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447.
ON THE RATIONAL TRANSFORMATION BETWEEN TWO SPACES.

[From the Proceedings of the London Mathematical Society, vol. 1L (1869—1871),
pp. 127—180. Account of the Paper given at the Meeting 11 March 1869.]

Two figures are rationally transformable each into the other (or, say, there is a
rational transformation between the two figures) when to a variable point of each of
them there corresponds a single variable point of the other. The figures may be
either loci in a space, or locus @n quo of any number of dimensions; or they may
be such spaces themselves. Thus the figures may be each a line (or space of one
dimension), each a plane (or space of two dimensions), or each a space of three
dimensions; these last are the cases intended to be considered in the present Memoir,
which is accordingly entitled, “ On the Rational Transformation between Two Spaces.”
I observe in explanation (to fix the ideas, attending to the case of two planes), that
any rational transformation between two planes gives rise to a rational transformation
between curves in these planes respectively (one of these curves being any curve what-
ever): but non constat, and it is not in fact the case, that every rational transformation
between two plane curves thus arises out of a rational transformation between two
planes. The problem of the rational transformation between two planes (or generally
between two spaces) is thus a distinct problem from that of the rational transformation
between two plane curves (or loci in the two spaces respectively).

I consider in the Memoir, (1) the rational transformation between two lines;
this is simply the homographic transformation: (2) the rational transformation between
two planes; and here there is little added to what has been done by Prof. Cremona
in his memoirs, “Sulle Trasformazioni Geometriche delle Figure Piane,” (Mem. di
Bologna, t. 11, 1863, and t. v., 1865; see also “On the Geometrical Transformation
of Plane Curves,” British Assoc. Report, 1864) : (3) the rational transformation between
two spaces; in regard hereto I examine the general theory, but attend mainly to
what I call the lineo-linear transformation; viz., it is assumed that the coordinates
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190 ON THE RATIONAL TRANSFORMATION BETWEEN TWO SPACES. [447

of a point in the one space, and the coordinates of the corresponding point in the
other space are connected by three lineo-linear equations (that is, each equation is
linear in the two sets of coordinates respectively). The lineo-linear transformation
presents itself in the preceding two cases; viz, between two lines, the homographic
transformation (which, as already mentioned, is the only rational transformation) is
lineo-linear; and between two planes, the lineo-linear transformation is in fact the
: : LA

well-known inverse transformation (x' 2T =% . 7 : 2) . As regards two spaces, the
lineo-linear transformation has not, I think, been discussed in a general manner, and
it gives rise to a theory of some complexity, and of great interest.

The General Principle of the Rational Transformation between Two Spaces.

1. In all that follows, the two spaces (lines, planes, or three dimensional spaces,
as the case may be), or any corresponding loci in the two spaces respectively, are
referred to as the first and second figures respectively. The two figures are in general
considered, not as superimposed or situate in a common space, but as existing, each
independently of the other, as a separate locus in quo or figure in such locus. The
unaccented coordinates (z, y), (z, v, 2), or (#, y, 2z, w), as the case may be, refer
throughout to a point of the first figure; the accented coordinates refer in like
manner to the corresponding point of the second figure (). Moreover X, V,... are
used to denote functions of the same order, say n, of the coordinates (z, y,...); viz,
(X, Y) are each of them of the form (*¥=z, »"; (X, Y, Z) each of the form
(*Vz, y, 2*, (X, Y, Z, W) each of the form (*Qz, y, 2z, w)", as the case may be;
and in like manner X’, Y”,... are used to denote functions of the same order, say
n/, of the coordinates («/, 7, ...). This being so:

The condition of a rational transformation is that we have simulfaneously
pstsseany o SN <Rl euls 2 ey == X M
viz,, these equations must be such that either set shall imply the other set.

2. If, to fix the ideas, we attend to the case of two planes, or take the sets

to be
Ziiay 2= Xt Yo/ 2tz = XV 7

1 The coordinates (z, y) of a point in a line may be conceived as proportional to given multiples
(a times, B times) of the distances of the point from two fixed points on the line; similarly the coordinates
(¢, y, z) of a point in a plane as proportional to given multiples (a times, B times,  times) of the perpen-
dicular distances of the point from three fixed lines in the plane; and the coordinates (z, y, z, w) of a
point in a space as proportional to given multiples (a times, B times, vy times, § times) of the perpendicular
distances of the point from four fixed planes in the space. Observe that even if the coordinates (z, y) and
(«/, y') refer to the same line, and to the same two fixed points in this line, they are not of necessity the
same coordinates; viz., the factors for », y may be a, B, and those for 2/, y' may be a/, 8. If these are
proportional (viz., if a : B=a’ : B’), then (2, y’) will be the same coordinates of P’ that (z, y) are of P;
and in this case, but not otherwise, the equation xy’—=z'y=0 will imply the coincidence of the points P, P’.
The like remarks apply to the coordinates (x, y, 2) and (z, v, 2z, w).
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’

then starting with the set o’ : 4’ : 27=X : Y : Z, for any given point (@, y, 2) what-
ever in the first figure, we have a single corresponding point (2, ¥, z’) in the second
figure; but for any given point (2, ¥, ) in the second figure, we have primd facie
a system of »* points in the second figure, viz, these are the common points of
intersection of the curves 2’ : 9y :2Z=X :Y : Z (in which equations &, y’, 2’ are
regarded as given parameters, @, y, z as current coordinates, and the equations there-
fore represent curves of the order » in the first figure). The curves may however
“have only a single variable point of intersection; viz, this will be the case if each
of the curves passes through the same n*—1 fixed points (points, that is, the positions
of which are independent of 2/, ¥/, 2); and in order that the curves in question may
each pass through the n*—1 points, it is necessary and sufficient that these shall be
common points of intersection of the curves X =0, ¥Y=0, Z=0. {Observe that the
condition thus imposed wupon the curves X =0, Y=0, Z=0 will in certain cases
imply that the curves have n? common intersections; or, what is the same thing, that
the functions X, ¥, Z are connected by an identical equation, or syzygy, aX +BY +yZ=0.
This must not happen; for if it did, not only there will be no variable point of
intersection, and the transformation will on this account fail; but there would also
arise a relation ax’'+ By + y2'=0 between (&, ¥/, Z/), contrary to the hypothesis that
(«, y', 2’) are the coordinates of any point whatever of the second figure. It thus
becomes necessary to show that there exist curves X =0, ¥'=0, Z=0, satisfying ‘the
required condition of the n*—1 common intersections, but without a remaining common
intersection, or, what is the same thing, without any syzygy aX +BY +¢Z=0]}

3. The curves & :4y :2=X:Y :Z having then a single variable point of
intersection, if we take (#, %, 2) to be the coordinates of this point, the ratios z : y : 2
will be determined rationally; that is, as a consequence of the first set of equations,
we obtain a second set x :y:z=X’:Y' :2Z', where X', Y', Z' will be rational
and integral functions of the same order, say =/, of the coordinates («/, ¥y, 2'); that
is, we have a second set of equations, and consequently a rational transformation, as
mentioned above.

4. It is easy to see that we have m'=mn; in fact, consider in the first figure
a curve aX +BY+9Z=0, and an arbitrary line axz+by+cz=0; to these respec-
tively correspond, in the second figure, the line az’+ By’ +42'=0, and the curve
aX’' +bY +cZ'=0; the curves are of the orders m, n’ respectively, or the curve and
line of the first figure intersect in m points, and the line and curve of the second
figure intersect in n' points; which two systems of points must correspond point to
point to each other; that is, we must have #»'=mn. It will presently appear how
different the analogous relation is in the transformation between two spaces.

5. Ascending to the case of two spaces, we have here the two sets
ot heyhmd i X s Hnt G W #y cplapadin Fhenll o W,

the theory is analogous; the surfaces o' : % : 2 : w'=X : Y :Z : W (surfaces of the
order n in the first figure) must have a single variable point of intersection, and they
must therefore have a common fixed intersection equivalent to »*—1 points of inter-
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section: I say equivalent to n»*—1 points, for this fixed intersection need not be
n® — 1 points, but it may be or include a curve of intersection(’). The surfaces
X=0, Y=0, Z=0, W=0 must consequently have a common intersection equivalent
to m*—1 points; there is (as in the preceding case) a cause of failure to be guarded
against, viz, the condition as to the intersection must not be such as to imply
one more point of intersection, that is, to imply an identical equation or syzygy
aX+PBY +9Z+8W=0 between the functions X, ¥, Z, W; but it is assumed that
they are not thus connected. There is, then, a single variable point of intersection of
the surfaces ' : 3/ : 2/ : w'=X : Y : Z : W; or taking the coordinates of this point
to be (#, y, 2, w), we have the ratios # : ¥y : z : w rationally determined; that is, we
have a second set of equations z : y : 2z : w=X":Y' : 2 : W, where X', Y', Z', W’
are rational and integral functions of the same order, say #’, in the coordinates
@, v, 2, w); viz, we have the rational transformation, as above, between the two
spaces.

6. Suppose that the common intersection of the surfaces X =0, Y=0,Z2=0, W=0
is or includes a curve of the order »; and consider in the first figure the two surfaces

aX +BY+yZ+8W=0, ,X+BY+yZ+5W=0,

and the arbitrary plane az+by+cz+dw=0. The two surfaces intersect in the fixed
curve v, and in a residual curve of the order n®—w; hence the two surfaces and the
plane meet in » points on the fixed curve, and in %*—» other points. Corresponding
to the surfaces and plane in the first figure, we have in the second figure the two

planes
ar' + By 442 +8w'=0, a3’ +BY +ms+ 8w =0,

and the surface aX’' +bY +cZ +dW =0 of the order n': these intersect in n’ points,
being a system corresponding point to point with the »?—» points of the first figure;
that is, we must have »'=n*—». And conversely, it follows that in the second figure
the common intersection of the surfaces X’=0, ¥'=0, Z’=0, W =0 will be or include
a curve of the order »’; and that we shall have n=n""—». Hence also

v—v=(m-n)(n+n" +1).

7. The principle of the rational transformation comes out more clearly in the
foregoing two cases than in the case of two lines, which from its very simplicity fails
to exhibit the principle so well; and I have accordingly postponed the consideration of
it: but the theory is similar to that of the foregoing cases. We must have the
two sets (each a single equation) 2’ : y¥=X : ¥, and «#: y=X': Y. The equation
o :y =X :Y must give for the ratio # : y a single variable value; viz., there must
be n—1 constant values (values, that is, independent of #’, y); this can only be the
case by reason of the functions having a common factor M of the order n—1; but
this being so, the common factor divides out, and the equation assumes the form
# :y =X :Y, where X, Y are linear functions of (z, y): and we have then reciprocally

1 The curve of intersection may consist of distinct curves, each or any of which may be a singular
curve of any kind in regard to the several surfaces.
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z:y=X:Y, where X’, Y’ are linear functions of (&, ¥’). Thus in the present case,
instead of an infinity of transformations for different values of =, n’, we have only the
well-known homographic transformation wherein n=n'=1.

8. In the discussion of the foregoing cases of the transformation between two
planes and two spaces, it was tacitly assumed that n was greater than 1, and the
transformations considered were thus different from the homographic transformation ;
- but it is hardly necessary to remark that the homographic transformation applies to
these cases also; viz, for two planes we may have o' : ¥ : /=X : Y : Z, and
z:y:2=X:Y :27, where (X, ¥, Z), (X, Y’, Z') are linear functions of the two
sets of coordinates respectively; and similarly for two spaces ' : 4 : 2 :w'=X:Y:Z: W
and“a o'y 22 M= X R U7 Wi where ' (X5 Y, Z "W (X YA Z W Y e linear
functions of the two sets of coordinates respectively. We may, if we please, separate
off the homographic transformation (as between two lines, planes, and spaces respectively),
and restrict the notion of the rational transformation to the higher or non-linear trans-
formations; in this point of view, the case of two lines would not be considered at
all, but the theory of the rational transformation would begin with the case of the
two planes. Such severance of the theory is, however, somewhat arbitrary; and more-
over the homographic transformation between two lines (being, as mentioned, the only
rational transformation) is analogous not only to the homographic transformation between
two planes, and to the homographic transformation between two spaces, but it is also
analogous to the lineo-linear (or quadric) transformation between two planes, and to the
lineo-linear (which is a cubic) transformation between two spaces.

9. For the sake of bringing out this analogy, I shall consider in some detail the
homographic transformation between two lines; but as regards the homographic trans-
formations between two planes and between two spaces respectively (although there is
room for a like discussion) the theories may be considered as substantially known, and
I do not propose to go into them.

The Homographic Transformation between Two Lines.

10. By what precedes, it appears that we have &’ : =X : ¥, where (X, Y) are
linear functions of (#, y); and conversely, # : y=X": Y’, where X', Y’ are linear
functions of (#/, y’); or what is the same thing, the relation is expressed by a single

equation
(az +by) o’ + (cx+dy)y =0;

or, as this may conveniently be written,

® e 3)ee, vr=0,

or, when the expression of the actual values of the coefficients is unnecessary,

(*3@, y)(«, y)=0.
We thus see that the rational transformation between two lines is in fact the homo-

graphic transformation; and also that it is the lineo-linear transformation.
Ce VIT, 25
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11. A special case is when

ad — bec = 0.
Writing here
cid b’
aTb™™ Ta

the equation is

(az +by) (&' +my)=0,
that is

(az +by) (’2’ +by')=0;
viz.,, either az+by=0, without any relation between 2, y'; or else @'z’ +0by =0,
without any relation between x, y; that is, to the single point az+by=0 of the first
figure there corresponds any point whatever of the second figure; and to the single
point @'z’ +b'y'=0 of the second figure there corresponds any point whatever of the
first figure.

