "sasp Y 52 T8RSy’

8._W= @ Sl - 8% + z g’" .

Sy ~ " 8ady T YSBEy "7 Sy’
between which the three quantities @, 8, v, are to be eliminated; W being an arbitrary but
homogeneous function of these three quantities, of the dimension zero; and the partial differential
coefficients in which the sign & occurs, being formed by differentiating the homogeneous functions
W, v, as if @, B, v, were three independent variables. In applying these general results to ordinary

systems of rays, we are to put
; v=p(@+ B+ )

o S - B L ¥
& v’ B8 v’ & v’

2 2 2
e, B ga=l @)
&% plaf &% P By &y A /i‘_fy_a ¥

‘.

SadB” " B’ 8BSy P ' dyda
or, (making after the differentiations o® + 82 +4*=1,)

e e el
P e S,B_P’ 87—M’

g (1), g—",;—.w(l—ﬂ*), g—;",w(l—w,

&% &y o A :
W=—Faﬁ, m‘-‘#ﬁ% Roke e

* [See pp. 111, 112.]

www.rcin.org.pl



148 III. SECOND SUPPLEMENT [2,3

and therefore,
W+ V=F’ (av’”+/3.’9+')’z)»

sW
S = e —pe(er + By +vz),

C
%=#y—ul3(aw+ﬂy+w% o
%?=#z—w(aw+/9y+w)- '

This system of equations (C) is one form for the integral * of the partial differential equation
(A); the quantities e, B, v, being supposed to be eliminated, and W being an arbitrary function
of these quantities, of the kind already mentioned.

Tramsformation and Development of the Integral.

3. The system of equations (C) may be transformed into the following : +
au _dU A e ) o

PR ey M/=a—l§, V+U—a%+,8;i§, (D)
in which U is a function of the three independent variables ¢, B3, z, obtained from the function W
by putting

U= W — pyz, (E)

and by considering  as a function of @, 8. Let us now proceed to eliminate e, B, between the
three equations (D), by the theorems which Laplace has given in the second Book of the
Mécanique Céleste, for the development of functions into series.

This elimination may be simplified by a proper choice of the coordinates. The rays of an
ordinary system being perpendicular to the surfaces which have for equation

V = const.,

compose in general two series of rectangular developable pencils, and are tangents to two caustic
surfaces. Let us therefore denote by #,, y,, z,, three rectangular coordinates so chosen that the
axis of z, coincides with some given ray, and that the planes of #,2, and y,2, are the tangent
planes of the two developable pencils to which that ray belongs; and let a, 8, y, denote, for any
proposed ray of the system, the cosines of the angles which the ray makes with the axes of
,, 9,, 2. The equations (A) (B) (C) (D) (E) will apply to the coordinates thus chosen, by simply
changing z, y, 2, to ,, y,, 2,; and by changing « to its value

a2+32

y=N1—-a=32=1- — oy — O _ e,

in which

1.8.5... (204 1) (a®+ B2i+2
2.4.6...(20+2)  2+4

* [This is the general integral of (A).]

t+ [If through the point #, 7, z on the given ray we draw a plane perpendicular to the z-axis, cutting the latter
at 4,and through 4 draw a plane perpendicular to the ray, cutting it at B, then U= — OB, where (' is the point
where the ray cuts 7=0. The function § (p. 268) is an extension of this function U, including the initial as

well as the final ray of an optical system. The function U was employed by Lord Rayleigh in discussing the five
aberrations of von Seidel by the Hamiltonian method (P#il. Mag. 15 (1908), p. 681).]

e
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the function W will in general admit of being thus developed,
W=pWo 4+ g (Aa®+ BRY) + uW® 4 u W 4 &, ()

WO, A, B, being constants, and W®, W&, W& being rational homogeneous functions of the
two small variables a, 8, of the dimensions 3, 4, 2, respectively. The constants 4, B, are here the
distances upon the ray, from the points in which it touches the two caustic surfaces, to the origin
of the coordinates #,, ,, 2,; and the terms proportional to e, 8, @8, disappear from the develop-
ment of W, by the choice which we have made of these coordinates, and by the principles of the
former Supplement.* In this manner the function U becomes

U=uWO -z, + 5 (2,+ )@ + (5, + B) 8% + pU® + uU® + &, (@)

in which A
U e = Jeid ; et = it 4 5 o0

and the two first of the equations (D) become

a=a,+(+ 42525 8=8,+(+ B 5E, (1)
if we put for abridgment
b= gg B= g $=— (P4 U0+ &) <I>

