[451]

XIX.

RESEARCHES RESPECTING VIBRATION CONNECTED
WITH THE THEORY OF LIGHT

[1839.]
[Note Book 52.]

[The dynamical system consists of a number (n+2) of particles (P,, Py, ... P,,,) each of unit mass
and in equilibrium, spaced at unit distances along a straight line. The end particles are fixed and
each particle is attracted by a force (a?) by the one immediately before and immediately after. The
system executes small transverse vibrations and these are studied in five Problems. Each Problem
is worked out in great detail with examples and Hamilton is led to various results, some of which
must have been independent discoveries such as sequence equations and asymptotic values of Bessel
Functions and others were many years ahead of their time such as the Reciprocal Theorem in
Dynamics and the distinction between Phase-velocity and other types of velocity. The idea of a
“fluctuating” function is first mentioned also here.

Problem I (pp. 451-463). P,, P,,, fixed, P,, P,, ... P, having any assigned initial displacements
and velocities.

Problem II (pp. 463-487). All initial displacements and velocities zero except for P;,, P, ., ...
P;_,, P; and their displacements and velocities to correspond to the ith mode of vibration.

Problem IIT (pp. 487-503). The initial displacements and velocities of a number of particles to
correspond to those of a progressive sinusoidal wave.

Problem IV (pp. 503-510). Discussion of previous case for large values of .

Problem V (pp. 511-526). A single particle is constrained to move in an assigned manner.]

Problem 1.

1. A finite number (n + 2) of equal particles (P, Py, ... P;, ... P,, P, ;) being supposed
to be arranged in one plane, and nearly in one straight line, at finite and very nearly equal
intervals (each = 1); the two extreme particles (P, and P, ,,) being also supposed to be fixed and
each of the (n) intermediate particles (as P;) to be acted on only by the attractions (each =a?2) of
the two (P,_; & P,,,) which immediately precede and follow it in the series; it is required to
determine the laws of the transversal vibrations of the system: that is, to express the transversal
displacement (y, ), at any time (#), of any intermediate and moveable particle (7)) from the right
line or axis (of ) connecting the two extreme and fixed particles (P, and P, ), for any given
but arbitrary set of (n) small initial transversal displacements (y, o), and of (n) small initial

transversal velocities (¥} o).
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452 XIX. VIBRATION AND THEORY OF LIGHT 2,3

2. (Solution.) This problem is equivalent to that of integrating generally a system of »
simultaneous differential equations, of the second order, and of the form

Y= Ypia,0— 2Y10+ Y1) (1)
a®A}
or (D% 1+A)yu (2)

the integer / taking in succession all values from 1 to n; and y, 4, ¥, being supposed to be
each equal to zero. It is easy to effect this integration by the known methods. We have only
to assume

klm
Ly, =s8in——
Lk 8 +1:
km
=2
7= 2a8in =—— e

Yio=LywY e+ oo+ Loty o+ oo+ Ly 1Y i

k being an integer which takes in succession all values from 1 to n; and to observe that these
assumptions give
=1t Ly =0 Ly 5 — 2Ly 5+ Ly_y ),
LO =0, Ln+1,k =0,

2
n+1
For thus we easily transform the differential system (1) into another, which may be thus
denoted,

N Ly Yo+ oo+ Ly Yy o+ .+ L Y ).

Y+ ri ¥y, =0, (3)
and which gives, by integration,
Y=Yy oco8tr,+ Yy oritsintry; (4)
so that the sought expression for y, , may be thus written
3 Ly, Y, gcostry+ ...+ Ly Yy gcostry+ ...+ Ly, ¥, gcositr,
y,,,=m +L“Y10s1ntr1 ey g 5 osmtrk Poihe & i 8 smtrn §91(6)
ﬂ
or, more concisely,
2
. heg — = Ziy1 Ly (Y o costry+ Y oritsintrg); (6)

in which we are to remember that
Yk,0= 21 Lk Y105 Yl,c,o =2 Ll,k ?Jf,o-

3. (Corollary 1.) If there be but one particle, P;, displaced at the time 0, and if no particle
have at that time any velocity, we may write Y, o=y, o Lj 1, Y1,0=0, and the expression for
the displacement y, , of any particle P, at the time ¢ becomes

Y= + 1 Lj 3 Ly . cos try,
B oo o T lkem . 3km
_mz(k)lsmn+1mn T 2atsmn+1 )
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4-8] XIX. VIBRATION AND THEORY OF LIGHT 453

4. (Corollary 2.) In like manner, if only one particle, P;, have an initial velocity, ¥; ,, and
if no particle have any initial displacement, we may write

Yio=0, Yio=¥joLyw

and
Yi,.= n+ porog z(k)l Ly Ly, ,,f dt costry,
_ %50 Jhm Ve
cid n+lz(")lsmn+1 n+1 dtcos 20n:sunn+1

5. (Corollary 3.) The general solution (6) may therefore be put under the form

2 Jhkm lkem . 3n
y,,,=m2m1 (y, o+, OJ‘ dt) E(,,)lsm et 1tsm———1 cos (2atsmm). (7)
6. (Corollary 4.) If the initial displacements and velocities be of the forms
sin 2™ slm %o in T il
y =M n+ 1 ’ 771, 8 n+ 1 2

¢ being any integer from 1 to » and 7;, 7; being constants, we shall have Y o—n——;—lm,

1
Yio= n;- 7;, and all the other values of ¥, o and Y} , will vanish; therefore, in this case, the

general expression (6) reduces itself to the following:
; t
Y, =sin nd (m +7; f dt) cos (2at sin %Wl)

7. (Corollary 5.) By taking

il A 2 s b S tlmr

n+l n+l’ Kl | H1Y10 PO L

we may express any arbitrary initial displacements y, , and velocities y; o by developements of
the forms

Nni= Zh1Y08

o il il
?/lo— (1)17115111 +1’ +1

if then we had found otherwise the expression given in the last corollary for y, ;, corresponding
to the particular suppositions

.% 0=2(h1 7;8in ——

il il
Yro=mi8i0 ——, Y o=mn;sin——

n+1’ n+1’
we might have thence deduced the general expression (6) under the form

il Tor
Yi,e=Ziin smn+ 1 (m"'"h.[ dt) cos (2“t Sm—+i) (8)

8. (Corollary 6.) If we write, according to a notation already employed,
i
n+1
and introduce two new constants, B; and ;, such that
Bjcos By=n;, BjsinB;=mnirit,

r,=2as8in
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454 XIX. VIBRATION AND THEORY OF LIGHT [8-10

we may employ this other expression

Yr,o= 21 Bycos (tr;— B;) sin —— (9)

+l

in which 7; is a known function of the index (or integer) ¢, but B, and B; are in general arbitrary
functions of that index.