12. In the general case where ad — bc # 0, we may either by a linear transformation
(az + by, cx +dy into y, —a or into x, —y) of the coordinates of a point of the first
figure, or by a linear transformation (az’+ cy’, bz’ +dy into 3, —a’ or into 2/, —y') of
the coordinates of a point in the second figure (or in a variety of ways by simultaneous
linear transformations of the two sets of coordinates) transform the relation indifferently
into either of the forms ay’ —a'y =0, 22’ —yy’ = 0; the former of these, or &’ :y'=w:y, is

K |

the most simple expression of the homographic transformation ; the latter, or o’ : 3’ == :

>

RS

is its expression as an inverse transformation.

13. If, to fix the precise signification of the coordinates (#, y), we employ the
distances from a fixed point O in the line; taking the distances of the two fixed
points (say A, B) to be a, B, and that of the variable point P to be p, then we
have #, y proportional to given multiples p(p —a), ¢(p —B) of the distances from the

two fixed points; or writing %):n, we may say that the coordinate g of the point

P is =n£———g ; or in particular, if n=1, then the coordinate 1is =Z—_—g I tor
p— it

np—"——; we write jB R*g, and then take B=o, we see that in a particular system

R P

of coordinates, A at O, B at o« , the coordinate § is =p. Proceeding in the same

manner in regard to the coordinates (2, y'), for a particular system of coordinates,
4

A’ at 0, B at o, the coordinate *: of P’ will be =p. And the correspondence

of the points P, P’ will be given by an equation
app’ +bp" +cp+d=0.
14. The equation just mentioned is often convenient for obtaining a precise statement
of theorems. Thus taking A, B at pleasure on the first line, A’, B’ the corresponding

points on the second line, we have
poiolcptd
. ap+b’
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and thence
,__ox+d
T aa+b’
ydh == G bd
’Bﬂ_a/:}+b’

g (ad=b) (p=)
(az + b )(ap + )’

Al /_(ad—bc)( p_B)
2wl T (aB+b)(ap + b)’

and consequently
pi= dTraBH b pi=a
B Tuxk b oo B
which is of the form

/ ’
= a s
P mP

p/ _B/ = P (B ﬂ,
where (the correspondence app’+bp'+cp+d=0 being given, and also the fixed points
A, B) m has a determinate value not assumable at pleasure. If, however, the fixed

points A, B be not given, then we may determine a relation between them, such that
m shall have any given value not being =1; we have in fact only to write

aB +b=m(az +D),
that is . A
a(B—ma)+b(l—m)=0,

(m=1 would give a=/ and the transformation would fail). In particular we may write

m=—1, we have then
a(a+pB)+20=0;

or the sum of the two distances O4, OB has a given value =—%b dependent on the

transformation; one -of these points being assumed at pleasure, the other is known:
the points 4’, B’ are also known, and the equation of correspondence is

it is moreover easy to show that we have
a(@d +B8)+2c=0.

15. In what precedes, the two lines are considered as distinet lines, not of
necessity existing in a common space. But they may be considered, not only as
existing in the common space, but as superimposed the one on the other. Suppose
this is so, and moreover that the fixed points A’, B’ coincide with A, B respectively,
and that the coordinates (2, y) and (2, y) are the same coordinates; so that the
equation 2y’ —a’y=0 will imply the coincidence of the points P, I”.

25—2
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16. If ad —bc=0, the equation of correspondence becomes
(az +by) (a2’ + b'y")= 0,

and as before, to a single given point az + by =0, considered as belonging to the first
figure, there corresponds every point whatever of the line, or second figure: to a
single given point 2’4 by =0 (the same as, or different from, the first point),
considered as belonging to the second figure, there corresponds every point whatever
of the line, or first figure.

17. Excluding the foregoing case, or assuming ad —bc # 0, there are in general on
the line two points such that to each of them considered as belonging to either
figure there corresponds the same point considered as belonging to the other figure,
or say there are two united points: in fact, writing 2’ : y' =2 :y, we find
ar*+ (b+c)ay +dy*=0, a quadric equation for the determination of the points in
question. Unless 4ad —(b+c¢)*=0, this equation will have two unequal roots; and
taking the two points so determined for the fixed points 4 = A’, B= B, the equation
of correspondence will assume the form zy —kz'y=0. In this equation k£ cannot be =1;
for if it were so, the equation would be zy —a'y=0; that is, the points P, P’ would
be always one and the same point. The equation may, however, be zy + 2y =0; the
points P, P’ are then harmonics in regard to the fixed points A4, B. It is to be
observed, that if the equation zy — kz’y =0 be unaltered by the interchange of (z, y)
and (2, ') we must have #*—1=0, or since =1 is excluded, we must have k= —1.

18. The original equation (az+by)« + (cz+dy)y =0 is unaltered by the inter-
change, only if b—¢=0; the equation 4ad— (b +c¢)*=0 becomes in this case ad —bc=0,
which by hypothesis is not satisfied; the two distinct points A = A’, B= B’ consequently
exist. That is, if the correspondence between the two points P, P’ is such that
whether P be considered as belonging to the first figure or to the second figure,
there corresponds to it in the other figure the same point P'—or say if the
correspondence between the points P, P’ is a symmetrical correspondence—then as
united points in the superimposed figures we have the two distinet points 4, B:
and the correspondence of the points P, P’ is given by the condition that these are
harmonics in regard to the points A4, B.

19. There is still the case to be considered where 4ad —(b+c)*=0; the equation
ar*+(b+c)xy +dy*=0 has here equal roots, or the two united points coincide
together, or form a single point. Taking this point to be the point A, the coordinate
whereof is # : y=0 : 1, we must, it is clear, have d =0, and therefore also b+c¢=0:
the relation between the coordinates (#, y) and («/, y') is then awxz’+b(zy —2'y)=0;
viz., this is the form assumed by the equation of correspondence when instead of two
united points there is a double united point, and this is taken to be the fixed
point 4.

20. It is to be observed, that we cannot have either b=0, for this would give
@z’ =0, which belongs to the excluded case ad—bc=0; nor a=0, for this would give
zy — &'y =0: excluding these cases, the equation is of necessity altered by the inter-
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change of (#, y) and («/, y); that is, in the case of a double united point, the
transformation is essentially unsymmetrical.

By what precedes, if the other fixed point be taken to be at infinity, the coordi-
nates # : ¥y and & : ¥ may be taken to be p, p’ respectively; viz, p, p° will denote
the distances of the points P, P’ from the double united point A ; and the equation
of correspondence then becomes pp'+b(p—p')=0; that is, (p—b) (p'+b)+b*=0.

21. The original equation ax’ + bya’ + cay’ + dyy =0 can be reduced to the
inverse forra @2’ —yy =0 only (it is clear) in the symmetrical case b=c; here, trans-
forming to the united points, the equation is, by what precedes (ante, No. 17) zy +2'y=0.
This equation can be written (lz +my) (la’ + my’) — (le — my) (I’ —my’) = 0, where [ : m
is arbitrary ; viz., we have thus an equation of the required form.

22. In further explanation, start from the equation app’+b(p+p)+d=0; that
is, (ap +b)(ap’ +b) +ad —b* =0, or say (p—a)(p'—a)—k*=0; this may be reduced to
pp'—1=0; viz, the point O from which are measured the distances p, p' is here the
mid-point between the two united points A, B; and the unit of distance is $4B;
the equation expresses that the points P, P, harmonics in regard to the two points
A, B, are the images one of the other in regard to the circle described upon AB
as diameter. Take any two corresponding points L, L’; if the distances of these be
A, A, we have AN =1; and hence :

(=AY —R)=1=X (p+p)+ 2 =X (VN = p—p),
(p=N)(F =N)=1=N(p+p) + N2 =N (A4 N —p—p);
and consequently

which, writing
o_klp=2) & k(=)
y p_x/ b y/_ p/_xl ]
A a5 R B
>7(30 that k2s£1); or, A—)\-—N,

e =

becomes xz’ —yy' = 0; that is, the correspondence of the points P, P’ being symmetrical,
if the coordinate 3% of P be taken to be a multiple of the ratio of the distances
PL, PL’ of P from any two corresponding points L, L' (and of course the coordinate
;—: of P’ to be the same multiple of the ratio of the distances P'L, P'L’), the equation

of correspondence is obtained in the inverse form za’— yy =0.

The Rational Transformation between Two Planes.

23. Starting from the equations &’ : y' : 2’=X : V : Z, where X =0, Y =0,Z=0
are curves in the first plane, of the same order n, 1t has been scen that in order
that we may thence have a rational transformation between the two planes, the curves
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X=0, Y=0, Z=0 must have a common intersection of n*—1 points, and no more;
that is, they must not have a complete common intersection of n® points. In the case
n=2, taking the n*—1 points in the first plane to be any three points whatever, the
condition that the curves shall be conics passing through the three points does not in
anywise imply that the conics shall have a common fourth point of intersection; and
we have thus a rational transformation as required; viz, the first set of equations is
a :y :Z7=X:Y :Z where X=0, Y=0, Z=0 are conics passing through the same
three points of the first plane; and as it is easy to see (but which will be subsequently
shown more in detail), the second set is the similar one # : y : z=X": Y’ : Z', where
X'=0, Y'=0, Z’=0 are conics passing through the same three points in the second
plane; this may be called the quadric transformation between the two planes.

24. But the like theory would not apply to the case n=3; if the n*—1 points
in the first plane were any eight points whatever, the cubics X =0, Y =0, Z=0,
intersecting in these eight points, would have a common ninth point of intersection,
and the transformation would fail; and so for any higher value of n, taking at pleasure
any tn(n+3)—1 of the n*—1 points of the first plane, the curves X =0, V=0, Z=0
of the order = passing through these 4n(n+3)—1 points, would have in common all
their remaining points of intersection, and the transformation would fail. A trans-
formation can only be obtained by taking the #*—1 points in such wise that these
can be made to be the common intersection of the curves, and at the same time that
the number of conditions imposed upon each of the curves X =0, ¥Y=0, Z=0 shall be
at most =%n(n+3)—1.

25. And this requirement may be satisfied; viz, the number of conditions may
be made to be =4in(n+3)—1, by assuming that certain of the n*—1 points of inter-
sections are multiple intersections of the curves. For if we have a given point which
is an a-tuple point on each of the curves X =0, Y =0, Z=0, then this counts for
a® points of intersection of any two of the curves, and thus for «* points of the n*—1
points: but the condition that the given point shall be on any one of the curves,
say the curve X =0, an a-tuple point, imposes on the curve, not a?, but only la(x+ 1)
conditions: and we have in this way a reduction whereby the number of conditions
for passing through the n*—1 points can be lowered from n*—1 to the required number

In(n+3)—1.

26. In particular, for n =3, we may for the #*—1 points of the first plane take a
point as a double point on each of the cubic curves X =0, V=0, Z=0 (which therefore
reckons as four points), and take any other four points. HEach of the curves is determined
by the conditions of having a given point for double point, and of passing through
the same four other given points; that is, by 344 =7 conditions; and the three cubic
curves X =0, V=0, Z=0 have for the common intersection the double point reckoning
as four points, and the given other four points; that is, they have a common inter-
section of 4+ 4 =8 points; but this does not imply that they have a common ninth
point of intersection ; we have therefore a rational transformation as required; viz, the
first 'set. of equations is &’ : 9y : /=X : Y: Z; where X=0, Y=0, Z=0 are cubics
in the first plane having each of them a double point at the same given point and
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also each passing through the same four given points; the second set of equations is
w:y:2=X :Y :7Z where X'=0, Y'=0, Z’=0 are like cubics in the second plane.

27. Generally suppose that the n?*—1 points in the first plane are made up of
o, points, which are simple points; @, points, which are double points; a, points, which
are triple points, ... a,, points, which are (n—1)tuple points (a,,=1 or 0), on each of
the three curves; these will represent a system of n?—1 points if only

a, + 4a,+ 9ay ... + n—1Papy=n>—1.

The number of conditions imposed on each "of the curves X =0, ¥=0, Z=0 will be
o+ 30+ 6a;... +4n(n—1)a,,; for the reason presently appearing, I exclude the case
of this being <4n(n+3)—2; and therefore assume it to be =4n(n+3)—2. In fact,
writing

o + 3a, + 6a; ... +inn—1) ¢y =%nn+3)—2,

this combined with the former equation gives
G+3...+(n—-1)(n=-2) ap ;= (n—1)(n—2);

viz., the singularities are equivalent to }(n— 1) (n—2) double points, that is, to the
maximum number of double points of a curve of the order m; or-say each of the
curves X =0, Y=0, Z=0 is a curve of the order n having a -deficiency =0; that is,
it 1s a unicursal curve of the order n. Hence also, taking (a, b, ¢) any constant factors
whatever, the curve aX +bY + ¢Z= 0 is unicursal.

28. It is important to remark that the conclusion follows directly from the general
notion of the rational transformation ; in fact, the equation aX +bY + cZ=0 is satisfied
if o:y:2=X":Y :2; ar’+by +¢cz/=0. The last of these equations determines
the ratios & : % : 2 in terms of a single parameter (e.g. the ratio &’ : y), and we
have then « : y : 2 expressed as rational functions of this parameter; that is, the curve
is unicursal.