On account of the smallness of df gg the quantities «,, 3,, are approximate values of

a, B; and to develope ¢, 8, themselves, or any function of them, F (e, B), in a series of ascending
powers of these approximate values, we have, by the theorems of Laplace before referred to,

dn @ dep,\ "+ _E'_'_ @1 % n+1
F (@ B)=F,+ 5 {[d‘i 1(]"‘“ ((,di)A)nzﬁ[ﬁ"l(]‘ff; ((dﬁ),,)) 1o
o5, o IR i ds i) ) *da(ds) dplds) *ip(ab) dalds) |

(n,n) [n+ 1 [n o4 1]n+1(z + A1 (2, +B)n’+1 _ ’

the functions F,, ¢,, being formed from ¥, ¢, by changing «, 8, to @, B8,, and [n + 1]+, [n/ + 1]¥+1, -
being known factorial symbols;+ we have therefore,

5

dn (d¢ )n+l dn+¢L (}lj‘l’~ (d‘f") (d¢ >n +1)
a=g, o 2 o da n° da, o 2 @, ® da,"dB," da dB, dB, :
()0 [n & 1]n+1 (2, + A )n+1 (n,7)0, 0 [,n]n [n’ o 1]» +1 (z,+ 4 )n+1 (2, + B)"'“ ’
r (L)
(d¢ )n+l dn+n ( d2¢, (d¢l)n+1 (d¢> )
B a B’ + E hod dﬁr dB: 2,0 ”d,B " \da dBr dB,
ool [n+ 1] (2, + B)"+1 (n, )0, 0 i) (5 + Ay (z + By J

* [Cf. (D), p. 127; the focal distances correspond to ¢=0 and q';—- . Hence, denoting partial derivatives

by subscripts, W,g=0, Ry=- Wea/Vaas Ry= — Wgg/vgg. In these expressions W is a homogeneous function of
a, B,y; but, since a=8=0 for the given ray, these partial derivatives have the same values as when they are
evaluated for W as a function of a, 8. The linear terms in the expansion vanish by (C).]

+ [See Appendix, Nots 4, p. 468.] .
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Now, if we differentiate V as a function of the three independent variables «,, B,, z,, we have

by (B) and (I),

av av av
d—a,-=#a(z,+A), JB—,=#B(5,+B), d—zl=#(m,+/38,+'>'); (M)
we have also V = puz, — p WO, when ¢, 8,, vanish ; and therefore,
V= e~ wWO + [ (s, + 4) ade, + (5, + B) BB, ™)

2, being considered as constant in the integration,* and the integral being so determined as to
vanish with e,, B,. Substituting in this expression (N), the developments of e, B3, and perform-

ing the integration, we find the following development for g 5
I;’:: o L el % {(z/ ur A) alz & (Z/ i B) 3/2}

dar d¢/ n+2 dr d¢,’ n+2
e, a5 (a8
2P G, + 7 [+ 2P (g + B

+ ¢I + 2(n)“:’)

vs, o G057 s i) (ah) )
(§

n, ) 0, 0 R+ 17 [ + 1P (2, + A)" (2 +_B)n’+1; ©)

which is another form for the integral of the partial differential equation (A), obtained from the
elimination (D). And if we wish to introduce any other rectangular coordinates , ¥, z, into the
expression of this integral (O), instead of #,, 9,, z,, we may do so by the known methods, by putting

z, = (& — ,) cos. zz, + (y — y,,) cos. yz, + (2 — z,,) cos. z&,,
Yy = (.’l} 7 wu) cos. zy, + (y 4 yu) cos. yy, + (Z i Z,,) COS. 2y, (P)

z, = (x —=,) cos. xz, + (y — ¥,,) cos.yz, + (2 — 2,) cos. 22,

@,, 4, 2,, being the values of @, 7, z, that belong to the point upon the ray which had been taken
for origin.

Verifications of the foregoing Developments.

4. We may verify the form (O) which we have thus found for the integral of (A), by the
following condition, resulting from (M),

g ¥V o 6 ¥ e

ds,"u z,+Ade p z,+Bd/8,',u.—~/1 3l @
of which each member is an expression for the cosine ¢ of the small angle which a near ray
makes with the ray that we have taken for the axis of z,. The condition (Q) may be put under

the form
d Y

a;,_;_(gw;,.}./8,3,)='\/1—0;“‘—,82, (R)

* [The expression in the brackets { } is & V/u for a displacement in the plane z,=const.]
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in which, by (0),
d V_, at+B? db

LT s

{ i) ) amslad) %)}
o E(n) 0 [n + 1]n+1 (z’ ¢ A)”'H [n+ 1]n+1 (zl + B)n+1
X { TE) e }