9. (Corollary 7.) The general system of total displacements ¥, , may be considered as the
sum of » component systems of partial displacements,
ilm
n+1’
of which each is separately possible, & of which all are mutually superposed. Each system of
displacements, by itself, may be called a simple movement or mode of simple vibration. It corre-
sponds to some one integer value of ¢ (from 1 to » inclusive), and to one corresponding periodic

time
27 Yim
T _7T cosec 22
r, 6 n+1’

involving also two arbitrary constants, or arbitrary functions of 7, namely n; and %;, or B;
and B;, which latter may be called constants of amplitude and of epoch.

Y,1= B, cos (tr;— B;) sin ——

10. (Corollary 8.) In any one such simple movement, corresponding to any one value of 7,
the displacements all attain extreme values when ¢ =7718;; and these simultaneous and extreme
values are all expressed by the formula

71 Selar
Yu,ri—2p: =B Mg

If 1 =1, these extreme displacements (relatively to ¢) increase in magnitude with / from /=1

till l= n;— - if n be odd, or till l=g if n be even; and afterwards decrease from /= I’%l or from
n+2 gy
l—T to I=n; being all of the same sign as B;. But if +=2, the displacements B, sin_——5

n+1 r_n _n—l P n+2
g% g ST T T

as nis of the form 4v—1, or 4v, or 4v+ 1, or 4v+ 2, » being an integer & « 0; they afterwards

increase in magnitude with 7 from I=1 till /= , according

g i 1 i
decrease and become negative when [ is between 2t andn +1,if B,>0.

2

may be considered as corresponding to ¢ — 1 nodes N,, N,,

In general the formula B, sin i
n+1

.. N;_,, for which I (though integer for each actual particle) is supposed to receive the (perhaps

fractional) values (n-@!- 1) 4 2(n+1) ,

. i
¢ i 1 ; b ' n+1
positive; between N, and N, negative; and so on alternately. The ¢ intermediate points V,, V,,

n+l 3(n+1) (21,—-3)(n+1) (22—1)(n+1)
. Vi1, V; for which I= % 5 9% . %
of extreme excursion, alternately positive and negative (if B;>0).

are venlers or points
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11-13] XIX. VIBRATION AND THEORY OF LIGHT 455

11. (Ezample 1.) If n=1, so that there is but one moveable particle P, , attracted equally
to two fixed centres, P, and P,, and slightly and transversally displaced from the middle of
the line (= 2) which joins them; then the variable displacement of this particle P, at the time
¢ is represented by the formula

Y1,0= By cos (ir; — By),
7—2r= 1; in which formula r, =2a sinZ:a\/ 2. The extreme displacement is B; and
the law is that of the cycloidal pendulum.

Mm=Y,e=DBicos By, my =¥1,0="1Bysin fy:

, sin (at+/2

because sin
and

12. (Bxample 2.) If n=2, so that there are two moveable particles P; and P, between two
fixed particles Py and Pg; then the variable displacements y, , and y, , of P, and P, are

Y11= ‘_/; {Bycos (try—By) + Bycos (try— o)}, Ya,0= %% {B, cos (try— B) — Bycos (try— )},

because

ﬁ—sing—sinz—"— —sing'
R s a Bl v i@ & 3’
also
'rl=2asin7—(;=a, r2=MSin1—;=a\/3.

The two simple modes of vibration, which are here superposed, are

3
Lo ?/1,t=?/2,l=1/2—31 cos (at— B,),
and
¥ 3
2ne Y= “2’/2,1=%Bz‘305 (at+/3 —By).

. The periodic time of the first mode is greater than that of the 204 in the ratio of 4/3 to 1. The
displacements of the two particles P, and P, are equal and on the same side in the 15t mode,
but equal and opposite in the 2nd,

1 § 2 1 ’ ’
B, cosBy=n,= Vg (1,0t Ya,0), Bysin Bi=aln = m (1,0t Y2,0)s

1 : Sl /
B, cos ﬁz=ﬂa=% (Y1,0—Y2.0)> Basinfy=(a+/3)1n;= 3a (1,0~ Y2,0)-
13. (Example 3.) If n=3, then
W e \/;Bl cos (try— By) + By cos (try— By) + \/;Ba cos (try— Bs),
Y=  Bycos(try— ;) — Bycos (trs— Bs),
Y3, = V3B, cos (try— By) — Bycos (try— By) + V3 Bycos (try— By);

: .59 - ey
rl=2asm7§r=av2—\/2, r2=2asm§=a\/2, r3=2asin§81=a\/2+\/2;
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456 XIX. VIBRATION AND THEORY OF LIGHT [13-15
1, 1, : 1 3 ’ g N
B,cos ;=% (\/%?/1,0 +Ys,0t \/‘;‘ys,o), B, sin ;= 2—7.1 (‘/%?/1,0 +¥Y2,0 +\/%.'/3,o)a
2 1 ’ ’
By cos By= % (41,0~ ¥3,0)> B,sin ﬁz=— (Y1,0—Y3,0)

Bjcos By = %(‘/*}?/1 0~ Y20t ‘/g?/s,o)’ Bgsin By = (‘/%?/1 0o—Ya0t+ \/‘%?/3 0)s
2 27w 2m

there are three simple modes of vibration, with periods whxch are respectively — g ET that
Ty Ty 73
2m 3 2 a T 2
is —cosec—, - cosec cosec , or finall 2, —————; they may also be
a 8 8’ 8 Ve av/z3—/2’ s V2 +4/2 i

thus Wntten —L V2+4/2, V2 & \/2 V/2—4/2; in the 15tor slowest mode, the 3 displacements

have all the same sign & are proportlonal to /4, 1,4/, that is, to 1, 4/2, 1, the second particle
being a wventer ; in the 2nd mode, the 15t & 3t displacements are equal and opposite, & the 2nd
displacement vanishes, so that the middle particle P, remains at rest and forms what is called
a node, the first and third particles being venters; in the 3™ or quickest mode, the 15t and 3rd
displacements are equal and of a common sign, while the 274 is of an opposite sign and greater
in the ratio of 4/2 to 1; so that, in this mode there may be considered to be two nodes, one
between P, and P, but nearer to P; and the other between P, and P, but nearer to P,; in
fact the abscissae of these two nodes are § and § respectively, the abscissae of the 3 vibrating
particles P,, P,, P, being 1, 2, 3; and in the same third mode, there are three venters of which the
first and third have for abscissae § and 42, so that they are near P, & P, but between P, and
P, and P, and P, respectively, while the second venter coincides with the particle P,.