29. Suppose for a moment that it was possible to have
o+ 3o, + 62y ... + n(n—1a,,<¥n(n+3)-2
Combining in the same way with the first equation, it would follow that
o+3e ... +E(n—1)(n—-2) g, >F(n—1)(n—2),

which would imply that the curves X =0, Y =0, Z=0 break up each of them into
inferior curves: but more than this, the coefficients @, b, ¢ being arbitrary, it would
imply that the curve aX +bY +¢Z =0 breaks up into inferior curves; this can only be
the case if X, ¥, Z have a common factor, say M ; that is, if X, ¥, Z=MX,, MY,, MZ,;
but we could then omit the common factor, and in place of 2’ : 3’ : /=X : ¥V : Z
write o :y 22 =X,:Y, : Z, where X;,=0, Y,=0, Z =0, are proper curves, nobt
breaking up; the above supposition may therefore be excluded from consideration.
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30. We have thus a transformation in which the first set of equations is
& 1y =X :Y :Z where X=0, Y=0, Z=0 are curves in the first plane, of the
same order 7n, having in common a,, %...2,, points which are simple points, double
points,... (n — 1)tuple points respectively on each of the curves; these numbers satisfy the

conditions
o + 4o+ 9, ... + (n=1Pa, ,=n*—1,

o + 30, + 6a ... + n(n—1) a,_, =4 (n*+ 3n) —2;
conditions which give, as above,

%G+ 3.+ (n—1)(n—2)a,, =% (n—1)(n— 2),
and also
o+ 22, + 3a; ... + (n—=1)a, ,=3n—3;

so that the relations between a,, a,... a,, are given by any two of these four equations.

31. The second set of equations thenisz: y:2=X":Y": Z’, where X'=0, Y'=0, Z'=0
are curves in the second plane, of the same order m; and it is clear that these must
be curves such as those in the first plane; viz., they must have in common a, a/,.. o,
points, which are simple points, double points, ... (n —1)tuple points respectively on each
of the curves, the relations between these numbers being expressed by any two of the
four equations

a + 4oy + 9ay ... + n—1pd,,=n*—1,

a’ + 3a, + 6a;’ ... + In‘m=1) dp=§n(n+3)—2,
dy+3a ...+ (n—-1)(n—2) o,y =%(n—1)(n—2),

a + 2uy + 3a; ... + (n—1) dp;=3n—3.

32. To any line a«'+ by +c¢2 =0 in the second plane there corresponds in the
first plane a curve aX +bY +cZ of the order n; and to any line az+by+cz2=0 in
the first plane there corresponds in the second plane a curve a’X’'+ 'Y 4+¢'Z'=0 of
the same order n; the curves aX +bY +¢Z=0 in the first plane are, it is clear, a
system, and the entire system, of curves each satisfying the conditions which have
been stated in regard to the individual curves X' =0, ¥Y=0, Z=0, and being as
already mentioned unicursal; and similarly the curves a’X’+b'Y’ +¢'Z =0 in the second
plane are a system, and the entire system, of curves each satisfying the conditions
which have been stated in regard to the individual curves X'=0, ¥ =0, Z =0; and
being also unicursal. We may say that to the lines of the second plane there
corresponds in the first plane the réseau of curves aX +bY +¢Z=0; and to the lines
of the first plane there corresponds in the second plane the réseau of curves
a/ X' +b'Y' +Z'=0; these réseau being systems satisfying respectively the conditions
Jjust referred to.

33. We have next to enquire what are the curves in the second plane which
correspond to the o+ 2,...4 4, points of the first plane. I remark that the
o+ ...+ o, points are termed by Cremona the principal points of the first plane,
and the corresponding curves the principal curves of the second plane. But it will be
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more convenient to say that the & +a,...+a,_, points are the principal system of the
first plane, and the corresponding curves the principal counter-system of the second
plane. And of course the &'+ a, ...+ a’,, points will be the principal system of the
second plane, and the corresponding curves the principal counter-system of the first
plane.

34. The Jacobian (curve) of the curves X =0, Y=0, Z=0 is, of course, the
Jacobian of any three curves aX +bY +¢Z=0 of the first plane, or it may be called
the Jacobian of the reseau of the first plane; and similarly, the Jacobian of the curves
X'=0, Y'=0, Z’=0 is the Jacobian of the reseau of the second plane.

35. I say that to each point @, of the first figure there corresponds in the second
figure a line; to each point @, a conic; to each point a; a nodal cubic; ... and
generally, to each point @; a unicursal r-thic curve; the entire system of the curves
corresponding to the a, +a + a;...+ a,, points, that is, the principal counter-system of
the second plane, is thus made up of @ lines, a, conics, a; nodal cubics, ...a, uni-
cursal 7-thics, ...a,, unicursal (n—1)thics. It is thus a curve of the aggregate order
a+2a,+3a;... +(n—1)a,—,, =3n—3; and it is in fact the Jacobian of the reseau of
the second plane; as such, it passes through each point &’ two times, each point a,’
five times, ... each point @’ 3r —1 times, ... each point «,_; 3n — 4 times.

36. The reciprocal theorem is of course true. The Jacobian of the reseau of the
first plane is thus made up of a lines, @, conics, a nodal cubics,... @, unicursal
r-thics, ... &, unicursal (n —1)thics. Calculating the Jacobian of the reseau of the
first plane, we have thus the numbers a/, @,,...d,—;, which determine the nature of
the principal system of the second plane.

37. I indicate as follows the analytical proof of the theorem that to a principal
point @, of the first plane there corresponds in the second plane a unicursal r-thic.
Consider the simplest case, »=1; if in the equations &' :y' : 2 =X : ¥V : Z the
coordinates (z, y, z) are considered as belonging to a point a,, these values give identi-
cally X=0, Y=0, Z=0; hence for the consecutive point z+dz, v+ 8y, z+ 8z if
(4, B, C) denote the derived functions of X, (4,, B,, C,) those of ¥, (4., B,, (,) those
of Z, we have

oy 2= Adx+Bdy+Coz
: A8z + B8y + (,8z
. : A,8z + B,dy + C,0z.
We have | A, B, C [=0, for the determinant is the value, at the point @ in
4,, B, G

4., B, C,
question, of the Jacobian of the reseau of the first plane; and the Jacobian curve
passing through a, (in fact, having there a double point), the value is =0.

88. Hence «/, 3, 2, considered as corresponding to a point indefinitely near to a,
are connected by a linear equation. Corresponding to a, we have in the second figure
C. VIL 26
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a line. But it is to be observed, further, that the equation of the line is that
obtained by writing in the foregoing equations, say 8z =0, and eliminating the remaining
quantities 8z, 8y: or, what is the same thing, we may consider the equation of the
line as given by the equations

&y 4= Ad+BJdy
: 4,8z + B, &y
: 4,8z + B,dy,

where 8z, 8y are indeterminate parameters to be eliminated.

39. In the case of a point a, we have in like manner
o oy sooie ddyn BBy dsy
S oz oY 02
: (@, ... 98z, 8y, 82),

where (a,...), (a;,...), (@, ...) are the r-th derived functions of X, Y, Z respectively.
In virtue of the relation of the point @, to the curves X =0, ¥Y'=0, Z =0, the coefficients
will be such as to allow of the simultaneous elimination from these equations of the
three quantities 8z, 8y, 8z. The result of the elimination will be the same as if]
writing say 8z=0, we eliminate 8z, 8y; or, what is the same thing, the relation of
2, y, 7 may be regarded as given by the equations

&y ieeglm il g 2 0%, Sy
: (@, ... 90z, Sy)
: (@, ... Y82z, Sy,

where 8z, 6y are indeterminate parameters. These equations obviously express that the
point (2, ¥/, #) is situate on a unicursal curve of the order .

40. It is further to be shown that the »-thic curve thus corresponding to a, is
part of the Jacobian of the reseau of the second plane. The Jacobian in question is
the locus of the new double point of those curves of the reseau which have a new
double point; that is, a double point not included among the o'+ a;...+ o, singular
points of the principal system of the second plane. But a curve of the reseau being
unicursal, can only acquire a new double point by breaking up into inferior curves.
Consider, in the first figure, any line through a,, the corresponding curve in the second
figure is made up of the unicursal r-thic curve, which corresponds to the point a,,
together with a residual curve variable with the line through a,; this is a unicursal
curve of the order n—r. The aggregate curve of the order r+ (n—r) has singular
points equivalent to 4 (n—1)(n —2)+1 double points('); that is, the singularities are
those belonging to the principal system of the second plane, together with a new double

! In general, if »+2'=n, and the curves 7, +' are each unicursal, then the aggregate singularity arising
from the singularities of the two curves and from their intersections, is equivalent to 3 (r-1)(r-2)+

(" =1) (" —2) +m’, that is, to §(r+2"-1) (r+7"-2)+1, or }(n—1)(n—2)+1 double points.
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point constituted by an intersection of the curves », n—r. {Observe that the two curves
have only this single intersection; viz., the remaining » (n—7)—1 intersections are
at points a +a; ...+, of the principal system of the second plane.j We have thus,
in the second plane, a series of curves, each of them having a new double point;
viz., these are the several curves which correspond to the lines through @, in the first
figure. Each of the curves is a fixed curve r together with a variable curve n—r7,
The new double point is an intersection of the two curves; that is, it is a variable
point on the curve 7. The locus of the new double point is thus the curve r; therefore
the curve r is part of the Jacobian of the reseau of the second plane. Since each
point @, gives a curve 7, the curves in question form an aggregate curve of the order
o +2a,...+(n—1)a, ;, =3n— 3; viz, this is the order of the Jacobian; or, as stated,
the curves r (that is, the principal counter-system of the second plane) constitute the
Jacobian of the reseau of this plane.

41. The numerical systems: (&, ¢, ... a,—;) and (&, @’ ...a’,_;) are each of them a

solution of the same two indeterminate equations
Srta,=n*—1, 3ra,=3%n-—3,

but not every solution of these equations is admissible; for instance, if »>}n, then
a, is =0 or 1, for a,=2 would imply a curve of the order n with two r-tuple points,
and the line joining these would meet the curve in more than » points; similarly,
r>2n, a is =4 at most, for a.=5 would imply a curve of the order » with five
r-tuple points, and the conic through these would meet the curve in more than 2n
points; and there are of course other like restrictions. The different admissible systems
up to m=10 are tabulated in Cremona’s Memoir; and he has also given systems
belonging to certain specified forms of n: these results are as follows:

26—2
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42. The system (a, @...a,,) geometrically determines completely the system
(¢, @ ...ap); it ought therefore to determine it arithmetically; that is, given the
one series of numbers, we ought to be able to determine, or at least to select from
the table, the other series of numbers. Cremona has shown that the two series
consist of the same numbers in the same or a different order. By examination of the
tables, it appears that there are certain columns which are single (that is, no other
column contains in a different order the same numbers), others that occur in pairs,
~ the two columns of a pair containing the same numbers in a different order. Where
the column is single, it is clear that this must give as well the values of (a, @ ...,
as of (a, a,...a,,). Where there is a pair of columns, as far as Cremona has
examined, if the one column is taken to be (a, @...a,,) the other column is
(4, @ ...d»,); it appears, however, not to be shown that this is universally the case;
viz., it is not shown but that the two columns, instead of being reckoned as a pair,
might be reckoned as two separate columns, each by itself representing the values as
well of (a, a,..:a,,) as of (&', &' ...a’,); neither is it shown that there are not,
in any case, more than two columns having the same numbers in different orders.
It seems, however, natural to suppose that the law, as exhibited in the tables, holds
good generally; viz., that the tables contain only single columns, each giving the values
as well of (a, a,...a,,) as of («/, &' ...a,,); or else pairs of columns, one giving
the values of («, a,...a,), and the other those of (a/, @’ ...a,); or, say, that the
partitions are either sibi-reciprocal, or else conjugate.

43. Assuming that the two systems (a, @...a,,) and (&, a...a,_;) are each
known, there is still a question of grouping to be settled; viz, the Jacobian of the
first plane consists of «’ lines, a,’ conics, ... o’,_, unicursal (n — 1)-thics; each line, each
conic, &c., passes a certain number of times through certain of the points ay, @,... @, ;:
but through which of them? For instance, each of the @’ lines will pass through two
of the points a, @, ...a,: will these be points «, or points a, &c, or a point a,
and a point a,, &c.? The mere symmetry of the different groups of points determines
certain conditions of the solution(?); for instance, if any particular one of the a,” lines
passes through two points a,, then each of the ' lines must pass through two
points a,; and since the points a«, are symmetrical, we must in this way use all the
pairs of points a,; that is, if ' =4%a,(a, +1), but not otherwise, it may be that each
of the a, lines passes through two of the points @, In the case of an equality
o, =ag; we could not hereby decide whether the line passed through two points «, or
through two points a,. So, again, if any one of the a’ lines pass through a point a,
and a point a;, then each of the @’ lines must do so likewise, and we must hereby
exhaust the combinations of a point a, with a point e;; viz, the assumed relation
can only hold good if & =a,a, Similarly, each of the a, conics will pass through
five of the points @, a,...a,,; each of the @’ mnodal cubics will pass twice through
one (have a double point there) and through six others of the points &, a,...a,:
which are the points so passed through? I do not know how a general solution is
to be obtained, but most of the cases within the limits of the foregoing table have

11t is by such considerations of symmetry that Cremona has demonstrated the before mentioned theorem
of the identity of the numbers (a;, ay... a,—;) and (a)’, ay' ... a'p_y).
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been investigated by Cremona. The results may conveniently be stated in a tabular
form ; the tables exhibit in the outside upper line the values of a, a,...2,, and in
the outside left-hand line the values of &/, a...a,,, and they are to be read as
o, lines
follows : Each of the { a,’ conics » passes () times through () of the points a;, @, ... @,
&e.
respectively; the numbers in the table being those of the points passed through, and
the indices in the table (index =1 when no index is expressed) showing the number
of times of passage, that is, showing whether the point is a simple, double, triple, &ec.,
point on the curve referred to.
44. Thus (in the tables which follow) the last of the tables n=6 gives the con-
stitution of the Jacobian of the first plane, where the principal system is (3, 4, 0, 1, 0);
and it is to be read:

Each of the 4 lines passes through 1 of the points &, and through the point a,;
The 1 conic ,, i 4 of the points a, and through the point a,;

Each of the 3 cubics ,, s 2 of the points a,, 4 of the points a,, and twice
through the point a, (that is, a, is a double
point on each cubic).