@O+ 2) G+ Ay [n]* (0 +2) (5 + By
+ 2 ®,® (f;l;,:ldz, (d;ia (g’é, (d¢ )n+1 (Zz )” +l)

(n, ') 0, °[n+ 1]n+1 [n % l]n +1(z x A)n+1 (2, +B)n'+1
s e ) ) )
s (T + i W W T 2+ 4) 72 (s, + By

{ d(in (titb >n+1 8 d—dg— (g% >n+1 }
@ n'’ «, " ,n 3 !
ax, + ﬁB; = a,l+ B,’ + 2(") 0 [n o 1],,+1 (z 3 A)n+1 [,n 4 1]1|+1 (zl 5 B)ﬂ+1
dr (g, (dg\n (g4
2 ®, ™ ﬂdBf (da d/3,( ) (dBI) )
+¢ (n, n) 0, 0 [n]"[n g 1]n+1 (z,+A)"+1(z + B)n+1
dn+'n dl¢, dd, n+1 d¢
de*dB" (da dp (da ) (dﬁb) ) ;
+ﬂ' 2(n ') 0 °[n+1]"+1[n']" (z +A)"+1(z +B)n+1 (T)

JI—a=3
may be deduced from the general formula (K) by cha.nging
F(a) B) o 'Y=N/l —az'_B’)

F, to 4,=J1—a2=B%
To compare these several developments, and to examine whether they satisfy the condition

(R), we are to observe, that from the nature of the function ¢, we have by the foregoing number,
d¢/ 4 3) a’a s Blz "
T == (Y +90 + &) =q, -1+~ ;
dz, 2 )
d’¢l + d'Yl d’¢l v B d’Y! D da¢l & _i"YL ¢
da,dz, % da dp,dz, D dB,’ de,dp,dz  da,dB)’

: (S)

and, by (L),

while the development of

and

and therefore

ie s, ) () ) = dad (&)™ )™

+(or 30 (@8) i G+ (o 33) ()" ()

!
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by which means the difference of the developments (S) and (T) becomes

dp )\ dy, A\ dy,
T+ BB =+ X {[da+ 1< ]("ff()z, 7 ia)'ll o 1<]£il§(2, T %ﬁzl}

dn+1|,' { dz')’l <d¢ >n+1 <d¢ )’n +1+ d'Y/ <d¢ >n 1 d (d(b >’n+1 + % d,y' <d¢’>n+1 d (@)ﬂ’—}-l} .

s o dadB" |de,dB, \da ap, dp, dg,’ dp, \da dg,
+ (n, ') 9, 0 Ln + ]_]n+1 [n T l]n +1 (z +A)n+1 (2, + B)" +1 )
V)
and the series in this second member being exactly that which would result as the development of

y= J 1—a2— 2
from the formula (K), we see that the condition (Q) or (R) is satisfied, and the sought verification
is obtained.
Another verification of the foregoing developments may be obtained by applying the general
expression in series (K), for any function F of the cosines @, B3, to the case where this function

18 s . We find, first
de

AT { (@) a2, dF ((le—?;:)"“d‘fﬁg)}
da ~ da, " O [ F PTG+ A T T 1 (5, + D)

d’n+n' {d d3¢, (dd) )n+1 <d¢ )n +1+ d2d) (quI)H +1 o <d¢’>n+1+ d2¢' (%)n+1_d_ (%)ﬂ'+l}

+3 = «de"dB" (datdB, \da s, dB,) _dp," \da, de,dpB \de,) de, \dB,
(n,n") 0, 0 [n+ 1]+ [n’ + 1" (2, + A" (z, + By
(W)
which may be put under the form
ﬂ (% >n+1 dn+n’_ < d2¢, (d¢’)n (‘_iil>n'+l>
dp _s = _da" \de, 43 w, w 4 2dB™ \de,dB,\de,) \dB, (X)
da @) 0 n+ 1" (z,+ A )" ) 0 0 T + 117+ (7, + A " (2, + By 1’
: P+ 11 (g + 4)"(
that is, by (L),
9 — (6,4 4) (@—a), (Y)

which agrees with the conditions (H). A similar verification may be obtained from the same
conditions (H), by considering the development of %%