14. (Corollary 9.) If there be but one particle P; which at the time 0 has any displacement
or velocity, we shall have

2940 . Y 2ry Y7
B;cos B;= +1smn+1, B;sin B;= ly,, g ¢
and therefore )
_ SESDEBRS S0 TEW "%
B +1\/y,,0+rz i os1nn+1, tan B; —ri,o i

15. (Hxzample 4.) If n=2, then
B;cos B;=3%y; ¢sin 1,_7?# ,  Bysin B;=%r71y; ¢sin z‘%ﬂ;

therefore, more particularly,

. g ) 2 5.5 L g
Blcosﬁl=§yj,0sm§, Bl_smﬁl=371yj’osm 3’
. 2w D it S N g
Bzcos,32=%yj,osm—3—, B, 81n,82—3—{/—3y,-’osm—?.
Still more particularly, if j=1,
l . 1 ’
B, cos ﬂ1=\7;y1’0, B;sin Bl:myl,o’

1 i ey
B, cos 132:'%?/1,0’ B, sin Igz=§‘;y1,o’
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and, if j=2,
1 : ? o
B100351=W?/2,0: Blsm/31=a—\/3?/2,05

1 ; Lk
B, cos B, = —\‘/‘gyz,o’ Bysin B, = —gayz,o-

In this manner we determine the coefficients of the two coexisting simple modes of vibration in
the system P, P, P, P,, corresponding to any initial displacement and velocity of P, alone,
or of P, alone.

. (Example 5.) In the system P, P, P, P, P,, n=3 and

B;cos B; =1y, s1n‘7—, B;sin B;=§r7'y;, osmq"i

that is, '
Blcos,81=%yj’0sinj£, Bysin By = \/22-1;/\g2 },osin;,
B2003ﬁ2=%?/j,05m-2‘—£—7, stinﬁg=my;,osing—£—r,
B cos B3 = }y;,08in %‘E 3 S B Rin B \/2 \/\é2 Y} osi 31’”_

17. (Corollary 10.) By last corollary or by corollary 3, article 5, the whole effect at the
time ¢ on the particle P, of the initial state of P;, is

t
(yf,0+y:’i,0fodt)f(j’ l: t):
in which ‘

n+l n+l +1
If 7%1 be much larger than j or /, this finite sum is nearly = the definite integral

i &, t)——-——zf«f)lsln Y sin e cos (2atsingﬂr—).

%fz d0sin 270 sin 216 cos (2at sin 6).
0

If then we consider the case of a very numerous system of particles, we shall have, nearly, for
those which are much nearer to one end than to the middle,

: m
Yo o= ; R (3/1,0 + y;-,of dt)f2 d0 sin 256 sin 210 cos (2atsin 0); (10)
0 0

92
Y;,0and yj , being supposed = 0 unless & _ﬁ i be small; and this expression corresponds rigorously

to the limit » =co, j and ! remaining finite.

18. (Corollary 11.) If nothing be neglected, we have
4sin a.sin Bcosy =2 (cosa— f—cosa+ fB) cosy

=cos (a— B +7y)+cos (x—B—y)—cos (x+B—y)—cos («+B+7y);

HMPII 58
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458 XIX. VIBRATION AND THEORY OF LIGHT (18

therefore*

1 %'w i)
F0, LE)= Tt D) (m{cos( tsm v
w  i(l—g)m

-+ cos (2atsmn+l 5 )

—COo8 (2atsm 4 )
n+1 n+1

—COo8 (2atsm ok Z(H—j )}

n+1

and therefore
1 _ 1B Yim  i(l-j)
y"’=m2$)l (yj’°+y"’°_fodt) E{;)l{cos (2atsm +1 o+ P )

+ cos (2ats1n dim M)—cos <2atsm gim _,_@(l"‘.?) )

+1 n+1 +1 n+1
—cos | 2atsin =—— AR i L } (11)
n+1 n+1 :
i 1+7 . -7 .
If, now, j, l and n all tend to co but so that Wi is nearly =1, and that o | is nearly =0, or

9
in other words so that —il—l and n——ﬁ—l are each nearly =1, though 2/—n—1 and 2j —n — 1 may

both be large numbers positive or negative; in short, if we consider only particles P; and P,
which are much nearer to the middle than to the ends of the very long line Py P, ,,, although they
are not necessarily near to one another; we may then neglect those sums of rapidly fluctuating

cosines which involve Z(l?—w—)ﬂ'r and may transform the other sums into definite integrals by

making % 0; and thus we obtain, as a very approximate formula,

. m
Y= 7—2,_ Z - (?/1+h,o - ?/;+h,of dt)J‘2 d6 cos 2h8 cos (2atsin 0). (12)
0 0
Accordingly this expression gives

2 L (3 Wi
Yoss.t™ ;Z%*” (th,o - y}+h,0J‘ dt)f df cos (2h0 F 20) cos (2atsin 6),
o /Jo

* [fs L )= {Taq— (2at) = T 345 (2at)}.

The following note appears on the opposite page of the manuscript. “It is remarkable that this function f(j, , t)
is symmetric relatively to j and I, even if » be not large. Indeed each part, corresponding to any one value of s,
or to any one mode of simple vibration, is symmetric also. Thus, the effect (and even that part of the effect which
corresponds to any given number i of venters) of the initial state of P; or the state of P, at the time ¢, is the same
as the effect of a like initial state of P,on the state of P;at the time ¢; even though P; may be near one extremity
and P, near the middle of the system. It will be important to try whether a similar result holds good for other
attracting or repelling systems.”]

1 [This can be inferred from the value given in the previous note for f(j, 7, #). Hamilton’s paper on Fluctuating
Functions did not appear until 1843, T'rans. R.I.A. X1X, pp. 264-321, although there is a short note in Proceedings
R.I.A.1(1841), pp. 475-477.]
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18-21] XIX. VIBRATION AND THEORY OF LIGHT 459

therefore ks

Y+ Y1,0= ; Z - (y, sno0+ Y +h,0f:dt)f:d0 cos 2h0 cos 26 cos (2at sin ),
and . ¢\ (2
Yire— 2t Yimr,e= — . 2= (y,+h,o + Ym0 f odt) J i df cos 2h0 sin 62 cos (2atsin 6);

the function (12) therefore satisfies rigorously and indefinitely the equation in mixed differences
(1), and is the complete integral of that indefinite equation because it reproduces the arbitrary
initial data y; o and ¥}, as the values of y;, and y; ;, for ¢=0.