It is hardly necessary to remark that the tables are sibi-reciprocal, or else conjugate,
as appears by the outer lines of each table.

TABLE n=2.
0
I
3
o/=3 | 2 | [was originally printed, 3.]

TABLE n = 3.

o Q9
Il 1l
4 1
ao=4|11]1
A e 1 b

4G 0 o o 0g az
il Il ] ] I I
6 0 1 3 3 0
gl ) ‘
oy =0 { 3| 2 3
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TABLES n = 5.

L T i R g SO, AT e IR M X e % L T
1l 1] Il 1] I Il Il ] ] 1l I I
& @000 111 80 @ar BoiR 0did@ il 0

a'=8|1 | 1 3 i i | 0

&) =0 g g 3 6 5

a/ =0 1184 8] 12 0

a/=1| 8 | 13 0 0

TABLES n= 6.

s T R S g el ey e
Il 1l Il Il Il Il Il Il Il Il
TORTVOR OB T 1l Ll TR 0 R0 )

= LOSISEL 1 1 2

o =10 4 3| 2

o D : 2| 1|4 [1z1*

a =0 0

e D, 1 0
L as a3 ay a5 G a, az oy as
Il Il Il Il Il Il Il Il ] I
;BN 3.0 0.0 AT ARSIy T e PRI

ol 8 2 4t 1 f
p AT Lan ol |

rres i bl O 1 T (S| 1 4 1

agl=40 3f5.gu 0t 1

gy = B EEd 1 32 0

e ) : 0

* Read, “Each of the two cubics passes through the point «;, the four points a,, and, (12, 1), twice
through one and once through the other of the points a,.”

Q" VI, 27
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45. It is to be remarked upon the tables—first, as regards the lines: if we add
the numbers in each line, reckoning m? as mp, (that is, each multiple point, according
to the number of branches through it,)) the sums for the successive lines are
2, 5, 8 11, 14, &c.; that is, each line passes through 2 points, each conic through
5 points, each cubic through 8 points, each quartic through 11 points, &. But if we
add the numbers reckoning m? as m.%p(p+ 1), (that is, each multiple point according
to its effect in the determination of the curve,) then the sums are 2, 5, 9, 14, 20, &c,,
that is, all the curves are completely determined, viz., the line by 2 conditions, the
conic by 5 conditions, the cubic by 9 conditions, &c. Secondly, as regards the columns,
if for any column, reckoning m? as mp, we multiply each number by the corresponding
outside left-hand number, add, and divide the sum by the outside number at the head
of the column, the successive results are 2, 5, 8, 11, 14, &c.; this merely expresses the
known circumstance that the Jacobian passes 3r—1 times through each point a,.

46. The analogous tables showing the passage of the Jacobian through the
principal system, in the solutions belonging to certain special forms of n, are

TABLE n = p.

o Q) _1
i Il
-2 1

TABLES n = 2p.

o ay Op_1 oy Qap_2 5% Og Op_1 oy Oop—2
i Il Il Il Il 1 1] Il 1l Il
3 2p—-2 0 0 1 -2 0 1 3 0
|
= Pprddet L 1 e 2
=0 a; =2p-2 1 1 3
L 2p—2 18+ ap= 0
= 2 2p -2 1R8N =0
olop = 0 O g =k L 2p -2 122241 31
|
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TABLES n=2p+1.
a, Qg ap Op+1 Ap—1 a G %p Ops1  Qgp-1
Il ] 1] 1] 1l Il Il 1l | ]
3 2p-1 0 0 1 2 -1 0 3 1 0
1 1 o = 3 1 1
o " =211 3 1
1 [2p-1 1#-1 o = 0
3 [2p-1 12 ol 2 1
L AP -1 3»-1 | 1
TABLES n = 3p.
a, ay ay a, ap41 Aop_1 O3p_3
I I Il I 1 I I
1 4% 3heigl 0 0 1
a =2-3 1 1
ag ="0
g, e =)
a})’ = 4 3 2p = 3 121
(e 1 4 |2p-3 1?2
e G| 1 4 |(2p-3y 12-3
al3p—3 =F O
27—2
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a; =

s p—
A 3p-3=

o g ag ap Gpy1 Ogp1 Ogps
Il Il I} Il Il Il I
2p—-3 0 0 £ 1 1 0
1 1
3 1 1
1 4 1 1k
2p -3 4r-1 17 JAed
ay a; ag a1 a, 0y Ogp—3
Il 1l Il Il il Il Il
4 1 %-2 0 0 riin
1 1
|
2p—2 17-2
J
1 1 2p—2 1
4 | 1 |@p-2y 1-2
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a4 x ag ap-1 apy Oop A3p—3
] ] Il ] Il ] Il
2p—2 0 0 il 4 1 0

ay =i 1 1

(TR 4 1

af =2p—2 1 1 4 15

o paisie O

RG]

Qg H=""80

g —r 2p—2 | E2Sppliget oy ] S2=8

47. The before mentioned theorem, that (a, @,...a,) and (%, @...a",,) are the
same series of numbers, of course implies Za, = 2a,’; this relation Cremona demonstrates
independently, by consideration of the pencil of curves (aX +bY + ¢Z)+ 0(a, X +b,Y +¢,Z)=0,
(6 a variable parameter,) which corresponds in the first plane to the pencil of lines
(az’ + by + ¢c2') + 0 (a2’ + by + c,2’) =0, which pass through a fixed point (a2’ + by + ¢Z/ =0,
@’ +by +c7 =0) in the second figure. In general, in the pencil U+ 6V =0 (U, V
given functions of the order ) there are 3(n—1)* values of 6, each giving a nodal
curve. But in the present case each of the curves U=0, V=0 has multiple points
at the principal points a, of the first plane: the question is to obtain the number of
values which give a curve having one new double point; and this is found to be
=3(n—-1p-2%(r-1)3r+1)a,. We have Zr*a,=n*—1, 3ra, = 3n —3; or, substituting,
the value of 6 is =3a,.. But the curves which have an additional double point are
those which correspond to the lines which in the second figure pass through one of
the principal points a,’; viz., these are the lines drawn from the point (az’+ by + ¢z’ =0,
a® +by + 67 =0) to the several principal points «,’; and the number of them is
=Z3a,. We have thus the required relation Za, = 3a,’.

The Quadric Transformation between Two Planes.

48. This is of course given by what precedes. The principal system in each plane
is a set of three points; and the Jacobian of the same plane is the set of three
lines joining each pair of points; that is, the three lines of either plane are the
principal counter-system of the other plane. But to give the analytical investigation
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directly: taking the coordinates (#, 7, 2) to refer to the principal system of the first
plane (viz., taking the three points to be the vertices of the triangle formed by the
lines z2=0, y=0, z=0), then X =0, Y=0, Z=0 being conics through the three points,
the functions X, Y, Z will be each of them of the form fyz+ g2z +hay; o, y, 2
being proportional to three such functions, there will be linear functions of o/, ¥/, 2’
proportional to yz, zz, xy; or taking these linear functions of the original (2, y’, ) for
the coordinates («, ¥, z’) of a point in the second plane, the formule of transformation
will be #’ : ¥ : /=yz : z&¢ : xy, and we have then conversely z : y : z2=y'7 : 72’ : &'y
that is, the formulee for the transformation in question are

/ P

& 1y 1 Zd=yz:z20 0y, and 2:y:z2=y7 : 2% : Y.
We at once verify & posterior: that the Jacobian in the first plane is #yz=0, and
that in the second plane is 2'y’z’ =0.
The equations may be written
bl

1 1
:Z,andm:y:z=5,:~,:;,,

g

or, if we please, 22’ =yy =27 ; the transformation is thus given as an inverse trans-
formation.

8
S |t

{49. With respect to the metrical interpretation and actual construction of the
transformation, it is to be observed that if #, y, z be taken to be proportional (not
to given multiples of the perpendicular distances, but) to the perpendicular distances
of P from the sides of the triangle in the first plane, and similarly &/, y’, 2/ to be
proportional to the perpendicular distances of P’ from the sides of the triangle in the
second plane, then in general the equations of transformation must be written, not as

above, but in the form '3";0 =—:qu =%, involving arbitrary multipliers f : g : . We may
imagine in the second plane a point P” determined by coordinates (2", y”, z”),—the
same coordinates as («/, 9/, 2/), that is, proportional to the perpendicular distances of
P” from the sides of the triangle in the second plane,—which point P” corresponds
homographically to P in such wise that ; :g :%=x" : y”bz z”.  We have then, in
the second plane, the two points P’, P” corresponding to each other in such wise
that «’2” =y'y”"=22"; and either of these points being given, the other can at once
be constructed; viz., it is obvious that, joining P’, P’ with any vertex, say 4’, of the
triangle A’B'C’, the lines AP, A’P” are equally inclined to the bisectors of the
angle A’; and consequently, P’ being given, we have the three lines 4'P”, B'P”, C'P”
intersecting in a common point P”, which is therefore determined by means of any
two of these lines. We have thus a geometrical construction of the transformation

between P and P’}

50. The analysis assumes that the principal points A, B, C of the first figure
are three distinct points; but they may two of them, or all three, coincide. In the
first case, say if B, C coincide, the line BC is still to be regarded as having a
definite direction; and taking =0 for this line, y=0 for the line joining A with
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(BO), and z=0 an arbitrary line through A4, the functions X, ¥, Z will be each of
them of the form by®+ 2gzx + 2hxy; and replacing, as before, the original o/, y', 2/ by
linear functions of these quantities, these linear functions being taken for the coordinates
(@, 9, 7), we may write & :y : 2=y : xy : xz. Forming the converse system, the
equations for the transformation are
&y = ey e a8 VY =y Y L,

so that the points A’, B, C" in the second plane are related as the points in the
first plane; viz., B, (' coincide, the line B'C’ being definite.

It is easy to verify that the Jacobian' in the first plane is xy*=0, and the
Jacobian in the second plane is z'y* = 0.

51. Secondly, if 4, B, €' all coincide, these being however consecutive points on
a curve of finite curvature, or say on a conic; then, taking =0 for the tangent at
(ABC), z=0 for any other tangent, and y=0 for the chord of contact, the functions
X, Y, Z will be of the form aa*+0b(y*—2zx)+ 2hey; whence we may write
@ iy 1 Z=a: @y :y—axz. Forming the converse equations, the equations of trans-
formation are

&y d=a:ay:yP—az,and z:y:z=2":42y :y'-a7,

so that the points A’, B, (" in the second plane are related as those of the first
plane; viz., they are the consecutive points of a curve of continuous curvature.

We may verify that the Jacobian of the first plane is #*=0, and the Jacobian
of the second plane z*=0. '

The Lineo-linear Transformation between Two Planes.

52. We have two equations of the form
(@,.. Y= vy 2032, ¥, 7)=0,
(a1,... 92, 4, 242, o, £)=0;
PxZ+Qy+R2Z=0,
P’ + @y + Rz’ =0,

writing these in the form

where (P, Q, R, P,, @, R,)) are linear functions of (z, y, 2), we have
: PR
Pl) Ql) -Rl

that is to X : ¥ : Z, where X=0, Y=0, Z=0 are conics each passing through the
same three points in the first plane.

&', vy, Z proportional to

b

And conversely, writing the equations in the form
Pa+Quy+Rz=0,
Plz+ Q'y+ R/z2=0,
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where (P, @, R, P/, @, R/) are linear functions of (/, ¥/, #), we have
P/’ Ql, R’ i
P s

that is to X', V’, Z', where X'=0, Y'=0, Z=0 are conics each passing through the
same three points in the second plane.

z, y, z proportional to

3

53. The lineo-linear transformation is thus the same thing as the quadric trans-
formation. It is, moreover, clear that the equations must, by linear transformations on
the two sets of variables respectively, and by linear combination of the two equations,
be reducible into forms giving the before-mentioned values of z : y : zand 2’ : ¥/ : 2
respectively. Thus, in the general case, where in each plane the three points are
distinct points, the lineo-linear equations will be reducible to

zx —yy =0, aa’'—27=0;

in the case where B, C in the first plane, and B/, C’ in the second plane respectively
coincide, the forms will be

zx —yy' =0, yZ—yz=0;
and in the case where 4, B, C in the first plane, and A4’, B', " in the second plane
respectively coincide, the forms will be

ay —yx' =0, az'—yy +2z2' =0.

The determination of the actual formule for these reductions would, it is probable,
give rise to investigations of considerable interest.

The General Rational Transformation between Two Planes (resumed).

54. Consider, as above, the first plane or figure with a principal system (&, a,...a,_,),
and the second plane or figure with a principal system (a/, a...a’,). To a line in
the second plane there corresponds in the first plane a curve of the order » passing
1 time through each of the points a,, 2 times through each of the points a,, 3 times
through each of the points a;, &c.; or, as we may write this:

First figure. Second figure.
Pomte " o iy .. Fointe ol Tl dy o
kRS n—1 0"1 00 n—1

i I n—1 OOl n—1

ik il

curve order n curve order 1

viz.,, the 1I’s denote the number of times which the curve of the order n passes through
the several points a, respectively; the 2's the number of times which the curve passes
through the several points a, respectively ; and so on.
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55. We may, in the second figure, in the place of a line consider a curve of
the order #. If the equation hereof is (#§a’, ¥/, 2)¥ =0, then the corresponding curve
in the first figure is (*x§X, Y. Z)¥=0; viz, this is a curve of the order k=nk'. If,
however, the curve in the second figure passes once or more times through all or any
of the points &', a,,...a,;, then there will be a depression in the order of the
corresponding curve in the first figure; and, moreover, this curve will pass a certain
uumber of times through all or some of the points a,, a;, as,...a,,. The diagram of
the correspondence will be :

First figure. . Second figure.