Finally, we may observe that the condition

V w U
—=ax/+6yl+')’z/'—’u =axl+ﬁyl_; (Z)
becomes, by (G) and (I),

L= WO+ (s 4 4) (0, 5) 4o+ B (88,-5) +95 @)
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in which, by (K) and (L),

n+1 dn (dd, >n+a dn+n' ( d2¢l (d¢ )n+1 (¢¢ >n +1>
aa—‘f—a——z » n+2da\de _s w, w dadB" \da,dB,\ da g,
A ()0 n+ 17z, + A (n, n) 0, 0 ] [+ 1" (s, +A)" 2 (2, +B)n’+1 )
'n_+_ 1 d—n <@,)n+2 dntn’ ( d2¢,l (d¢ >n+1 <d¢> )n +1)
g B _BP_g =nr2aBr\dB) o dardBr \dudf, dB,
G BT () 0 (m+ 1] (2, + B2 ) & TP (W 7 (2 + A (2, + B)* 2’

dr (d)\"+ d¢> n+2
i a5 (de) a7 (a8)
$=+2w °{[n TIPG A | [nt 1 (s, + By
v : d""'". d’(ﬁ, d¢, n+1 d¢ »+1>

(n+n"+3) da,*dp," (da g, (da,) (dﬂ) (B
e TP + 175, + A7+ By
so that we are conducted by this other method to the same expression (O) for the characteristic
function of an ordinary optical system, as that which we before obtained by performing the
integrations (N). In all these expressions the sign =, % ¥ denotes a summation with reference
to the variable integers n, #’, from zero to infinity.

o 2(n, »’)u(’): ag

Case of a Plane System.

5. A similar analysis may be applied to integrate the partial differential equation
dV\?*  (dV\? /
(&) +(Z) == (@)
to which the equation (A) of this Supplement reduces itself, when we consider a system of rays
of ordinary light, contained in the plane of #z. In this case, if we put
a:, = (z — &,) cos. ax, + (z — 2,,) co8. 2, }
= (& — @, cos. 2z, + (2 — 2, cos. 2z,

@)

we may suppose &, 7, to be new rectangular coordinates, in the same plane as «, z, and such that
the axis of 2, coincides with the direction of some given ray of the system: and we may denote
by @, v, the cosines of the angles which any near ray makes with these new axes, so that

Y= ‘\/ 1-a2
We shall then have for one form of the integral of the partial differential equation (C’), the
following combination of equations :

au aU ' ’
i, = da ’ V+ U i da ’ (E)
between which « is conceived to be eliminated, and in which
7 2
U=W—pyz,=pW® — pz, + 'i(ﬁ—J;Ai-w;
— =27 (WD 4 z,4044); (F")

1.8.5...(2i+1) a¥+
2.4.6...(%+2) 2+4’

HMP 20

WD = gi+8 g 50 @+ =
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WO, w5, being constant coefficients in the development of the function W, according to the
powers of ¢, and A being another constant in that development, namely, the distance upon the
given ray, from the point where it touches the caustic curve of the plane system, to the origin
of z, and 2,. The first of the two equations (E’) becomes
1 dé
z,+A4 de’

when we put

&

- A z,+4’°

and gives therefore, by the well-known theorem of Lagrange, for functions of a single variable,

dn dF', d¢, n+1

A,

[n + 1]n+1 (Z, o A)’n+1 %
F (@) denoting any function of @, which admits of being developed according to positive integer
powers of «,, and F), ¢,, being formed from F, ¢, by changing & to & The cosines «, y, may
therefore be thus developed,

(G)

F@)=F,+2,39

& (dhp
da,"’ \de,
a=qa + E(n) O Tn+ 1]* (2, + )"t (H)
L
- de " de, \ de
T=NT S0 ripi(s + Ay
if we put
v = V1-ar
And since V may be thus expressed,
V=pz,—puWO + pu(z +A)f:’ada” I
because
dV =p(ede, +ydz) = pa(z,+ 4) da, + p(ee, + ) dz,,
and because V becomes uz,—uW © when ¢, =0, we find, finally,
dn (d¢,)”+2
V —WwWao AT S 1 (Z 3.8 A) @, ® daln : da, (KI)

¢t 260 T2 (s + Ay y

This form (K’) for the integral of the partial differential equation (C’), may be verified by
observing that it satisfies the condition

1dV .
wdz o, + o, ey
V being differentiated for z, and ¢, as two independent variables; because
dg, " e? d'¢, _dy,
i @i+ — o — L X
dz, 2()0 Y  dadk £ 2 ’ da,dz,  de, b

Gz @) o (@) (@ )

dn+1 d¢, n+2 dn+1 dd,’ n+2 dr d¢, :
da,"“'a (dd,) a’da”“ (da ) +( +1)d n (da) ) (M )

WAWW rein ara
VVVVV |
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and therefore, differentiating (K’) as if @, were constant,
dr (d¢ )n+l dnr d,y’ (d¢'>n+1
1dV de,* \da, w _de da, \de,
u dz, =7 +e, +“;2(,.) ST+ 17 (2, + A" + 2(n) O [n+ 1" (g, + A"’
that is, by (H),

(N’

Case of a System of Revolution.