19. (Remark.) Thus the expression (10) corresponds rigorously to the transversal vibrations
of an indefinite line of equal particles extending in one direction from the fixed point P,; or if
in both directions, then so that y_, ,= —,; ;; and the expression (12) corresponds rigorously to
the transversal vibrations of an indefinite line of particles extending in two opposite directions,

& having no point fixed.

As applied to the theory of light, the expression (12) seems adapted to illustrate the internal
propagation of luminiferous vibration, and the expression (10) to illustrate the reflexion of such
vibration. And this expression (10) may be thus written

t\ (2
Y= ;ZT - (y,,o + y},OJ‘ dt)f dfsin 2§60 sin 216 cos (2at sin 6), (13)
0 0
if we consider y_; , and y_; ; as equal to —y; o and —¥j,.
20. When = is finite, if we put for abridgement

and therefore 7;=2asin g,

w
P21y
we have, for any simple vibration, the formula
Yy,1= Bjcos (2atsin i¢ — B;) sin 2ile,
which may be put under the form
; Y= 3 B;sin (2ilp — 2atsin i + B;)
+ $ B;sin (2l + 2at sin id — B;).
It may therefore be considered as the sum (or resultant) of two conjugate simple movements, of
which the phases are respectively 2ilé — 2atsini¢ + B; and 2:ld + 2atsin i — B;; the amplitudes
are each = } B, ; and the velocities of transmission of phase (from particle to particle) are respec-
asin g —asini
7 ¢ and 5 (ﬁ;

positive velocity is <a and > 2—“, because i¢ >0 but <
m

tively that is, they are equal in amount but opposite in direction. The

g. The epochs B; and — B; are, in like

manner, equal and opposite.

21. Each of the two conjugate simple movements, described in the last article, satisfies
the indefinite equation in mixed differences (1) whatever ¢ and ¢ may be; but the advantage of
combining them, & of supposing ¢ =-———, is that we thereby satisfy also the conditions

T
2(n+1)
58-2
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- 460 XIX. VIBRATION AND THEORY OF LIGHT [21-23

Yo,0=0, Yn41,,=0, for all integer values of ¢. If we omit the last condition (y,,,,,,=0) we may
take any values for ¢ and ¢ ; but we must still combine the two conjugate formulae. If we omit
both of the extreme conditions, we may use either formula alone, and may assign any value to

7 and ¢ (between ¢=0and = g) g

22. In this manner then we might perceive that at the limit considered in article 17, which
corresponds to the integration of the original equation (1), subject only to the one condition
Yo,:=0, we may write

0y 7
Y= j d6 Bycos (2atsin 6 — By) sin 216, (14)
6,

the limits 6, and 0, being arbitrary quantities and By and B, being arbitrary functions of 6.
But in order to reproduce in this case the initial values of y,, and %, we must (if possible)
determine these arbitraries so as to have

A 0y
Yo= f df Bycos Bysin 210, y; o= f 2adf Bysin Bysin 0 sin 210;
0, 0
and these conditions accordingly are satisfied, as in the formula (13), by supposing

T 2 ]
0,=0, 02=§, Bgcosﬁ,,:"—rz(";)_wyj,osmzye,

’ ¥ : 1 e
Y_jo=—Y50 Y-j0=—Yj0 DBygsin /30=‘;T 2% —w Yj,08in 2j0 cosec 6.

23. We might also, in like manner, have perceived, that at the other limit considered in
article 18, corresponding merely to the indefinite integration of the equation (1), we may write

GI 2
y,,,=f df Bysin (216 — 2at sin 6 + By) +Jn du O sin (2l + 2atsin e +y,), (15)
0, u

the limits 6,, 6, and ¢, , ¢, being arbitrary quantities, while By, B, are arbitrary functions of 6,
and C,, y, are arbitrary functions of «. To reproduce the initial values we must endeavour to
determine these arbitrary quantities and functions, so as to have

6y Ly
Vo= J db By sin (210 + By) + f duC,sin (2l +y,),
0y 3%

05
Yi0=— 2af d0 Bycos (210 + By) sin 0 + 2afhdb C,cos (2l +7y,)siny;
6, u
conditions which may be satisfied, as in the formula (12), by supposing

1 . .0 COS 2h0
Bgcos By= s ) %N, (y,,,osm 2h0—%) >

: 1 Y, 08in 220
Bysin lgo=;2<°?z)—w (y,,,ocos 2’*‘”—2‘;&?
1 w 3 y', cos 2h
C.co8y,=_EG)-w (y"’°sm 2ht+%) 1
» 1 y,'h sin 2
Ousiny,= S, (vn,0008 2he—0SeE),
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23, 24] XIX. VIBRATION AND THEORY OF LIGHT 461

and 6,=0, 0,= g y 4 =0, = g . In fact these last suppositions give

Bysin (210 + po)=7-17 (iR (y,,ocos(zho W) + 5 M, -”"' ; sin (240~ 210))

O, sin (T +9,) = %2(,,, m (yhocos (2h—20) — 5 Y0 gin (21, - 2h));
and therefore

2
Bysin (210 + Bg) + Cysin (210 + ) = = - Yn,0€08 (2h0 — 210),

m
2
so that, performing on this the operation J db we get y, o; also
0
1o : Yn,
Bgcos (206 + Bg) = — I (?/h,o sin (2h0 — 210) — ﬁigo cos (2h0 — 2l0)) g

1 . A
C,cos(2li+y,)= s 23w (yh,osm (2he— 20) + 2%::005 (2he — 2lp)) f
and therefore !
2
2a 8in 0 { — By cos (210 + By) + Cycos (216 + yp)} = & Z)— w Yh,0 08 (2h6 — 210),

2
so that the opera,tionf df, performed on this, reduces it to ¥} o; the initial values are there-
0

fore reproduced At the same time, the expression (15) becomes

Y= f df[cos (2atsin 0) { Bysin (210 + By) + Cysin (216 + yg)}
+sin (2atsin 0) { — Bycos (210 + Bg) + Cycos (206 +yy)}]

.2 3 L i , sin (2atsin 0)
= ;fo di X o cos (2h6 — 210) (yh'o cos (2atsin 0) +y5, o Fr e )
2 (2 t :
= ;f do =3, _ ., cos (2h0 — 210) (?/h,o 4 y,',,of dt) cos (2atsin 0)
0 0

¢\ (2
= ?r BT U (ym,,o + y;+,,,of dt) f dB cos 2h0 cos (2atsin 0),
0 0
so that the formula (12) is re-deduced.