/7 /3 ' ’

O, Oy O3, ...05 o, O, O3,...05,
7 ’ ’ ’

RNy M ke 1 M (e bty M 8 “n—x)
’ b/ bl ’

b by b bun curve order k& & G : b”‘lL curve order k'

6 G ) 6k Ol

where a,, b, ¢;... denote the number of times that the curve of the order % passes

through the several points a, respectively, (viz., the number of the letters a,, b, ¢ ...
is =a;, any or all of them being zeros,) a,, b, c,... the number of times that the
curve passes through the several points a, respectively, (viz, the number of the letters
@y, by, Cy... i =a,, any or all of them being zeros)) and so on; and the like for the
curve in the second figure.

56. By what precedes, it is easy to see that, if the curve %" passes through a
point @, then the curve k& throws off a line, and the depression of order is =1; so,
if the curve passes 2 times, 3 times,... or « times through the point in question,
then the curve throws off the line repeated 2 times, 3 times,...a, " times, or the
depression of order is =2, 3,...or «'; and the like for each of the points «; so
that, writing for shortness a'+b/+c¢ '+ ...=2a,/, the depression of order on account
of the passages through the several points « is =Z3a,. Similarly, for each time of
passage through a point a;, there is thrown off a conic; or if @) +b/+...=2a), then
the depression of order is =2Za,, and so on; and the like for the figure in the
other plane; and we thus arrive at the equations

k =kn—3(a) +2a; +3a; ... +n—10ap,)
KF=kn —3(a, +2a, +3a5 ... +n—1ay).

57. The simplest case is when the curve & does not pass through any of the
points &', a,,...@,—. We have then

ey = etina = O bl 0 = b = 0
consequently & =/An. And, moreover, it is easy to see that

gi==h NSl st =01 diis= 2807 v U =il =i ) ol
VL 28
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so that the correspondence is:

First Figure. Second Figure.
o, 30 ag Pagtod . Beeiis Gl O a2 at
¥ 2% 3K (n—l)k’[ Qi QB 770*1
¥ 2% Sk (n=1)F J curve order k=nk" (AW Al 10" 0 J curve order %'
We have
Do s, — O el F Sa(ay— D)=k (K —1) o, &c,

and the formule for %, &' become
k=kn, K=kn—k {o+40,...+ (=1l a,};
viz.,, the second equation is here & =kn—k (n*—1); that is, &'n*=/kn, agreeing, as it
should do, with the first equation.
58. Moreover, the deficiency-relation is
3Eh-1)(k—2)—-3S3 (K -1)+2 (2K =1)...4+n—-1F (n=1F -1)}=3F -1) (¥ - 2);
or, what is the same thing, this is
(nk = 1) (nk' —2)— (K = 1) (K —2)= k*{oy + 40 ... + (n — 1) oty }.
=k {o+ 20 ... +(n—1) oy}
The right-hand side is
B2 (2 — 1) — & (3n — 8) = (n — 1) {(n+ 1 k* — 3k")},
and we have thus the identical equation
(k' = 1)(nk = 2)— (K = 1) (K —2)=(n—1)% {(n+ 1) &' — 3}.

59. It should be possible, when the nature of the correspondence between the
two planes is completely given, to express each of the numbers a,, b, ¢, ... @y, byy, ...
in terms of ¥, a, b/, ¢/, ... @'y, by, ...; and reciprocally each of the numbers
a’, b, ¢, ... @y, Uy, ... in terms of k, @&, by, 6, ... @y, byy, ... ; thus completing a

system of relations between the two sets
7 ’ ’ ’
(k) (1/1, bl,"' an—ly bn—l:"')) (k7 a’l: bl:"‘a'n—h b’n-—h“-);

but even if the theory was known, there would be considerable difficulty in forming
a proper algorithm for the expression of these relations.

60. The two curves must have each of them the same deficiency. It is to be
noticed, that if the curve in the first plane passes any number of times through a
point P, which is not one of the points «, @, @;,... or a,,, then the corresponding
curve in the second plane will pass the same number of times through the corre-
sponding point P’, which point will not be one of the points a«/, a),...an_. The
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points P, P’ will therefore contribute equal values to the deficiencies of the two curves
respectively; so that, in equating the two deficiencies, we may disregard P, P’, and
attend only to the points a,, a,, ..., of the first plane, and «, o, ...a,; of the
second plane. The required relation thus is

Tk =1k -2)=3%{w (@ =)+ ay (@ —1) ..+ @y (a4 — 1)}
S P (F 1) (R 2) =3 d [0 (0 = 1) + 0 () = 1) s e (@ — D).

61. In the case of the quadric transformation n=2, we have in the first plane
the three points a, say these are 4, B, (; 'and in the second plane the three points
o/, say these are A’, B/, ¢". And if in the first plane the curve of the order %
passes @, b, ¢ times through the three points respectively, and in the second plane
the corresponding curve of the order %' passes a, I, ¢’ times through the three points
respectively, then it is easy to obtain

E=2k—a—-0b—c, ! k=2 —da -V —¢,
= k—-0b —c, 1 a= K-V -¢,

b= k—c —aq, ' b=k —-¢ —d,

¢= k—a-0> c="F<a=0b"

The Quadric Transformation any number of times repeated.

62. We may successively repeat the quadric transformation according to the type:

First Fig. Second Fig. Third Fig. Fourth Fig.
4, B, C AR 0
DR, Dy ST
G B T T - T &

viz, in the transformation between the first and second figures, the principal systems
are ABC and A’B'C’ respectively; in that between the second and third figures,
they are D'E'F’ and D'E”F” respectively; in that between the third and fourth
figures, they are G"H”I” and G”H"I”; and so on. And it is then easy to see that
between the first and any subsequent figure we have a rational transformation of
the order 2 for the second figure, 4 for the third figure, 8 for the fourth figure, and
SO on.

63. But to further explain the relation, we may complete the diagram, by taking,
in the transformation between the second and third figures, 4”, B”, ¢" to correspond
to A’, B, C'; similarly, in that between the third and fourth, 4, B, C” to
correspond to A”, B”, ¢"; and D", E”, F" to correspond to D", £”, F”. And so in
the transformation between the second and third figure, we may make G, H’', I

28—2
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correspond to G”, H”, I”, and between the first and second figures make D, E, F
correspond to D, B, F', and G, H, I to ', H', I', the diagram being thus:

First Fig. Second Fig. Third Fig. Fourth Fig.
A’ B’ C AI, Bl’ O’ ] AII’ B//’ CI/ A///, B’ll, C//l
D, E’ -B' ‘ DI’ E/’ FI f 5}1, EI/ ’ ‘va DI/I’ El’l, FI//
G, II, iT G’, H,, I { G”, .H”, I G///’ HI”, 7" ‘

Observe that in the principal systems (for instance, 4, B, ¢ and A’, B, (') the points
A, B, C correspond, not to the points 4’, B, (', but to the lines B'(’, C"A’, A'B’
respectively; and so in the other case.

64. Consider now a line in the first figure: there corresponds hereto in the
second figure a conic through the points A4’, B, ("; and to this conic there corre-
sponds in the third fignre a quartic curve passing through each of the points
A”, B”, C"” once, and through each of the points D”, E”, F” twice. And conversely,
to a line in the third figure corresponds in the second figure a conic through the
points IV, E', F'; and hereto in the first figure a quartic through the points D, E, F,
once and through the points 4, B, C twice; that is, we have between the first and
third figures a quartic transformation wherein o, =a=3 and a«'=a’=3, or say a
quartic transformation 3,3, and 3,3,. In like manner, passing to the fourth figure, to
a line in the first figure corresponds in the fourth figure an octic curve passing
through A", B”, ¢ once, through D", E”, F” twice, and through G, H”, I'’ four
times; and conversely, to a line in the fourth figure there corresponds in the first
figure an octic curve passing through the points &, H, I once, the points D, K, F
twice, and the points A, B, C four times; that is, between the first and fourth figures
we have an octic transformation, wherein oy =a,=a,=3, ' =a’=a /=3, or say a
transformation, order 8, of the form 3,3,3, and 3,3,3, And so between the first and
fifth figures there is a transformation, order 16, of the form 3,3,3,3; and 3,3,3,3;.

65. It is, moreover, easy to find the Jacobians or counter-systems in the several
transformations respectively. Thus, in the transformation between the first and second
figures, in the second figure the Jacobian consists of 3 lines such as B'C’ (viz, these
are, of course, the lines B'(Y, ("A’, A’B’). Hence, in the transformation between the
first and third figures, the Jacobian in the third figure consists of

3 conics  B'C" (D'"E"F"),
3 lines YDA
viz, one of the conics is that through the five points B”, ¢”, D”, E”, F”, one of the

lines that through the two points D”, £”. And so in the fourth figure, the Jacobian
consists of

3 quartics Bmom (D/I/E;//Fm)l (GI”H”’I/”)z,
3 conics DB (GIIIHIIIII/I)I :
3 lines G///Hm :
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b

viz., one of the quartics passes through B”, ¢"”; through D", E", F"” each once; and
through G, H"”, I'” each twice. And so in the fifth figure the Jacobian consists of

3 OCtiCS BINIC//N (DHIIENIIF/I/I)] (G””H””I/I”)g (J””K””L””)“

3 qua.rtics D'”’E”” (G/N’H””]””)l (J””K““L”")z,

3 conics G/I//HIII/ (J///’K//I/LI///)I’
3 1101 JT I

3 lines FUERN,

and so on.

66. The conditions are in each case sufficient for the determination of the curve.
This depends on the numerical relation

4+3{1.2+2.83+4.54+8.9...420(20 4 1)} =26+ (2041 1 3),
The term in { } is
144416, + 2
+14+24+ 4... 429

that is
9+2_ 1 90+1_ ]
T oo B e
which is
=120+ — 14 3(2 —1)],
=1 [226+2+ B 20 4] :

and the relation is thus identically true.

67. Conversely, in the transformation between the first figure and the several
other figures respectively, the Jacobian of the first figure is

3 lines AB; and so for order 2, between first and second figures;
3 conics DE(ABC), !

y for order 4, between first and third figures;
3 lines AB
3 quartics GH (DEF), (ABC), \l
3 conics. DE (ABC), + for order 8, between first and fourth figures;
3 lines AB J

3 octics JK (GHI), (DEF),(ABC),

3 quartics GH (DEF),(ABC), _
for order 16, between first and fifth figures;

3 conics DE (4BC),
3 lines AB
and so on.
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Special Cases— Reduction of the General Rational Transformation to a Series of Quadric
Transformations.

68. It was remarked by Mr Clifford that any Cremona-transformation whatever
may be obtained by this method of repeated quadric transformations, if only the
principal systems, instead of being completely arbitrary, are properly related to each
other. To take the simplest instance; suppose that we have

First figure. Second figure. Third figure.
4, B, ¢ A B B A0
Il
E’ F D’, E/) F/ D//’ E//, F//

viz, in the transformation between the first and second figures, we have the principal
systems ABC and A'B'C’ (arbitrary as before); but in the transformation between the
second and third figures, the principal systems are D'E'F’ and D"E"F”, where D',
instead of being arbitrary, coincides with A’. And we then have B”, C” in the third
figure corresponding to B, O’ in the second figure, and %, F in the first figure corre-
sponding to E’, F' in the second figure. This being so, to a line in the first figure
corresponds in the second figure a conic through A4’, B, C’. But A4’"=D’; viz, this
conic passes through a point I of the principal system of the second figure, in regard
to the transformation between the second and third figures. That is, (%, a, b, ¢ referring
to the second figure, and %, &, &', ¢’ to the third figure, k=2, a=1, b=0, ¢=0, and
therefore ¥'=3, a’'=2, i’=1, ¢ =1,) cowresponding to the conic we have in the third
figure a curve, order 3 (cubic curve), passing twice through D”, but once through £”
and F” respectively; this cubic curve passes also through the points B”, C” which
correspond to B, €’ respectively; that is,

cubic passes through £”, #”, B, (" each 1 time

5 s ¥ 2 times ;

or, corresponding to a line in the first figure, we have in the third figure a curve,
order 3, passing through four fixed points each 1 time, and through one fixed point
2 times. That is, we have n=3, a/=4, a/=1. And in the same manner, to a line
in the third figure there corresponds in the first figure a cubic through four fixed
points (viz, B, C, K, F) each 1 time, and through one fixed point, 4, 2 times; so
that also o,=4, a,=1. The transformation 1s thus of the order 3, and the form
4,1, and 4,1, (this is in fact the only cubic transformation ; see the Tables, ante, No. 41).

69. Mr Clifford has also devised a very convenient algorithm for this decom-
position of a transformation of any order into quadric transformations. The quadric
transformation is denoted by [3], the cubic transformation by [41], the quartic trans-
formations by [601], [330], the quintic ones by [8001], [3310], [0600], and so on; see
the Tables just referred to. (This is substantially the same as a notation employed
above, the zeros enabling the omission of the suffixes; viz., [8001]=8,1,; and so in other

cases.)
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70. The foregoing result is represented thus [4, 1]=[3{0, 0, 1), which I proceed
to explain. Consider in the first figure a line; the symbol [3] denotes that in the
second figure we have a conic with three points («). We are about to apply to this
a quadric transformation; (0, 0, 0) would denote that the three points of the principal
system in the second figure were all of them arbitrary; (0, 0, 1) that one of these
points was a point «'; (0, 1, 1) that two of them were points a’; (1, 1, 1) that all
three of them were points a;; (0, 0, 2) would denote that one of the points was a
point a,’; only in the present case we can have mno such symbol, by reason that there
are no points a,. Hence [30001) denotes that the conic has applied to it a quadric
transformation such that, in the transformation thereof, one point of the principal system
coincides with one of the points (&) on the conic. To [3], qud quadric transformation,
belongs the number 2; and from 2, (001) we derive 3, (112), {in general %, (a, b, c)
gives k', (a, V', ¢), where ¥ =2k—a—b—c¢, a'=k—b—c, V=k—c—a, ¢=k—a—Db}.
k=2 corresponds to a symbol [3] of one number, /' =3 to a symbol of two numbers;
viz., we change [3] into [30]; we then, in the symbols (112) and (001), consider the
frequencies of the several numbers 1, 2,... taking those in the first symbol as positive,
and those in the second symbol as negative; or, what is the same thing, representing
the frequency as an index, we have 122!, 17'; or, combining, 1*7*2!'; these indices
are then added on to the numbers of [30]; viz, the index of 1 to the first number,
the index of 2 to the second number (and, in the case of more numbers, so on):
[30] is thus converted into [41], and we have the required equation

[41] = [37001),
where the rationale of this algorithmic process appears by the explanation, ante, No. 68.