6. Another particular case of the partial differential equation (A) deserves to be considered
specially ; namely the case of systems of revolution, symmetric about some single ray. In this
case, if we take for the axis of 2, the ray which is the axis of the system, V" will be a function of
zand of #* + %?; and if we pub

a4+ yt=01, (0"
we may in general suppose V developed according to positive integer powers of #, in a series
satisfying the condition,

av av L ’
(4) +4n (50 ) = ®)

To integrate this partial differential equation (P’), which is a particular case of (A), we
may employ the corresponding case of the general system of equations (D), (E), putting for
abridgment
@+ B=¢ Q)
and considering the quantities W, U, as functions of ¢, which we shall suppose capable of being
developed according to positive integer powers of that variable. In this manner we shall obtain

au aU dU

e ’
W%=%q aB" 2Bd. (R)
and therefore by (D), 3
U\* aUu ,
;4’1)=4-e(-£), V+U= 2e7 (S
We have also by (E),
U=W—puzVl—¢ fl—i]=%¥+’2‘—s, (T")
in which
: =N/l—e,
and we may put
WmpWo 4+ 2484 s = ety
o 9 THE=mo 2i+4)
édg_ ;"'"z(oo(‘”)emw’”‘
W)
al z+ A @ i
E-_-,‘iT_)—P\P; _4,—_-2(00UH1€;+1,
1:8.5...(2¢+1
20-2

www.rcin.org.pl



156 III. SECOND SUPPLEMENT [6

in which W©, wy;4, A, are constants of the same kind as before, 4 denoting the distance of the
origin from the focus of central rays. Hence, if we put for abridgment,
& n B a2 +y2 v’

G’—(Z+A)2_(Z+A)2’ ( )
¢ is an approximate value of ¢, and we have* the following relation between e and ¢,
4‘6\” 45‘\!"2 W/
2+ A (+ AR’ (W)
which gives, by the theorems before referred to,

A df, e\
f(©=1f+Zmo - (ﬁjljngl :ﬂ:)tf) }

€=¢,+

X

J (¢) being a function of ¢, and f,, 4, being formed from f, v, by changing e to ¢, We have also,

by (S) (T") (U"), = 1 [e(d0 , &0
== Wl (G 2 Gg ) de
14
—z-v17<°>+(z+‘{)G 2\[r+f Vde, (")
and therefore, by (X'),
14 z+ A i €,
o z2—-WO 4 (——7)—6— 2e,1}r,+fo ¥, de,
» o W " z2+4 d‘l"/ et "tk ¢ ’
+ 2(n)O [n+1]t1 (2 4 A)nt2 de {(—2— = 2¢ d_e, &0 ‘PI) (Gv‘l"f Tkl A) }a (Z")
in which,

d G :
Vi==24% Uineit d%’:,’ & ‘z(z)o (@ +1) Uiae's
z+2

€ i
foxlr,de, 33 Uanfogs o=y

The development (Z’) is one form of the integral of the partial differential equation (P’);
another form of the same integral may be obtained frcm the expression (K') for the characteristic

function of a plane system, by changing ¢, B | Va it and z, to z, and supposing wy;ys =0, and is,

v w2 (z+ Ay dn 1+§ dep,\"+2
C=e— WO+ + ¢, + 43 — ( (*’) Vi
“ G e D) W prapa @il (ay) ) @)
in which
ni+2 3 e G5 SO (21:-}-1) z "
¢ = E(z)o (z + Ay (w2’+4+ 2.4.6...(20+2) 21,'+4.> y il

Each of these forms gives, when we neglect % the following approximate expressmn for the
characteristic function V of a system of ordinary rays, symmetric about the axis of z,

. L (z+8wy)n® (24 16we)n® (2 + 8wa)?
Sl v 1 il 1% 0)? n® 5 7
Sl +2(Z+A) 8(z+A) 16(z+A)F % 8(z+ Ay ’ (€

* [By (3).]
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in which, n=a®+ 4% and WO, A, w,, ws, are constants in the development of the connected
function W, such that when we neglect the eighth power of the sine of the angle contained
between a near ray, and the axis of revolution of the system, we have

2
%V =Wo + zi(az_weﬂ) + wy (@ + B2 + we (a* + 8%, D)
a, B, being, as before, the cosines of the angles that the near ray makes with the axes of # and y,
to which it is nearly perpendicular.

Verification of the Approximate Integral for Systems of Revolution.