24. One element in the solution of the problem of article 1 has been the theorem that
X1 8in ‘7’:_"1 ingﬁ:O, or —n; 1,
according as j and /, being both integer numbers >0 & <n+ 1, are unequal or equal to each
other. As we shall have several analogous summations to perform in these researches, it may be
well to give here the process of proof in full.
The equation 2sin «cos (2ka+ B)=sin (2ko+ « + B) —sin (2ka—« + B) gives, when it is
summed with reference to k,

2sin a 2 5, cos (2ka + B) =sin (2kyo + « + B) —sin (2k; . — o+ B).
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462 XIX. VIBRATION AND THEORY OF LIGHT [24, 25

Let o=, £ibaes B0,
sin (2%, + 1) (ot + o) — 8in (2 — 1) (o £ az)

2sin (o + o)
sin (2k, + 1) (ot — otp) — 8in (2k; — 1) () — p)

4 8in (o) — oty)

sin (2ky + 1) (oty + otp) — sin (2k; — 1) (oc1+oc2)
+
4sin (o + op)

then  Zfyy, cos (2kay + 2ka,y) =

Sk 1., 008 2ka; cos 2oty =

sin (2ky+ 1) (0t — otg) — sin (2ky — 1) (ot — otp)
4sin (o — o)
__8in (2ky + 1) (o) + o) —sin (2ky—1) (¢:t1+ac2
4 sin (ot + o)

and ks r, sin 2ka; sin 2o, =

Hence
271 8in 2ko, sin 2ko,
sin (2n + 1) (¢; — op) —8in (a4 — aty)  8in (20 + 1) (oty + ty) — 8in () + 1)
4 8in (ot; — o) 4 sin (ot + otp)

_sin (o +0) 8in (2. + 1) (%, — ag) —sin (otg — otp) 8in (20 + 1) (ot + )
4 sin (ot + o) 8in (ot — 0tp)
_ 008 (2not; — 20 + 2aty) — COS (21 + 20 — 2naty) + COS (2n + 20, + 2nax,) — cos (2nay + 2n+ 20+ 2aty)
8 sin(ot; + o) 8in (23 — p)

sin 2na, sin 2 + 20, — sin 200, 8in 27 + 20,
2 (cos 2y — cos 2a;) ¥

g il i ot
M2’ %B=5 T2’ unless cos 20, = cos 2« , that is, in the

present question, unless j=1I. But, for that particular case, the sum may be found by differ-
entiating numerator and denominator relatively to «;, & then making o, = a; it is *.*

n+1 nlar lmr n+1

3 coslnsmn+ lcosecn+ oy

this sum therefore vanishes, if o, =

25. The same theorem of summation shows that, in the notation of articles 7 and 8,

Zip1Blcos B =X mi= 1y 2(1)1 Y105
Zih1rt Blsin B =T, 1% = s Tty o,
It is interesting to calculate also Xf}), 7} Bjcos Bi=2Xp,7in}. Since r;=2asin %Wl , we have
2= 2a®— 2a® cos n’L_:_T s we have therefore only to calculate
n+1 i v . ilm
(-2—) Zipami cosn +1 = X1 008 —— ntl (Ean?/z Ly 1)
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For this purpose we have to calculate

2%, cos n'rzl sin ni_l:1 Sinr;,jiﬂl 1 (sxnz (‘Z;.:_ll)ﬂ+sin7' ('Zi:'_ 1) )s n _l:rl gy
unless j=I+1. But if j=1+1, j & I being each >0 and <n-+ 1, then the last sum =11;—1.
Hence
i o (2(1)1 Y1,08i0 z-l:-l)z e 5 Zib1" Y0 Yi41,05
therefore
2

Z¥h17m3 cos — g 1 s+l E('fﬁl?/t,o Yi1,0

and finally, because y,,,, =0,

4q2
173 Bicos B =20 rini = ntl —— 21,0 Y10~ Yit1,0)-
Hence

2 g
T i Bl = Py | Zha W%+ 202Y1,0 Y10 — Y1100}

26. (Bxamples.) When n=1, then

ry=av/2, BycosPi=n,=y,9, 7T1Bisinfi=n1=y1,.
When n =2, then

ri=a, ry=ay/3, BicosBi+ BioosBi=}(yho+uho)
73 Bisin B} +73 By sin B3 = § (4% +Y20)
4a?
7%B%C°Sﬁ§+7§B§cos.3§=—3—(y%,o‘*'yg,o—?h,oyz,o)'

When n =3, then
r=aV2—14/2, r,=a+y/2, rz=aV2++/2,

Bj cos B} + B cos B3+ Bjcos B3 =1} (4} o+ 43,0+ ¥3,0)s
73 BYsin B3 + r3 By sin B3 +r3 Bisin B =} (1% + Y220 + ¥520)s
7§ B} cos B} + 13 Bj cos B3 +73 B cos B§=a2 (Y30 Y30+ Y30~ Y1,0Y2,0— Y2,0Y3,0)-

27. Thenon-periodical part of 2, 4% i Z(m r% B%; this non-periodical part is therefore

equal to the sum

Q=20 {3y% + %0 (Y0— Yis1,0)}- (16)
This part @ appears to be in some sense a measure* of the quantity of vibration of the system (the
mass of each particle being unity).

Problem I1.

28. It is required to apply the general solution of the 15t Problem to the case where, at the
time 0, all the displacements & velocities vanish except those of the j—j,+ 1 consecutive
particles P;,, P; .4, ... P;_,, P;; supposing also that the initial displacements and velocities of

* [Sum of initial kinetic and potential energies.]
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464 XIX. VIBRATION AND THEORY OF LIGHT [28, 29

these are such as to agree with a simple mode of vibration, in such a manner that, if I be >j,—1
and <j+1, we have

Y1,0= By, cos By sin 2klg,  yj o= By, sin By sin 2kisp,
¢ being =¢T%f_i , and 7y, = 2asin ké; but that
yl,0=0: ?/;,020’
if I be <j, or >j.