71. As another example take
[8001] = [601q003).

To [601], qua quartic transformation, belongs the number 4; and from 4, (003) we form
5, (114); where the 5 indicates that [601] is to be changed into [6010]; then (114),
(003), writing them in the form 122°3741, show that to the numbers of [6010] we are
to add 2, 0, —1, 1; thus changing the symbol into [8001], so that we have the required
relation.

72. Mr Clifford calculated in this way the following table, showing how any trans-
formation of an order not exceeding 8 can be expressed by means of a series of quadric
transformations ; the symbols Cr. 3, Cr. 4.1; 4.2, &c, refer to the order and number

of Cremona’s tables, ante, No. 41.

Cr. 3. =[ 41] = [3]001),
Cr. 4.1 = [601] = [417002) = [370013002),
4.2 =[330] = [ 37000) = [41q011) = [37001011),
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Cr. 5.1 = [8001] = [601q003) = [370013002}003),
5.2 =[3310] = [ 41q001) = [37001%001),
5.8 = [0600] =[330Q111)  =[37000%111) =[3700130115111),
Cr. 6.1=[10,0001] =[80017004) = [37001F0027003%004),
6.2=[14200]  =[ 330q011) = [300007011) = [3700170117011),
6.3=[41300]  =[ 6017011) = [3q001}002Y011)) _ (ATOOTO00)
=[33100022) = [37001%00115022))
6.4 =[34010]  =[ 3300002) = [37000%002),
= [33107013) = [3000130013013),
Cr. 7.1 =[12,00001] = [10,00017005) = [3{001%002 0037004 005),
7.2 =[3300001) = [30005001) = [232100],
7.3 =[034000] = [3310Q111) = [30013001y111),
7.4 =[503100] =[ 601g001) = [3]001}0023001),
7.5=1[350010] =[33104003) = [3q001F0015003),
Cr. 8.1 = [14,000001] = [ 3700100230037 0047 005006),
8.2 =[3230100] =[ 33104002) = [30001001%002),
8.3 =[1322000] = 3310q011) = [3q001F001F011),
8.4 =[0070000] = [0340000222) = [3q0013001y111]222),
8.5 =[3600010] =[ 34010q004) = [33070027004) = [3]00030023004),
8.6 =1[6013000] =[ 601§000) = [37001%002§000),
8.7 =[0520100] =[ 06004002) =I[30000y111]222),
8.8 =[2051000] = [ 413000112) = [3q0017000y112),
8.9 =[3303000] = [ 3700030003 000).

73. The reduction as above of a transformation to a series of quadric transfor-
mations, enables the determination of the reciprocal transformation ; or, what is the
same thing, the determination of the Jacobian of the first figure; see the example,
ante, No. 67, where it appears that the reciprocal transformation of [41] is [41]. But
I do not see any easy algorithmic process for the determination of the rveciprocal trans-
formation, or still less any general form in which the result can be expressed; and
I do not at present pursue the inquiry.

The Rational Transformation between Two Spaces.

74. The general principles have been already explained: the two systems
&y w=X:Y:Z: Wandae:y:z:w=X:Y :2Z : W must be derivable
the one from the other; and starting with the first system, this will be the case if
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only the surfaces X =0, Y=0, Z=0, W=0 have a common intersection equivalent to
n*—1 points of intersection, but not equivalent to a complete common intersection of
n* points. The last-mentioned circumstance would arise, if the condition of the common
intersection should impose upon the surface more than }(n+1)(n+2)(n+3)—4 con-
ditions ; viz, the surfaces would then be connected by an identical equation or syzygy
X +BY +yZ+8W=0. The common intersection is a figure composed of points and
curves: say it is the principal system in the first space; the problem is, to determine
a principal system equivalent to n*—1 points of intersection but such that the number
of conditions to be satisfied by a surface passing through it is not more than

Ln+1)(n+2)(n+3)—4

75. The following locutions are convenient. We may say that the number of
conditions imposed upon a surface of the order m which passes through the common
intersection is the Postulation of this intersection; and that the number of points
represented by the common intersection (in regard to the points of intersection of any
three surfaces each of the order m which pass through it) is the Kgquivalence of this
intersection. The conditions above referred to are thus

Equivalence =n® — 1,
Postulation P & (n+ 1) (n+ 2)(n+ 3) — 4.

76. It would appear by the analogy of the rational transformation between two
planes, that the only cases to be considered are those for which

Postulation =§ (n+1)(n+2) (n+3) —4;
but I cannot say whether this is so.

77. In the transformation between two planes, the two conditions lead, as was
seen, to the result that the curve aX +bY +c¢Z=0 is unicursal. I do not see that
in the present case of two spaces, the two conditions lead to the corresponding result
that the surface aX +0Y +c¢Z+dW =0 is unicursal; that this is so, appears, however,
at once from the general notion of the rational transformation. In fact, the equation
in question aX +bY +c¢Z+dW=0 is satisfied by z : y : z : w=X":Y': Z : W and
az’ +by + ¢Z +dw' =0; the last equation determines the ratios 2’ : 3" : 2/ : w' in terms
of two arbitrary parameters (say these are «' : ¥ and 2’ : 2’), and we have then
@:y:z:w proportional to rational functions of these two parameters; that is, the surface
aX +bY +¢cZ+dW =0 is unicursal. And similarly the surface a X' +bY'+¢Z'+dW’' =0
1s unicursal. ;

78. In the most general point of view, the principal system will contain a given
number of points which are simple points, a given number which are quadriconical
points, a given number which are cubiconical points, &c. &c., on the surfaces; and
similarly a given number of curves which are simple curves, a given number which
are double curves, &ec. &c., on the surfaces. But, to simplify, I will consider that it
includes only points which are simple points, and a curve which is a simple curve

C. VII. 29
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on the surfaces: this curve may, however, break up into separate curves, and we thus,
in fact, admit the case where there are any number of separate curves each of them
a simple curve on the surfaces. It is right to remark that we cannot assert d priori—
and it is not in fact the case—that the principal system in the second space will be
subject to the like restrictions: starting with such a principal system in the first
space, we may be led in the second space to a principal system including a curve
which is a double curve on the surfaces; an instance of this will in fact occur.

79. It is shown (Salmon’s Solid Geometry, 2nd ed., p. 283, [Ed. 4, p. 321]), that in
the intersection of three surfaces of the orders u, », p respectively, a curve of inter-
section of the order m and class » counts as m (u+ v+ p — 2) —r points of intersection.
For a curve without actual double points or stationary points, we have r=m (m —1)— 2h,
where % is the number of apparent double points; or, substituting, we have the curve
counting for m (u +v+p—2)—m (m—1)+2h points of intersection; this is in fact a
more general form of the formula, inasmuch as it extends to the case of a curve with
actual double points and stationary points. Or, what is the same thing, the three
surfaces intersecting in the curve of the order m with A apparent double points, will
besides intersect in wwp —m(p+v+p—2)+m(m—1)—2h points; viz, the curve may,
besides the apparent double points, have actual double points and stationary points;
but these do not affect the formula.

80. Some caution is necessary in the application of the theorem. For instance,
to consider cases that will present themselves in the sequel: let the surfaces be cubics
(u =v=p=3); the number of remaining intersections is given as = 27 —7m + m (m —1)— 2h.
Suppose that the curve consists of four non-intersecting lines, m =4, h =6, the number
is given as =—1. But observe in this case there are two lines each meeting the
four given lines; that is, any cubic surface passing through the four given lines meets
these two lines each of them in four points, that is, the cubic passes also through
each of the two lines; the complete curve-intersection of the surfaces is made up of the
six lines m=6, h=17 (since each of the two lines, as intersecting the four lines, gives
actual double points, but the two lines together give one apparent double point),
and the expression for the number of the remaining points of intersection becomes
=27 —42 4+ 30 —14 =1, which is correct.

81. Similarly, if the given curve of intersection be a conic and two non-intersecting
lines, there is here in the plane of the conic a line meeting each of the two given
lines, and therefore meeting the cubic surface, in four points, that is, lying wholly in
the cubic surface: the complete curve-intersection consists of the conic, the two given
lines, and the last-mentioned line, m =5, h=>5, and the number of points of intersection
15 =27 — 35+ 20 — 10, =2, which is correct. Again, if the given curve of intersection
be two conics, here the line of intersection of the planes of the conics lies in the
cubic surface; or, for the complete curve-intersection we have m =5, h=4; and the
number of points is 27 —35+20—8, =4. If in this last case each or either of the
conics become a pair of intersecting lines, or if in the preceding case the conic becomes
a pair of intersecting lines, the results remain unaltered.
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82. If a surface of the order p pass through a curve of the order m and class
r without stationary points or actual double points, this imposes on the surface a
number of conditions =(u+1)m —4r. In the case in question, the value of 7 is
=m (m —1)—2h; or, substituting, the number of conditions is =(u+1)m —Im(m—1)+h;
and the formula in this form holds good even in the case where the curve has
stationary points and actual double points. Thus w =3, the number of conditions is
=4dm —4m(@m—1)+h. If the curve be a line, m=1, h =0, number of conditions is
=4; if the curve be a pair of non-intersecting lines, m =2, h=1, number of con-
ditions is =8. And so in general, if the curve consist of % non-intersecting lines
(k=4 at most), then m =%k, L =1k(k—1), and the number of conditions is = 4k. If
the curve be a conic, or a pair of intersecting lines, m =2, h=1, and the number of
conditions is =7. If the curve comsist of & lines, such that there are 6 pairs of inter-
secting lines, then m=£% h=41k(k—1)— 6, and the number of conditions is =4k — 4.
It is obvious that, the number of conditions for a line being =4, that for the % lines
with @ intersecting pairs must have the foregoing value 4k —6. In fact, when the
lines do not intersect, we take on each line 4 points, and the cubic surface passing
through any such 4 points will contain the line; but for two lines which intersect,
taking this point, and on each of the intersecting lines 3 other points, the cubic
surface through the 7 points will pass through the two lines; and so in other cases.

83. The formula must, in some instances, be applied with caution. Thus, given
five non-intersecting lines k=25, § =0, and the number of conditions is =20; and a
cubic surface cannot be, in general, made to pass through the lines. But if the five
lines are met by any other line, then a cubic surface, if it pass through the five
lines, will pass through this sixth line; for the six lines £ =6, § =5, and the number
of conditions is 24 —5=19; so that there is a determinate cubic surface through the
six lines, and therefore through the five lines related in the manner just referred to.

84. Recurring to the problem of transformation, it appears by what precedes, that
if the principal system in the first plane consists of a; points, and of a curve of the
order m, with A, apparent double points (the @, points being simple points, and the
curve a simple curve on the surfaces), then the conditions for a transformation are

Brn—=2)my— m(m—1)+2h+a,=n"—1,

(n+l)m—fm@m—-1)+ h+tau=§(n+1)(n+2)(n+3)—4
where, in the second line, instead of 3 I have written =. I remark, in passing,
that I have ascertained that an actual triple point counts as an apparent double
point ; or, what is the same thing, that if the curve has # actual triple points, then
we may, instead of A, write i, +¢. The equations give

m,(dn—5—my)=L1(m—1)(Bn*— n—12) — 2k,
(n—4)ym—a=%(n—1)2n—4n—15),

to which may be joined

(3n + 8)my — 2m, (my — 1) + 4l + 5oy = (n — 1) (6n 4 17).
29—2
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The first two equations for the successive values of n give

n=2 m(3—m)= 2-2h, 2myt o= D

n=3, m(7—m)= 20—2h, m+a= 6;

n=4, m (11 —m)= 64— 2h,, a=—"1;

n=2>5, my (15 —m,) =144 — 2h,, - m+o=—20;

n=26, m (19 —m)=270— 2h,, — 2my + oy = — 55
&e. &e. &e.

85. It is remarkable that for m=4 there is no solution of the geometrical
problem; in fact, a,=—1, a negative value of a;, shows that this is so. For the
higher values of n, there seem to be solutions with large values of my, b, a; for
example, n=5, we have m;=20+a, is =20 at least. Writing m, =20, we have
—100=144 — 2h,, or 2h, =244. The highest value of 2k, is =(m, — 1) (m;, —2), which
for m;=20 is =342; or the foregoing value 2k, =244 1s admissible. Thus m,=20,
k=122, a;=0 gives a solution; and, moreover, any larger value of m,, say m,=20+aq,
gives an admissible solution, m, =20 + a, h, =122 + }a(a+ 25), s, =a. And so for n=6,
&c.; but I have not further examined any of these cases, and do not understand
them.

There remain the cases n=2, n=3. For n=2, since 2m,+ a, =5, we have m;=0,
1, or 2; m=0 gives b =0, which is not admissible. The remaining solutions are
mi="1; il =0, a=3: and, =2 b =0"a=1.