7. The approximate expression (C”) for the characteristic function of an optical system of
revolution, admits of extensive applications: it is therefore useful to consider other methods, by
which it may be obtained or verified. An immediate verification may be derived from the partial
differential equation (P’) of which (C") ought to be an approximate integral; namely, by com-
puting from (C’) the approximate expressions of

1 (dV\? 4y (dV\?

Al ) 3.3 5)
and trying whether their sum is unity, when 7* is neglected. Putting for this purpose the
expression (C”) under the form

¥; " s 7*
L=z —WoO ol
== WO e ) B+ Ap T 16 + AP
+(A—8w4)n’ . (82wy — 16ws — 34)n* (A — Bwy)* n® (E")
8(z+ A4 16 (z+ A)° 8(z+4)y °’
we find, by differentiation,
B |
pdz = 2(z+A)P 8(z+ Ay 16(z+ A) :
(A —8w)n*  3(32wy—16ws—34)9* T (4 —8wa)’»*,
2(s+AF 8(z + Ay 8+ Ay -
24V 1 Ty . S (A =By
pdy z+A4 2(@+A)P 8(z+4Y 2(z+A0
3(32w4—16w¢—3A)n’+3(A — 8wy n®
8(z+4)y 4(z+4)y J
and therefore, neglecting 7%,
l(‘ﬂ’)’gl_ . SR, et _ (4 —8uwy) 9™
u* \dz (z+4) " (z+4) (2+4) (2+4)
% (114 = 112w, + 48'w.)n3_ T(A — 8wy n®
! 4(2 + A)7 4 (Z + A)8 : (GII)

- {1 Ly P UL TP SR .4

p* \dny (z+ AP (z4+A)Y (z+4) (z+ Ay

il (llA — ll2w4+ 4!8%") ’I)a 7 (A - 8104)2 1)8 p
4(z+ Ay YTiGr 4y )
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expressions of which the sum is unity, as it ought to be. We may remark that the former of
these two expressions represents the square of the cosine, and the latter the square of the sine,
of the angle which a near ray makes with the axis of revolution of the system.

Other Method of obtaining the Approximate Integral.

8. Again, the approximate integral (C"’) of the partial differential equation (P’), may be ob-
tained in the following manner. Since V is supposed capable of being developed according to
positive integer powers of 7, let us assume

LA VO L VOnt VOgR4 VO 2 (H"')
o

neglecting 7% and considering V'©, V@ V@ ¥ & as functions of 2, of which the forms are to be
determined. To determine these forms, we have, when 5 =0,

av a*v ac
'E;=I‘V“?5 d_nz=2,“v(2’5 dn
aY . AV Ay R R TR TR
dz M dz > dngdz FTdz ' dpdz P dz 0 dpdz” P dz

V:#V(O); =6,U'V(3);

)

The equation (P’) shews that %;: + u, when 7 =0; and %g is positive, if we suppose the

motion of the light directed from the negative towards the positive part of the axis of z; we have
therefore, by (I”),
avoe
dz

=1. (K"

The equation (P’) gives also, by differentiating it with respect to 7,

av a2V avdav dV\% )
- T st 3 a2 ()
_dV azv a2V \2 AL A4 A2 V\« avav i
=% dds* (nds) + 47 a1 (@) +5 3y ot
dV d*V a2V d3V avdrv a2V iV avav (il
AR P> 7 et dp P P F i U i B U g el R R (d7f) ;)

and, making 7 = 0, we find by (I"’) the following equations in ordizary differentials, from which
Vo, Y@, VA are to be deduced :

@) my\2
0= % +8Va Ve 41 (d(z ) 3 (M)
D= ave + 12V 7 4 dhad o by +8Vee
dz dz | de
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These three differential equations, when divided respectively by V' ®2, V®4 Y ®8 can easily
be integrated, and give, when combined with the integral of (K"’),

%=V —z; \
"= ym —2z; ")
Ve e
1)’=W)—‘+2Z;
b il 4 (v +vy)*
T n 2z +v; )

Yo, V1, V3, ¥3, being the four arbitrary constants introduced by the four integrations. The functions
Vo ya ye Ve are therefore of the form

i Vg — 22
(0)= ~ (1)=____- ﬂ)=____ﬂ____.
V z2+v; V 22+, V (22_*_”1)4)

V"’ i 4z + Vg * 41(1)1 + ‘Ua)a_
2z+v)8 " (22+v)"°

and these forms for the coefficients of the development (H"), agree perfectly with the development
(C”) or (E”), when we establish the following relations between the constants:

v=—W0O; 9,=24; v,=—16w,; v3=8(16ws— 8ws—A4): (1)

we see, therefore, that the present method of integration confirms the former results.

(0")

Connexion of the Longitudinal Aberration, in a System of Revolution,
with the Development of the Characteristic Function V.