29. (Solution.) The general expressions

B;cos B;=n;= Zih1Yy,08in 2ilp,

n+1

r;B;sin By =mn;= oy Z(,)ly; o 8in 2:l,

become now
Ny = n———i 1B,‘c cos By Zi, 7,8in 2ilé sin 2kl4,

2r, el sl ke &
= 7?"1 By,sin B, ; sin 24l sin 2klp.
But, by article 24,

St win Sl ain S

4sin (¢ —k) ¢
_sin(2j+1) (i+k)$—sin (2, -1)(G+k)$_F(j)— F(j,—l
4sin(v+k)d
7 . _8in(2j+1)(i—k)¢ sin(2j+1)(i+k)¢ sin 2ji sin 2 + 1 k¢ — sm2]k¢sm2j+lz¢
()= 2sin(i—k)¢  2sin(s+k)é cos 2k — cos 2i¢
therefore
1

2 3}y; sin 2il¢ sin 2kl = % {sin 2ji¢ sin 2j + 1k — sin 2jke sin 2j + 1igh

cos 2k — cos 24
—sin 2j k¢ sin 25, — 1id +sin 2j i sin 2j, — 1k} ;

cos 2§, k¢ sin 2j, — 1k — sin 2jke cos 2j + lqu
sin 2k¢

2 Ty, (sin 2kl$)P=j—j, + 1+

Hence, by the general formula (9), we have, in the present question,

\

sin 2:ld

inke . ¥
kown, ( cos B, cos (2at sin ig) + sin /3,, sin (2atsin “ﬁ)) 008 2/ — 608 23

in id
x {sin 2jic sin 2j + 1k —sin 2k sin 25 + 1id

Yu=ni1

—sin 2j, k¢ sin 2j, — lid +sin 25, i sin 25, — 1kg};  (17)
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29-32] XIX. VIBRATION AND THEORY OF LIGHT 465
and the part corresponding to ¢ =#% is

\

7%008 (2atsin k¢ — B;,) sin 2kl {j—j,+ 1+

cos 2j, k¢ sin 2§, — 1k — sin 2k cos 2j“+_1k¢}
sin 2k :

30. Ifj,=1,sothat thej first particles P,, ... P;are alldisturbed originally in the way above
supposed, then

I (cos B}, cos (2at sin icp) + sin B} :E’:i sin (2a¢sin z‘¢))

sin 2il¢ {sin 2jig sin 2j + 1k — sin 2jke sin 2j + Ligp}

X - :
cos 2k¢p — cos 2i¢

L By
=011

(18)
and the part corresponding to ¢ =k is

B;, A gL ;
g1 (2at sin k¢ — B;,) sin 2kld {j -

sin 2jké cos 2jﬁk¢}
sin 2kd :

31. If j and I be each much smaller than #, so that = is treated as infinite, while j and /,
though perhaps large, are finite, then the expression in article 30 becomes a definite integral,
namely

Y= 2 B,‘chz db (cos B cos (2at sin 0) + sin /3,“ﬂ.—t sin (2atsin 0))
ST o sin 0

i sin 206 {sin 2j0sin 2 (j + 1) « —sin 2jasin 2 (j + 1) 6}
cos 2« — cos 20
in which a=/k¢. This expression satisfies the equation in mixed differences (1); and gives
Y,0=0,4;,0=0,if I > j; but y; = By, cos B, sin 2lu, y; , = 2asin « By sin B sin 2/, if I <j + 1,1 being
a positive integer: it gives also y, ,=0.*

30 £19)

32. In the formula (18), making i¢ =6 and k¢ =«, we are led to consider the product

sin 206 {sin 2;j6 sin 2j + lo.—sin 2jasin 25 + 19}

= 4 sin 20 {cos (2jo.— 0 + 2x) — cos (2o + 0+ 20) — cos (28 — o + 26) + cos (20 + .+ 26)}

=sin 200 {sin (6 + «) sin (2j + 1) (0 — &) —sin (0 — &) sin (25 + 1) (0 + )}

=} sin (0 + «){cos (2j — 21 + 10 — 2j + o) — cos (2j + 20 + 16 — 2j + 1)}

— 4 sin (6 — o) {cos (2 — 21+ 10 + 2j + 1«) — cos (2j + 21 + 10 + 2j + 1a)}.

I+ ll is nearly =1 but that %—;—ll is nearly =0,
we may neglect those sums which involve cosines of 2 (j +) 6 + const., unless they be divided by
something which vanishes or becomes very small in the course of the summation; and may
reduce (under the sign of summation) the recent product to

cos(2j—2l+1)8.cos(2j+1)x.cosf.sina+sin (2j—2/+1)0.sin(2j+ 1)« .sinf.cosa

=4sin (0 +a)cos{(2—20+1)0— (2 +1)a}—}sin (0 —a)cos{(2j — 20+ 1) 0+ (2 + 1) a};
reserving, however, the part
—4sin (0+a)cos{(2+20+1)0— (2 + 1)}

> l:sin2j09in2(j+l)ac—sin2jasin2(j+l)0
cos 20— cos 26

If now we suppose, as in article 18, that

=%{Z32sin 2 (j—s)0sin2(j—9) oc.]

HMPIL 59
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- 466 XIX. VIBRATION AND THEORY OF LIGHT [32, 34

for special consideration. It may however be instructive, before thus passing to these limits, to
resume the formula (18), & to study first the consequences of it in the case when the number n

of moveable particles is finite but even, & when j= g’

sin 2joeccos 2 (J+ 1)«

vy , which occurs in article 30, may be put under

33. The expression, j —
sin2(2j+1)a
2 sin 2a
that is, if exactly half of the whole number » of moveable particles have such original displace-
ments and velocities as correspond to a simple movement of any one kind; & consequently, in

this case, that part of the whole resultant movement which is of the same period is
* }B;,cos (2atsin « — B},) sin 2lo;
it is therefore exactly half of that other movement
Bj,cos (2atsin o — B;,) sin 2lo
which would reproduce the initial displacements and velocities, not only for half but for the
whole of the system of moveable particles. In other words, we have the theorem:

If the initial state of half the system P,, P,, ... P, correspond to one simple movement
' 2

4 B, cos (2at sin o — B;,) sin 2/a,
and if the initial state of the other half P, ... P,_,, P, correspond to another simple move-
1

the form j+3 — ; it reduces itself therefore to 7—"%} , ifj= g, (beca,use a= —%) ’

ment of the same period and amplitude, but with an epoch differing by an odd multiple of =,
— 3B, cos (2atsin «.— B,) sin 2,

in which a=:i_:1, then the resultant vibration of the system will be composed entirely of

simple movements of other orders, that is, with other periodic times. (The next article will
show that the indices # which mark these orders differ by odd numbers from the index £.)