For n=38, since m;+a, =6, we have m;=0, 1, 2, 3, 4, 5, or 6. m=0 gives
hh=10; m;=1 gives hy=T7; m, =2 gives ly=5; m;=3 gives h=4: these values are
not geometrically admissible. The remaining cases are my=4, h=4 a=2; m=3,
Ini=ib =l b= S e ey = O

86. The reciprocal transformation is in every case of the order »'=mn?—m,.
Hence considering the quadric transformations:

First, the case n=2, m;=1, by =0, ay = 3; the reciprocal transformation is of the
order n'=3. Suppose for a moment that the principal system in the second space is
of the same nature as that above considered in the first space, consisting of &
points, and a curve of the order m,” with A’ apparent double points (the a’ points
each a simple point, and the curve a simple curve on the surfaces X'=0, &ec.).
Passing back to the original transformation, we should have 2=9 - m/, that is, m,/=1.
But it has just been seen that, for » =3, the only values of m, are 4, 5, 6; hence
for n'=3 we cannot have m,’=7. The explanation is, that the principal system in
the second space s mot of the form in question; it, in fact, consists (as will appear)
of three lines each a simple line, and of another line which is a double line on the
surfaces X'=0, &c. In the intersection of any two of these surfaces, the three lines
count each once, the double line four times, and the order of the curve of intersection
is thus 344 =7, as it should be. The principal system may be characterized a’=0,
m’ =38, =38, my =1, k' =0.
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Next, the case n=2, m;=2, by =0, a;=1: the reciprocal transformation is of the
order n'=2; it is evidently not of the form above considered (for this would make
the original transformation to be of the order 3). Hence, assuming (as it seems
allowable to do) that the principal system does not contain any multiple point or
carve, the reciprocal transformation will be of the same form as the original one;
viz.,, we shall have n'=2, m,/=2, /=0, o’=1.

87. Considering next the cubic transformations, or those belonging to mn=3; in
the case m, =4, h;=4, @ =2, the reciprocal transformation is of the order 9 —4, =5;
and in the case m; =5, hy=35, a,=1, the reciprocal transformation is of the order
9—5, =4: I do not consider these cases. But m;=6, k=7, a,=0, the reciprocal
transformation is of the order 9 —6, =3; and assuming (as seems allowable) that the
principal system does not contain any multiple point or curve, it must be of the
same form as the original transformation, that is, we must have #'=3, m/=6, h'=T,
a0

88. The transformations to be studied are thus,—1° The quadri-quadric trans-
formation n=2, m;=2, hy=0, a,=1, and »'=2, m/'=2, h'=0, a/=1; the principal
system in each space consists of a point and of a conic (which may be a pair of
intersecting lines); and the surfaces are quadrics. 2° The quadri-cubic transformation
n=2 m=1, h=0, ,=38, and »' =8, a/=0, m'=38, h'=3, my =1, h/=0: in the first
space the principal system consists of three points and a line, and the surfaces are
quadrics: in the second figure, the principal system consists of three simple lines and a
double line; and the surfaces are cubic surfaces passing through this principal system,
that is, they are cubic scrolls. 3° The cubo-cubic transformation n=3, =0, m =6,
hy="7,and =3, o’=0, m/ =6, h,’="T; in each space the principal system is a sextic
curve with seven apparent double points (but there are different cases to be considered
according as the sextic curve does or does mnot break up into inferior curves), and
the surfaces are cubic surfaces through the sextic curve.

The Quadri-quadric Transformation between Two Spaces.

89. Starting from the equations 2’ : y' : 2 : w'=X : ¥V : Z : W, we have here
X =0, &c., quadric surfaces passing through a given point and a given conic (which
may be a pair of intersecting lines). Take =0, y=0, z=0 for the coordinates of
the given point; w=0 for the equation of the plane of the conic; the conic is then
given as the intersection of this plane by a cone having the given point for its
vertex ; or say the equaticns of the conic are w=0, (a,...0%, y, 2)?=0; the general
equation of a quadric through the point and couic is w (az + By +vz) +8(a,...Jx, y, 2)*=0;
and it hence appears that the equations of the transformation may be taken to be

/ ' 3 /

W Y VY S sw gt vl 08,7y, 2

these give at once a reciprocal system of the same form; viz, the two sets are

WP e g s e, RS Y ),
and

[
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90. The Jacobian of the first space is at once found to be
w(a, ...08, ¥y, 2 =0;
that of the second space is of course
(i G g P

The two spaces are similar to each other; we may say that there is in each of them
a principal point and a principal conic; that the plane of the conic is the principal
plane, and the cone having its vertex at the point and passing through the conic is
the principal cone. To the principal point of either space corresponds any point
whatever in the principal plane of the other space; and conversely. More definitely, the
points of the one principal plane and the infinitesimal elements of direction through the
principal point of the other space correspond according to the equations z:y:z=2a":y : 7.
To any point on the principal conic of either space corresponds in the other space, not
a mere element of direction through the principal point of the other space, but a
line of the principal cone; that is, to the points of the principal conic of the one
space correspond the lines of the principal cone of the other space. The Jacobian
of either space, consisting of the principal plane twice, and of the principal cone, is
thus the principal counter-system of the other space.

91. {Writing (@, ...Qz, y, 2 =a*-+y*+ 2%, w=w =1, the equations of transformation
become
Towf czisel e g ol A kiR
and

7

gy 2 s 1=a o & @Y g,
or, what is the same thing, if for shortness

2+ yz + 22 = 7.2, 22 2 y’ﬂ = 722= ,,./2’
the equations are

’ ’ /

&€ 1 4
/ ’ ’ 7./_’2, 2

e o ST LRSARIT oy E LR
Wimsps Ymsyndi=0 yuand gesed e

whence also 77" =1; this is the well known transformation by reciprocal radius vectors.}

92. The principal conic may be a pair of intersecting lines; taking its equations
to be w=0, 2y =0, the equations of transformation here become

’ ’ /

o vy o2 w=aw Lyw, oW iy,

and
2 iy vz cw=dw : ywdw oy,

There is no difficulty in the further development of the theory.

The Quadri-cubic Transformation between Two Spaces.

93. It will be convenient to have the unaccented letters (=, y, 2z, w) referring to
the cubic surfaces. I will therefore take the quadric surfaces in the second figure;
viz, I will start from the equations « : y : z : w=X':Y :Z" : W, where X'=0,
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Y'=0,Z=0, W=0 are quadric surfaces passing through three fixed points (say the
principal points) and through a fixed line (say the principal line) in the second figure.
Taking 2’=0, y'=0 for the planes passing through the principal line and through
two of the principal points respectively; 2 =0 for the plane passing through the
three principal points, w'=0 for an arbitrary plane passing through the first mentioned
two principal points, the implicit factors of ', », w’ may be so determined that for
the third principal point 2’=y'=—w'. That is, we shall have

for principal line z=0,9=0,
for principal points (' =0, 2 =0, w’=0),
i (=0 =0:w =10)

(==, "2 = 0);

and this being so, the equation of a quadric surface through the principal points and
line will be

(0" + By 2 + yz' (Y +w') + 8y (¢ + w'),
and the equations of transformation may be taken to be
Dok Al =a'7 . y7 : & (Y + o) : ¥ (2 + ).

94. Writing these in the extended form
wry:zpwie—y:zs—w=ad : Yy L Y+w):y@+w): @ —y) w2 -vy)
and forming also the equation
ay : (aw—y2)=2": o' -y,

we at once derive the reciprocal system of equations

i A =a(aw—yz) : y(aw—yz) : (@—y)zy : (2 —w)xy,

so that this is a cubic transformation. And the cubic surface in the first space
(corresponding to -an arbitrary plane aa’+0by +cz’ +dw =0 of the second space) is
(az+by) (2w —yz) + c(z —y)ay + d (z —w) xy=0; viz, this is a cubic surface having
the fixed double line (z=0, y=0), the fixed simple lines (=0, z=0), (y=0, w=0),
and (z—y=0, z—w=0); it has also the variable simple line (dz + cz =0, dw +cy=0).
The principal figure of the first space thus consists of the three simple lines (z=0,
z2=0), (y=0, w=0), (z—y=0, z—w=0), and of the line (z=0, y=0), a double line
counting four times in the intersection of two of the cubic surfaces.

95. The cubic surface as having the double line (z=0, y=0) is a cubic scroll,
and this line is the nodal directrix thereof; the line (dz+cz=0, dw+cy=0) is the
simple directrix; the lines (z=0, 2=0), (y=0, w=0), (z—y=0, z—w=0) are at once
seen to be lines meeting each of these directrix lines; and they are generating lines
of the scroll. To explain the generation of the scroll, observe that the section by
any plane is a cubic curve having a given double point (viz., the intersection of the
plane with the nodal directrix); and three other given points (viz., the intersections of
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the plane with the three generating lines respectively); this cubic also passes through
the intersection of the plane with the simple directrix. Conversely, if the plane be
assumed at pleasure, and if, taking for the simple directrix any line which meets the
given generating lines, we draw a cubic as above, then the scroll is the scroll
generated by a line which meets each of the directrix lines, and also the cubic.

If the plane be taken to pass through any generating line, then the cubic section
breaks up into this line, and a conic; the conic does not meet the simple directrix,
but it meets the nodal directrix; and any such conic will serve as a directrix; viz.,
the scroll is generated by the lines which meet the two directrix lines and the conic.

96. Any two scrolls as above meet in the three fixed generating lines, and in
the nodal directrix counting four times; they consequently meet besides in a curve of
the second order, which is a conic (one of the conics just referred to). In order to
further explain the theory, suppose for a moment that the two scrolls had only a
common nodal directrix; they would besides meet in a quintic curve; this curve would
meet the nodal directrix in four points, viz.,, the points at which the two scrolls have
a common tangent plane. Now if at any point of the nodal directrix the two scrolls
have a common generating line, then the plane through this line and the nodal line
is one of the two tangent planes of each scroll; that is, the scrolls have this plane
for a common tangent plane. Hence, in the case of the common three generating
lines, the points where these meet the nodal line are three of the four points just
referred to; there remains therefore one point, which is the point where the conic
meets the nodal line; through this point there are for each of the scrolls two
generating lines; one of these for the fizst scroll, and one for the second scroll, lie in
a plane with the nodal line; the other two determine the plane of the conmic; and
the tangent to the conic at its intersection with the nodal line is the intersection of
the plane of the conic with the plane of the first-mentioned two generating lines.

97. Analytically we have the two equations
¢ (@—y)zy + (az + by ) (ew —yz)+d (2 —w) 2y =0,
¢ (w—y)wy+(a'z+by) (ew—yz)+d (z —w) zy=0;
or, combining these equations so as to eliminate successively the terms in z (zw — yz)
and y (zw —yz), and for this purpose writing
(b’ = b'c, ca’ —c'a, ab’' —a'b, ad' —a'd, bd'—b'd, cd' —c'd)=(a, b, ¢, f, g, h),

and therefore
af+bg + ch =0,
we have
b(z—y)z—c(aw—yz)—f (z—w)z=0,

—a@—y)y+c(aw—yz)—g(z—w)y=0,

and multiplying the first of these by c+g and the second by ¢—f, and adding, the
whole divides by # —y, and the final result is

(c+g) (bx —f2) — (c — f) (ay + gw)=0;

viz., this is the equation of the plane of the conic.
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98. Any two scrolls as above meeting in a conic, a third scroll will meet the
conic in six points; but these include the point on the nodal directrix twice, and
the points on the three fixed generating lines each once; there is left a single point
of intersection, viz, this is the ome wvariable point of intersection of the three scrolls;
which is in accordance with the theory.

99. For the Jacobian of the second space, we have
2 O o el O B=()1s
(1 S £ il O
Yy +w, p A g R )

i’

A TSRO

that is, 24'y’2’(¢'—y)=0; viz, =0 is the plane containing the three principal
points; and #'=0, y'=0, 2’—y =0 are the planes which pass through the principal
line and the three principal points respectively.

100. For the Jacobian of the first space, we have

2zw — yz, —xz , —uay, culi=0:
yw |, aw-—2yz, —1i°, xy
20y — 2, o — 2wy, Of 0

(-w)y, (z-w)a, azy, —ay

that is, 32 (z —y)*(sw—yz)=0; viz, 2=0, y=0, 2—y =0 are the planes through the
nodal directrix and the three fixed generators respectively (each plane therefore occurring
twice); and 2w —yz=0 is the quadric scroll generated by the lines which meet each
of the three generators (=0, z2=0), (y=0, w=0), (z—y=0, z—w=0); this scroll
passing also through the nodal directrix z =0, y=0.

The Cubo-cubic Transformation between Two Spaces.

101. The principal system in the first space is a sextic curve with 7 apparent
double points; but this curve may be either a single curve, or it may break up into
inferior curves. I have not examined all the cases which may arise; but the two
extreme cases are—(A) The sextic curve breaks up into six lines, viz, two non-
intersecting lines, and four other lines each meeting each of the two lines (this
implies that no two of the four lines meet each other): here the two lines give
1 apparent double point, and the four lines give 6 apparent double points; total
number is =7, as it should be. (B) The curve is a proper sextic curve, with
7 apparent double points: this gives, as will be shown, the general lineo-linear trans-
formation. The two cases are each of them symmetrical.