9. To give now an example of the optical use of the development which has been thus
obtained, let us consider its connexion with the aberrations of the near rays, from the principal
or central focus. We have already remarked that the constant A denotes the distance of the
origin of coordinates, upon the central ray, beyond this principal focus, in such a manner that
the focal ordinate is =— A. For the ordinate Z, of intersection of any near ray with the central
ray, we have by the fourth of the equations (C), of the present Supplement,

]. 8W "
“ i@ by @

if we form the coefficient %L: by putting W under the form of a homogeneous function of &, 3, v,

Z

of the dimension zero, with the help of the relation a? + 82 4+ o*=1, and by then differentiating

this function, as if @, B, were constant, and v the only variable. Employing therefore for %’
the development

_ g A(@+p% o Wairs (a® + BE)iH2 o
_~Wm+2(a’+ﬁ’+—¢)+zmoé;ﬁ’—+'y’)ﬁi’ (R)

which is of the homogeneous form required, and, after differentiating for y, making ¢®+ 82 + 42 =1,
we find for the ordinate Z,

Z=—A+ A=) —qZ,7 (20 + 4) s (a® + B2, )
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a series of which the term — A being the ordinate of the central focus, the remainder is the
longitudinal aberration : v is the cosine of the angle which the near ray makes with the central
ray, and o® + 32 is the square of the sine of that angle. If therefore we denote the aberration
Z + A by A, we may develope A in a series of the form

A=L(a*+ B2) + Ly (¢ + 32)% + &e., ()
di= %A . 4404, Ll = %A + 2’!04 et 6’11)6. (U”)

And if by these relations (U”), we eliminate wy, wg from the approximate expression (E”),
we find the following formula :

in which

0 i L
Veple=WO)tslss 4(z+A)3(z+A_%)

IL"’B 2L1_5L 6L2 } 173
12(z+A)5{ el AR Y

which shews the connexion in a system of revolution between the development of the longitudinal
aberration A, and that of the characteristic function V.

+

Chamges of a System of Revolution, produced by Ordinary Refraction.

10. Suppose now that the rays of this system of revolution fall upon a refracting surface of
revolution, having for axis the axis of the system, and having for equation

z=2z0+21m + 23 + 23m° + &, (W)

in which 7 is still =22 4+ 3* = the square of the perpendicular distance of a point , y, z, from the
axis; and let u’ be the refracting index of the new medium into which the rays pass after
refraction. It is evident that in this new medium, the rays will compose a new system of revolution,
symmetric about the same axis as before; and we may in general suppose the characteristic
function V” of this new system, which is analogous to V of the old, developed in a series similar
to (V')

g WP ( LA )
nEie )+2( +A) SEr Ayt b
wn® (2L;—-5L 6L " : %
TG+ AP| s1 4 Terayptipn &9
the constants A’, L', Lj being similar to 4, L, L;, in such a manner that the ordinate Z’ of
intersection of the axis with a near ray, is
Z'=—A"+ L' (a%+ B?) + Li(a + B2, (X7
if a'2 4 3" denote the square of the sine of the angle which the near ray makes with the axis,
and if we neglect the sixth power of this sine. To connect the new and old constants in the
development of the characteristic function, we have, by the nature of this function, and by the
principles of my former memoirs,* the condition

0=AV=V'-7V: (Z")

which is to be satisfied for all the points of the refracting surface, and which may therefore be
differentiated, considering AV as a function of z, 9, namely the difference of the developments

* [See p. 117.]
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(V"") (X"), and considering z as itself a function of 7, assigned by the equation of the refracting
surface (W’'). In this manner we find, transposing the symbols A, d,

dV dz , dV
0=AG +5. 8
@2V dz , @V (de\2, &2V d% , dV .
W20 ant () AT A G

avV . .ds ., @BV dz\? , d*V dz\3 . d*V
0=2G5+ 35 8 Teap 2 (a) ST+ (@) A %
d¥ , d®*V ded2 , d*V  d%z , dV
art A Tt P dnan S @ S @
and, making after the differentiations » =0, we have

d?z d%

2=2; é:zl; W=2z,; (7;’3--623;
A‘%’=Ap; A‘fi—%’=0; A‘%,Z
A%:}A.ZIA; A$Z’=1}A.(z:_’;),; A%=A.W_L‘”,; } (B
” g= - {2 (z“-{-L fots FE A)’} Mo de:* ko {(;i’:f)v +3 (z?A )‘} ;
%=A'(z+”n)°@f;:f£+(zi€:)'+§)' )

We have therefore, Ist, for the change of — A, the ordinate of the central focus,

