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BRIEF NOTES

Governing equations for simple continuum feathers

M. SHAHINPOOR (SHIRAZ)

WE ADOPT a special Cosserat material curve as a continuum model for simple feather
structures. We then present the governing equations without presenting the details
of derivation. Finally, a set of linear equations for a simple feather structure is pre-
sented.

1. Introductions

RECeNT technological trends towards mechanisms duplicating the flight of birds and
insects [1] demand dynamical analyses of feather structures. This is required for deter-

FiG. 1. A simple feather structure.

mining the configurational stability of such structures in flight. For some expositions
regarding such analyses the reader is referred to [2]-[10].

The aim of the present work is to adopt a special class of Cosserat material curve as
a continuum model for a simple feather structure (Fig. 1). We shall not present the deriva-
tion of the governing equations in detail since this can be easily found in [12]-[15].

2. Kinematics of a simple feather structure

We consider a simple feather structure a portion of which is shown in Fig. 1. We adopt
a special class of Cosserat material curve for our model such that the generalized coordinate
P = (r, d,, d,) of any material point X on the curve is an ordered set subject to the follow-
ing kinematical constraints:

@.1) d = R(X, 1)d,,
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2.2) d, = R7(X, 1)d,,
(2.3) R = RT, det R+#0,

where r (X, t) is the position vector of each material point X at time ¢, d;(X,1),i=1,2
are two deformable vectors (directors) attached to each point, X, playing the role of pairs

of feather flags, Ris an orthogonal and nonsingular rotation matrix, and the superscript T
denotes the transpose. Note that the family of vectors P = (r, d, d,) generate a nine-di-
mensional vector space & whose vector algebra is discussed by SHAHINPOOR [14, 15]. If o
is an operator in & defined in such a manner that

(2.9) H:.8— 6,
(2.5 Q=AP = (0or+0014; +00243, 00171 +01282+0,4d;, 02d2+0,24d, +00.1),

where 04, 001, 0025 152> 01, 02 are all material line measures and functions of X alone.
We can now easily derive the governing thermodynamical equations as

ox

(2.6) —67+v-(Ex’) =0,
2.7 AP =Tx+XF-M,
(2.8) PyxF+PxM =0,
2.9) e=ToPy+PoM+r+q.y,
(2.10) On—r—q x—0-1¢0 x> 0.

If one introduces a Helmholtz free energy function y = e—67, then Egs. (2.9) and (2.10)
can be combined to yield the Clausius-Duhem inequality:

(2.11) —p—O0n+ToP y+PoM+0-1¢0 > 0.
Constitutive relations

We let y, 5, T, M, q be the dependent constitutive functions. Taking Truesdell’s “equi-
presence principle” [16] we can write

(2.12) v=9P,Py,0,0,0,X),
@.13) 1=, Pyx,0,0,0X),
(2.14) T = T(P,Px,0,0,0,4 X),
(2.15) M = M(P,Px,0,0,04;X),
(2.16) g=3q(P,Pyx,0,0,04;X).

Note that no dependence on P is assumed because the axiom of objectivity eliminates such
constitutive dependences. With the above descriptions the inequality (2.11) expands to

)op

- (M%)'s- (%Ig)e—(%"i) 6.+ 0g)0.x > 0.

(2.17) ( -*—_6-"';)015+(Mﬁ 23

P«
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We require that the inequality (2.17) hold for all arbitrary variations in f’, o f', ﬁ, B X-
We then find that

(2.18) Tl W 0P ., el

—_—————_— =

i) 2

Py’ P 00 0, x
(2.19) - (n+ -‘36%) 0+6-160 5 > 0.

If we assume that thermodynamic equilibrium is achieved where the temperature is uniform

throughout the body and is constantin time, i.e.f = 0 x = 0, for all X and ¢, then it imme-
diately follows from Eqgs. (2.18), and the inequality (2.19) that

!
(2.20) nle = "6‘_:;’ gls =0,
on
-2 =,
2.21) 3,
(2.22) _ o) Lg% 5o,
00 x|, 30 g
oq
-1 4
(2.23) 0 sl >0

where | implies at equilibrium.
Similarly, we can define a thermodynamical steady state situation such that 6 = 0
for all X and 7. Thus we are led to the inequality

(224) B_lqrsse_x = 0.

One may use more sophisticated entropy principles (MULLER [17], GREEN and Laws [18])
and arrive at slightly different constitutive relations.
The constitutive functions finally take the form

(2.29) v =9@,Px,0;X),
(2.26) T = T(P, P x,0;X),
2.27) M = M(P, P4, 0; X),
(2.28) n = 7P, Py,0,0y,0;X),
(2.29) q=q®,Py,0,0x,0;X).
Note that if

(2.30) f=fP,Pyx,0,0x,0;X),
2.31) g = 2(P, x,¥,P0x0;X),

are arbitrary twice difterentiable tunctions satisfying

2.32) —fB+g0.x >0,
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then we can write from the inequalities (2.19) and (2.32)

(2.33) n= —_‘a%lp— +f— 019"1‘329.)::
(2.34) 0-1g = g+b,0+b,0 4,
(2.35) a =0, b,20, a,+b, =0.
If there exists a differential constraint of the form
(2.36) @, 0P+ D, 0 P+B,0+®,0+Bs0, =0,
then
oy

(2.37) T= Ei)} +Ad,
(2.38) M= 6%_ + AP,
(2.39) ( 5 ¥ z¢3)e+ (0-1g6,%) =0

dy _ oy _ oy
(2.40) ¥ 2 0, e A®, =0, %05 —iDs =0.

Finally, we present here equations corresponding to a linearized model:
v = 1/,C, P4+ C,P2 4+ C;PoP 4,
T = C,P x+C;P,
M = G,P x+C,P,
Ul =f—alfi+a;9_x,
0-'q = g+b,0+b,0 x,
HP = C,Pyx+CsPx+XF—CsP x+C,P,

where Cy, C,, C;, a,, a,, b, b, are material constants.
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