C. VIL 30
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(A) The Principal System consists of Sz Lines.

102. Taking in the first space, for the equations of the two lines, (=0, y =0) and
(=0, w=0), and for the equations of the four lines, (z=0, 2=0), (y=0, w=0),
(z—y=0, z2—w=0), (z—py=0, z—qw=0), then, if the equations of transformation
are taken to be

/ /

2 —qu = w= (z—py)( ew— y2)
: (2 — ) (qow — py2)
(2 —qw) (ow— y2)
(2 — w)(gew — py2);

@—py :ad—y

these lead conversely (see post, No. 104) to a like system,
z-py rx—y tz—qw :z—w= (Z—py)M

(@ = YN
(2 —qu) M
: (7 — )N,

where for shortness
M=p(@-1yazw —q(p—-1¢y7 +(pg—1)(p—q) yw,
N'= (g-1raw— (p-1PyZ+(pe—-1(p-9yw;
or, as these are better written,
M=-q(p-1)y{(p-1)7-(pg—Dw}+p@@-Dw {(g—1)2' - (pg— Dy},
N=- (p-Dy{(p-1)7—-(pg-Dw}+ (- {(¢g-D2'-(pg—Dy}.
Hence the principal system in the second plane is composed of the two non-inter-
secting lines (' =0, y' =0), (=0, w =0) and the four lmes {(p—1)2' —(pg —1)w' =0,

(g-D2'—(pg—1)y =0}, (¥ =0, w' =0), (&~y =0, 7 —w'=0), (s —py =0, &' —qu'=0),
each meeting each of the two lines.

103. The Jacobian of the first space is

2ew —yz —pyw , —xz—prw + 2pyz, —y@—-py) x (¢ — py) =0,
2qew — pyz — qyw, —pez—qew+lpys,  —py@—=y) gz (z—y)
w(z-qw) , —z(z—qw) , aw—-2yz+qyw , zz-— 2qrW+ qYz
qw(z —w) —pz(z—w) , qaw—2pyz+pyw, quz— 292w+ pyz

viz., this is ayzw (z—y)(z—py) (z —w) (z — quw) =0, the equation of the planes each
passing through one of the four lines and one of the two lines.

Similarly, the Jacobian of the second space is

{(g-Da' - (pg =Dyl i(p-1)2—=(pg—-Dw| (& —y) (7 —w) (& —py) (7 —qu)yw =0;

viz, this is the equation of the eight planes each passing through one of the four
lines and one of the two lines.
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104. To effect the foregoing transformation, writing

’ / ’

& yid cw=" (e—py)( ew— y2)
D (@ = y)(qgew — pyz)
: (2 —qw) (2w — yz)
(2 = w)(gow — py2);
or what will ultimately be the same thing, but it is more convenient for working with,

@ = (e—py)( aw— y2),
¥y = (z— y)(gow—py2),
7z (z — qw) (2w — yz),
w'= (2— w)(grw—py?);

these give
z—py =M,

z— y=NYy,
z—quw=DM7,
z2— w=Nuw,
where M’, N’ are quantities which have to be determined; and thence ‘
I -p)o= Mz —pNy,
(A=p)y=2e~ Ny,
A-q)z=M7z—gqNw,
1-qQuw=Mz7— Nw;
whence also
1-p)(A—g)(aw— y2)=N'[ {(g=1)aw —(p~ Dy} W'+ (p - ) ywN],
(1 =p)(A = g) (qow —pyz) = M [~ (p — @) 2 M + {(pg — ) &0 = (pg =) y<} N'];

but we have
aw—yz _& a-py o Mo N

7/,

qgw—pyz y  w—y y Ny M’

or, substituting, Py
M{ (g-Daw -p-1)y} + N (-9 yw
=M {-(p- 2} + N {(pg— q) aw' — (P —P)Y7};
that is
M {(g-Daw —(p—1)y7 +(p— a2} =N ((pg—q) v —(pg—p) ¥Z — (p — q) yw'} ;
or, what is the same thing,
M =(pg—q)aw —(pg—p)y7 —(p— DY,

N=(g-1aw—(p-1)yZ+(p-9c7;
30—2
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viz, M’, N’ having these values, the original equations

/ 4 Vi /

oy = (2=py)(¢ sw=. 42)
D (@ — y)(paw — qy2)
t(z—qw)( 2w — y2)
: (2= w) (paw — qy2),
give
z—py :x—y:z2—qw:z-w=Mz : Ny : M7 : Nuw'.
If, in these equations, in place of («, ¥/, 2, w’) we write (2’ —py/, &' — ¥/, 2 —quw/, 2 —w'),
the new values of M’, N’ are found to be
M=p(g-1yaw —q(p—-17y7 +(pg—1)(p— 9 yv,
N= (g-1paw - (p-10y7 +(pg—1)(p—9yw,

and we have the formulae of No. 102.

(B) The Principal System of a Proper Sextic Curve; the Lineo-linear Transformation
between Two Spaces.

105. I start with the lineo-linear transformation, and show that this is in fact
a transformation such that the principal system in either space is a sextic curve with
seven apparent double points. I do not attempt any formal proof, but assume that
the lineo-linear transformation is the most general one which gives rise to such a
principal system.

We have between (z, y, 2, w), (¢, 9/, 2/, w') three lineo-linear equations; writing
these first under the form

P, @, R, S}, ¥, 2, w)=0,
(Ps, @ Ry, 8,37, ¢, 7, w)=0,
(Ps, @, R, S}, v, 2, w)=0,
we have &' : v/ : 2 :w'=X : YV : Z: W, where X, Y, Z, W are the determinants
(each with its proper sign) formed out of the matrix
¢ N S
By oot Ry 8y
P ¢ Y -
106. Each of the surfices X =0, ¥Y=0, Z=0, W=0, or generally any surface
aX +bY+cZ+dW=0, is thus a cubic surface passing through the curve
T AR W TR |
oo Qe Rooui | By
Py, @ R, 8|

=0,
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which is at once seen to be of the order 6. In fact any two of these surfaces, for
instance

P, Q, R11=0 and | P, @, 8, |=0,

P:n Q'.h R2 : Pz: Qﬂ: Sz
lPs’ er -R35 Ps; Qs; Ss
lave in common a curve
Pt Bt Pailli=10,
‘ @ @ @l

which is of the order 3; they consequently besides intersect in a curve of the order 6,
which is the before mentioned curve of intersection of all the surfaces. And it further
appears that the number of the apparent double points is =7; in fact the formula
in the case of two surfaces of the orders u, v, the complete intersection of which consists
of a curve of the order m with & apparent double points, and of a curve of the
order m’ with %’ apparent double points, the numbers m, m/, h, I’ are connected by the
equation 2(h—h)=(m—m)(u—1)(»—1). (Salmon’s Solid Geometry, 2nd Ed., p. 273
[Ed. 4, p. 311]). Hence, in the case of the two cubic surfaces intersecting as above (since
for the cubic curve we have m'=3, k' =1, and for the sextic m = 6), the formula becomes
2(h—1)=12, that is h=1+ 6="7; or the number of apparent double points is =7.

107. It thus appears that the principal system in the first plane is a curve of
the order 6, with seven apparent double points: it is to be added that there are
not in general any actual double points or stationary points, so that the class of the
curve is 6.5—2.7, =16, and its deficiency is §5.4—7, =8. For convenience I will
refer to this as the curve 2.

The transformation is obviously a symmetrical one; hence the principal system in
the second space is in like manner a curve of the order 6, with seven apparent
double points; say it is the curve ¥ :

108. Consider in the first space any point P on the curve Z; for this point the
three equations
(Pl) Ql: -Rl) Sl§x” .7/’, Z’: w’)= 0)
(PZJ Q?) R2a S2§ » )=0)

(Ps, QB) Rs: Ss§ 2» )=0’

are not independent, but are equivalent to two linear equations in («/, ¥, 7, w);
that is, to the point P on the curve 3% there corresponds in the second space, not
a determinate point P’, but any point whatever on a certain line L’; or say to the
point P on = there corresponds a line L'; and as P describes the curve 3,
L' describes a scroll II’; that is, to the curve = there corresponds a scroll II’, the
principal counter-system in the second space. Similarly to the curve X’ there corresponds
a scroll II, the principal counter-system of the first space.

109. The scroll II is the Jacobian of the first space; and as such it is of the
order 8, having the curve X for a triple line—and it thus appears that the Jacobian
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of the first space is a scroll (a theorem the analytical verification of which seems by
no means easy). But without assuming the identity of the scroll II with this Jacobian,
or taking the order of the scroll to be known, I proceed to show that the scroll II
is the scroll generated by the lines each of which meets the curve 3 three times;
it will thereby appear that the order is =8, and that the curve is a triple line on
the scroll.

Consider a point P’ on X/, and the corresponding line L of the first space: take
®’ a plane in the second space; corresponding to it the cubic surface ® in the first
space. By imposing a single relation on the coefficients (a, b, ¢, d) in the equation
az' +by +cZ +dw'=0 of the plane ©’, we make it pass through the point F’;
therefore by imposing this same single relation on the coefficients (a, b, ¢, d) of the
cubic surface ©, we make it pass through the line L; ® is a cubic surface through =;
and it is easy to see that the effect will be as above only if the line L cuts the
curve 3 three times; this being so, the general cubic surface ® meets L in three
points (viz., the three intersections of L with X), and if ® be made to pass through
a fourth point on the line L, it will pass through the line L; it thus appears that
the line L meets 3 three times, and consequently that the scroll II is generated by
the lines which meet 3 three times.

110. The theory of a scroll so generated is considered in my “Memoir on Skew Surfaces,
otherwise Scrolls”(*). Writing m =6, h=7 and therefore M[=—Fm(m—1)+h],=-38,
the order of the scroll is (3[m]t4 (m—2) M=40—32)=8; but calculating the values of
NG (m?) =4 [m]*+ 6m+ M (3 [m]* — 12m + 33) + M>. 3,

NR (%) = 5 [m] + & [m] — 4 [mF — 3 + M (§ [m] = § [m]* = §m2+ 8 —20)-+ I (3 [mP—2m);
these are found to be respectively =0; viz, there are no mnodal generators, and no

nodal residue; the sextic curve 3 is a triple curve on the surface, and there is not
any other multiple line.

111. It may be remarked that any plane ® meets the sextic curve X’ in six
points; hence the corresponding cubic surface ® contains six lines, generatrices of II,
and, therefore, each meeting the curve X three times; say six lines L. Through one
of these lines L, draw to the cubic surface ® a triple tangent plane meeting it in the
line L and in two other lines, say M, N; this plane must meet = in three new points
which must lie on the lines M, N; viz, one of these lines must pass through two
of the points, and the other line through the third point.

Addition—~September, 1870.

[Some corrections have been made in accordance with the concluding paragraph of a
paper “Note on the Rational Transformation and on Special Systems of Points,” 450.]

The formule of No. 84 are included in the following more general formule; viz,
if the principal system consist of a points, each a simple point, a, points each a

1 Phil. Trans. vol. crur 1863, pp. 453—483, [339]. See the Table S (m®) &ec., p. 457; in the value of
NR (m?) instead of term +3m read —3m. [This correction should have been made in the present Reprint.]
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quadri-conical point, a; points each a cubi-conical point, &c., and of a simple curve
order m; with h, apparent double points, a double curve order m, with h, apparent
double points, and so on; and if moreover, the curves m,, m, intersect in k,, , points,
the curves m,, m; in k, , points, &c.; then writing in general p=3}m(m —1)—h; that
is, py=4m,(my—1)—hy, py=%m,(my—1)—h,, &c, I find that the general condition of
equivalence is
o+ ( 3n— 2)m— 2p
+ 8a, + (12n — 16) m, — 16p,

+ r3$z,.+ 3r*n — 2r%) m, — 2130, - >_ LT 19
T )
- 5’01’2—8]01’3 ...—(3r'“1),01,r
— 28k, ,

e — 8 (Br—38) ks, (s< 1)
and that the general condition of postulation is

o+ (n+1)ym— p
+ 4a, + (3n+ 1) m,— 5p,

4 {,r:r(r-i—l)(r+ 2) a,
+Br@r+)n—3r @ +1)2r—35)]m,
=4[ =D -2)(r-3)(r—4) i=f(n+1)(n+2) (n +3)—4:
+4r(r+1)(2r+1)]p,
- 2k, ,— 3k, 5. — 7k,
— 8y, 5

—%s(;+1) r+1—3%(s+2)}ks,(s<r)

in which formule it is however assumed that the curves have not any actual multiple
points. This implies that if any one of the curves, say m,, break up into two or
more curves, the component curves do not intersect cach other; for, of course, any
such point of intersection would be an actnal double point on the curve m,. I believe,
however, that the formule will extend to this case by admitting for s the value s=r;
viz.,, if we suppose the curve m, to be the aggregate of the two curves m,’, m,” inter-
secting in K, points, then that the corresponding terms in the equivalence-equation are
Brn — 20%) (m,” + m,”") — 2% (p,/ + ') — 2r°K,,
and that those in the postulation-equation are

Br@+l)n-ir@+1)@2r=5)](m +m”)
- r=1)(r=2)(r=3)(r—4)+4r(r+1)(2r+ 1] (o) + p,")
—dr(r+1)(2r+1)K,.
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Let the r-tuple curve consist of three right lines meeting in a point: this is an
actual triple point, and the formule do not apply. But calculating the postulation-
terms by the formula, we have m, =3, p,=33.2- 0, =3; and the terms are

Brr+Dn—=3tr(r+1)(2r=5)]3-4[(r=1)(r-2)(r—-3)(r—4)+4r(r+1)(2r+1)],

which are
=3r(r+1)Bn—4r+4)— 31 (r—1)(r—2)(r—=3)(r—4),
or say
=4r(r+1)(Bn—4r+ 4)+ L (—r* + 107° — 3502 + 50 — 24).

I have found by an independent investigation that this value requires the correction
+ 3 [ — 8+ 3002 — 567 + 24 + 3 (1 — (- 1],
and that the true value of the postulation is
=r@r+1)Bn—4r+6)+3i[ 2°—57 —6r +3{1-(-)r1}],

viz., that this is the number of the conditions to be satisfied that a surface of the
order n may have for an r-tuple curve three given right lines meeting in a point.
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