34. To express this resultant vibration, we may employ the formula (18), under the form

\

Y=o Z4 (cos By cos (2at sin 0) + sin B,,————sm(2atsm 0))

2j+1
sin 210 {sin (0 + o) sin (2§ + 1) (6 — &) —sin (0 — ) sin (25 + 1) (0 + a)}
x ; (20)
cos 20 — cos 20
in which the part corresponding to ¢ =k is now to be omitted; we have also, now,
o o . $km
2 +1’ 2j+1’

(Z+1)0Fa)=30Fk)m;
we need therefore attend only to those values of ¢ which differ from k by odd numbers, positive
or negative. Let I=j+A; then

sin 2l0=sin(2j0+2h0)=sin(%T+(2h—- 1)0)

=sin((" Y "" +(2h— 1)0)_sm(' fan, (%’1+(2h-1)a),

2
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34, 35] XIX. VIBRATION AND THEORY OF LIGHT 467

(1—Fk)m
2

=0. For the same reason
0 . e :
(sin (2 270)11) S F 5 (i—k)m . (c+k)m

because cos

5 sin—— =cos km;

sin 210 {sin (0 + o) sin (2j + 1) (0 — &) —sin (6 — o) sin (2 + 1) (0 + )}
cos 20 — cos 26

cos (%’r+ (2h—1) 0)

= T cos 20— cos 20 {sin (6 + &) — cos kmrsin (0 — o)}

=1cos (’%’+ (2h--1) 9) (sin(;— a)+s§n_(;)-l:))'

(If k be odd, this becomes

ki1 . ;
J(=d)'s sm(2h-—l)e(sin(g_a)+sin(0+a));

if k& be even,

k A -
%(—1>2cos<2h-”"(sm<a-a>'sin<0+°‘))')

Hence the expression for y; , becomes

1B : . il - :
Ysani= Z:"—k—l Zy | cos By, cos (2atsin ) +sin B = —;sin (2atsin 0)
1 (—1)k+1

X COS (";2—"+(2h—- 1)0) (sin(@—oc)+sin(0+a)); (21)

in which the summation is to be performed relatively to i for all values of that index which
differ from % by odd (integer) differences, being also >0 and <n+1; and

i R
0—2j+1’ ey 75

35. For example, if j=1, k=1, we must take 1=2, 6=g, a=%, B—ac=%, 0+a=g,
| 1
sin(0—-a‘)=§, sin(0+a)=1, sinac=§, sin0=\-§, and
Yon S4B (cos [ Hipryy; e %—‘T‘/:”) sin (1 — 24) 0;

that is,
V3 Vi o SiNadA/3
yl,,=Bl\{T(cos ,Blcosat\/3+smﬁls—m$T\/)= — Yot

These values accordingly result from the more general formulae of article 12 by sup-
posing \ ¥
3 o £ s VS &
V0= \/‘4*3100331: Y1,0= %/-Blsmﬁl:

3 \ \ ’ a4/3 i .
y2,0=—‘—i—Blcosﬂ1, yz,():—%BlSlnBl.

59-2
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w

And if we had supposed j=1, k=2, we should have been obliged to take :=1, x=3, 0=%,

0—a= —g, 0+a=1—r,

Y14n,0= 5 B; (cos B; cos at +4/3 sin B; sin at) cos (2h — 1)%;
that is,
V3 5 X AN
yl,,=y2,,=TBz(cosBzcosat+\/3smﬁgsmat).

Accordingly these expressions result from the formulae of article 12 by supposing
3 \ A ’ ’ 3a N 2 A
y1,o=y2.o=%32005.32: ?/1,o=?/2,0=“4“stmﬁz'

36. Whatever j may be, if we take k£ odd and = 2« — 1, we must take 7 even, and of the form
2:; k and ¢ being each some one of the integers 1, 2, ... j. Hence, in this case,

2(—1)« . 3 L Y
Yssnt= I By, 13y, {cos Bax_1 008 (2at sin 27—}-—1) sin G+l

. (21 (k—3)7

sin CO8 —
Lo A sk . (k—%)7 27+ 1 2j+1
+smBzK_lsm(2atsm Py 1)sm %+ 1 } o 1)'”_0 : " (22)
2+1 2j+1
And if, on the other hand, we take k= 2« and ¢ =2.— 1, we have
_ﬁ__l)_’j \ j \ . ("_%)Tr 3 ("—%)ﬂ
Yjint= 2 +1 By, X, {cos B, cos (2at sin 541 sin 541
AR i cos - _21j)-f-L ; b " sin 2;:1 cotan (;;f)lﬂ
gt TNy ; - § T
+smBsz1n(2atsm %+ 1 )Sm2j+l} e . (23)

i VIO gk T

And these formulae may be considered as rigorous with reference to the present question.

37. Supposing now that j increases without limit, but that £ so increases with it as to
leave o =some finite arc, between 0 and g; we shall have, as the limits of the two last formulae,
the following:

2 2 AR
Ysena=_ (=1)B;,. f d0 {cos By, cos (2atsin 0) sin 6 + sin B,._, sin (2a¢sin 0) sin o}
0
sin (2h60 — 0)cos «

cos 2a—cos 260 ’ (24)
and
2 2
Yisnt= 7—1( — 1) B%"J. df{cos B;, cos (2atsin 6) sin 0 + sin B;, sin (2afsin 0) sin o}
0
cos (2h6 — 6) sin « cotan 0; (25)

cos 20 — cos 26
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the first corresponding to the case k = 2« — 1, & the second to k = 2«. It is evident that both these
expressions satisfy the equation of mixed differences; & to show that they also reproduce the
initial displacements and velocities, we must show that they give, according as the integer %
is > ornot >0,

Yisno= F 3Bjcos B;sin2(j+h),

Yisno= FaB;sin B;sin 2 (j+h)asina;

in which a= %kﬂ , 80 that
2%+1

sin 2 (j + h) e =sin {$km + (2h — 1) o} =sin }km cos (2h — 1) o+ cos $kmsin (2h — 1) o
=(=1)*1cos (2h—1)a, or =(—1)¢sin(2h—1)a,

according as k is of the form 2« — 1, or of the form 2«.

38. There are, therefore, for a verification, or for an & posteriori proof of the formulae of
the last article, the 2 following equations to be proved:*

+zcos(2ha—a)_Jgdosm08m(2h0—0)'
~4 cosax ), cos82x—cos20 ’

__1_rsin(2hoc—-oc)_J’gdacosﬂcos(%e—-())_
4 sina ), cos2x—cos20 ’

the upper signs corresponding to positive values, and the lower signs corresponding to negative
values, of the odd integer 2/ — 1.