0=A
(AHI)

s o

+3

A

= L . "
0=A ot 20 Ap: ‘ (")

IInd, for the change of L, the first or principal coefficient of aberration,

2[4[1 W 2] s e
(z+A)‘—(z+A)"}_4’z‘A'(—_—z+A)‘+8z'A“' (D)
I1Ird, for the change of L, the coefficient of the fourth power of the sine of the angular aberration,
in the expression of the longitudinal,

PR LT T Y
0=A'(z+A)‘(2(;+A)+(z+A)’+%)+32‘A'(z'+A)‘(m+%)

0=A{

[ad [l ., "
A.m—3Z|A.(——Z+A)’+6ZaA;&, (E )
z being the ordinate of the point of central incidence. With respect to the present meaning of
the sign A, we may remark, that' the first of the three equations (C""’) (D”") (E"”) is equivalent
to the following:

+ 322

—“—— =__L /. 0l
Z+A+231F' z+Al+2zlﬂ" ( )

and the two others are to be similarly interpreted.

HMP 21
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Example; Spheric Refraction; Mr. Herschel's Formula
Jor the Aberration of a thin Lens.

11. These general equations for refracting surfaces of revolution may be adapted to the case
of a refracting spheric surface, by making

1 J i ’
2= ‘27; Zz=8—,r3§ 23=1-6—r—5; (G"")

the two first, for example, becoming *

—_ _M.___ l_‘_l' . e
O—A(Z+A+T), (B")
e 2IU.L 1 2[1« Ll«_ / re
O_A((z+A)4"(z+A)3‘r(z+A)2+ra)’ (32

which contain under a convenient form, the known theorems for the change of the central focus,
and of the principal coefficient of aberration, by refraction of a spheric surface; r being the radius
of this surface, and being considered as positive or negative, according as the convexity or con-
cavity is turned towards the incident rays.

If, for instance, we consider an infinitely thin lens in vacuo, having u for its refractive index,
and having , 7', for the radii of its two spheric surfaces, (positive when those surfaces are convex
towards the incident rays,) we may take the point of central incidence for origin, and the equation
(H""") will become,

_ﬁ_l l"’—l _L [k 1_/1' 1
Yranat ety el L3
—A4,—A', — A", being the ordinates of the central focus in the three successive states of the
system; and similarly, (I"””) will give
0=2,u,L'_ %_(i 1 2 2 =1
a— z (- ) - (i - )+ o
2R Bl 1 W 2 2u T

0= i~ = (g d) =~ (wam= o) +

L, I, L", being the three successive values of the principal coefficient of aberration. Adding the
two equations (L"), the intermediate coefficient L’ disappears, and we find,

SI7 L P TSV R o f 2 2 §.4
0=F“P_<F—Z3)+T2(?’_F)_<r—'A"2_W)+(“_1)(F3_F“*)’ M)

in which, by (K",

L siliicmadlnd, AR 11N

P et e-0(G- o) -,
and therefore,

s deisied A oriom, e W Mo e

g 200 i e 5, LR,

* [The quantity in the brackets in (H”) is the so-called “Zero-Invariant” of Abbe; cf. J. P. C. Southall,
Geometrical Optics (1913), p. 159, where the introduction of the A notation in the theory of aberrations is
incorrectly attributed to Abbe.]
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if we put for abridgment

2
.__2#_!_#2
2 142u—2ut
o _ K w—2p p 3
M r,a"‘l' r,r + rz )
RS
L + 3 e 3/[. ; > (PIII)

Mﬂ)=1+'3#+" 4
* r

o243,

123 J

1t is easy to see that the formula (O"’) agrees with the expression for the spherical aberration

of an infinitely thin lens, which Mr. Herschel has deduced by reasonings of a different kind, in his

Memoir “On Aberrations of Compound Lenses and Object-glasses,” published in the second part

of the Philosophical Transactions for the year 1821; and in his excellent “Treatise on Light,”
published in the Encyclopedia Metropolitana.*

The elegance of this formula of Mr. Herschel, and the important consequences which he has
obtained from it, have induced us to shew how the same expression may be derived from the
development of the characteristic function of an ordinary system of revolution, assigned in the
present Supplement. The same form of development, and those other forms which we have assigned
in the same Supplement, for systems not of revolution, contain the solution of other optical
problems, of which we hope to treat hereafter.}

* [Vol. 1v, pp. 341-586. Although the title page bears the date 1845, the Encyclopedia appeared in parts
during the years 1829-1836. Herschel’s article is dated Dec. 12th, 1827, and mentions Hamilton’s “Theory of

Systems of Rays,” which was being printed at that time.]
+ [See footnote to p. 165.]
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