Now, if we put

: cos 2h0
- Sm j cos 20 — cos 2o T w

we shall have, for all values of &,

4 o 3
Chy1+ Chy — 2008 20C; = 7—Tsm 2ocf0 cos 2k0d0 =, 5in 20 sin har;

therefore this function vanishes, if # be any integer > or < 0; but ¢; +c¢_; — 2 cos 2a.¢y= 2 sin 2a.
Again ¢, =c_;; and ¢,=0. To prove this last relation, we may set out with the evident

relationt O=f %@, which gives 0=f ;d:xa, a being real; (though the complete discussion

of the value of this definite integral belongs to the theory of singular integrals, considered
first by Cauchy;) therefore

b e
o \Z—a z+a z%2—a

l:The integrals which follow are to be interpreted as being Cauchy’s Principal Values, i.e.

fimmf 0]
1 YRR
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and therefore 0= f :;E_d_a%z , if @ be real and different from 0. Make x=tan 20, a = tan 2«, and
o Z2—

suppose (cos 2«)% > 0; then

e 3 6 (sec 20)?sec 2 _ [4 o, df )_ f’z" e
") (sec20)2 — (sec 2x)2 [, \cos 2a+cos 20 ' cos 2a —cos 20) ], cos 20 — cos 26°

which is what was to be proved. (However, it is to be observed that we have here supposed
cos 2« to be different from 0. Yet even if it were =0, so that we had to consider the integral

- 4
f %@ , we might consider this as being =J.4(sec 26 — sec 20) df, and therefore as being =0.)
0 k 0

Admitting then that ¢y= 0, we have c¢_, =¢, =sin 2«. Hence ¢, =sin 2k, if & be any integer not
less than 0; and ¢;, = —sin 2ke, if & be any integer not greater than 0. That is,

Py,

2 cos2hf  _  mwsin2ha
o ©€0820—cos2x ~ 2 sin2«

’

according as the integer 4 is Z0, or =0. Hence, if 2> 0,

2008 20— cos (2h6 — 20)  sin 2ho— sin (2ho — 2a)
db = ; ;
0 cos 20 — cos 2a 2 sin 2«

that is, dividing by + 2,

3

gdﬂ sin fsin (2h6 —0) _ 7 cos (2ha — «)
o cos2a—cos20 4  cosa

if the integer 2k — 1 be > 0; from which, without any new calculation, we see that

H 9 sin fsin (2h0—0)  m cos (2ha— a)
o cCcos2ax—cos20 4 cosa

if the integer 22— 1 be <O0.

In like manner, if 2 be > 0 (being integer), we have

2. cos2hb +cos (2h0 —20) 7 sin 2ho + sin (2ho — 2a)

0 == : :
0 cos 20 — cos 2a 2 sin 2o

that is,

4

2d00080008 (2h6—6) _ msin (2ha— o)
Jo cos2ax—cos20 = 4 sina

r

if the integer 2k —1 be > 0. And hence, without any new calculation, we see that

2

;—’dﬂ cos B cos (2h0—0) _ sin (2ha—a)
" cos2x—cos20 4  sina

if the integer 2k — 1 be < 0. The initial conditions are therefore satisfied.
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39. The same analysis shows that, if the integer & be > 0,

A

T 2
3 cos 2ha = L

dg

0os B con 90 {2 cos a?sin sin (2h6 — 0) + 2 sin «® cos 0 cos (2h6 — 0)}

2 cos (2h0 — 20) — cos 2a cos 2h0 2 sin 260 sin 240
=0 = do,;
0 cos 2a — cos 20 0 COS 20 — cos 26

and accordingly, if we denote this last integral by f;,, we have

Sny1+Sn1—2f5 cos 2« =J2d0 {cos (2k0 + 20) — cos (2h8 — 20)} =0,
0

w

if h>1, and = A5 if h=1; also fy=0, and
: m
fi =f (cos 2+ cos 20) df = 5008 20t
therefore ;
So=m{(cos 20)2— }}= g cosda, and f,= 7—; cos 2he,

if A > 0. The same integral vanishes (as we have just remarked) when A =0, and since it changes

sign with %, it must become = —g cos 2ha, if b < 0.
We have therefore the discontinuous equation

2 J‘gsin 20 sin 240 d0

———————— = +cos 2h«, =0,
o COS 2a— cos 20 : Eossiin

w

according as the integer 4 is Z 0, or =0; & we found, in the last article, that

m
D 2
—sin2ocf M: Fsin 2ha, or =0,
™ o €08 20 — cos 20

according as the integer % is Z0, or =0. Indeed, we may consider both the two last equa-
tions as included in either of the two which occur at the beginning of article 38; & as
conducting reciprocally to those two, by easy combinations.

40. We see then that if we assume

Y= —"2—Tcos afz g =g {bsin 6 cos (2atsin 0) + ¢ sin a sin (2at sin 6)},

o COS 20 — cos 26
b and ¢ being any constants, & % being any integer number, we shall satisfy the indefinite
equation in mixed differences

' @ Ynsr,t+Yn-1,0— 2Yn) =Yne>
and also the initial conditions

gM: y”"o = F 2h -
o P bl e L
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according as 2k —1is > or <0. In like manner, if we assume

{bcos (2atsing) +252%
sin 6

we shall satisfy the same indefinite equation in mixed differences, and the conditions

2 | f;_rdﬂcos()cos(ZhB—O)
yh’t=—;sm¢x

cos 20— cos 20 sin (2atsin 9)} o
0

’
Yno___Yno -

b 2acsina s (e ),

o=

according as 2h—1is 0. If we assume, in the third place,

2f2 ¢ doa foin. 2he{b sin 6 cos (2at sin 0) + ¢ sin asin (2a¢sin 0)},

. W= o €OS 20— cos 26

we shall satisfy the equation in differences, & the conditions

4
Yno___ Yno

: =¥ 2he, =0,
g et F }cos 2ha, or

according as & is Z0, or =0. And if we assume, in the fourth place,

{b cos (2at sin 6) + om o
: sin 0

we shall satisfy the same equation in differences, and the conditions

2 d0 cos 2h0
o €08 20t — cos 20

Yni1= — 1ssin 20 sin (2atsin 0)} 4
kK

Yn,0 ?/;zo 2
L b PRI 4L SRNEPRRLE n2ho: or =0
b 2ac sin o _%Sl i " f

according as 4 is Z0, or =0.

41. Tt follows that the first expression of article 40 corresponds to the effect, at the time ¢,
of an initial state represented by

Yn,a= F % {bcos (2adtsin a) + csin (2adtsin «)} cos (2ha — «),
and the second expression of the same article to the effect of an initial state represented by
Yna= * $1{bcos (2adisin ) + csin (2adtsin «)} sin (2ha — a),
the upper or the lower signs being taken according as 2> or <1.
It follows also that the third expression of the same article corresponds to the effect of an
initial state represented by
Yn,at= T %{bcos (2adtsin «) + csin (2adtsin )} cos 2ha, or =0,
and the fourth expression to the effect of the initial state
Yn,a= *+ %{bcos (2adtsin &) + csin (2adtsin «)} sin 2ha, or =0,
according as & is 20, or = 0. The system of particles is here supposed to extend indefinitely in
two opposite directions from the particle P, so that no account is taken of any fixity of the
extreme particles.

42. Resuming then the consideration of the case where half only of the system is agitated
at the time 0, we see that if this system be indefinite i<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>