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Scattering of an elastic wave from a heterogeneous material
U. BAHR (DRESDEN) and B. GAMBIN (WARSZAWA)

GENERALLY a behaviour of heterogeneous material must be described by effective material
parameters depending on the propagation vector and by effective boundary conditions. Hence,
most important, the wave equation must be changed in the vicinity of the boundary. These
facts will be demonstrated by means of a simple scalar wave where the medium differs slightly
from homogeneous one.

W ogolnosci, zachowanie si¢ niejednorodnego oérodka musi by¢ opisane przez efektywne pa-
rametry materialowe zalezace od wektora falowego oraz przez efektywne warunki brzegowe.
Oprocz tego, w poblizu brzegu ofrodka réwnanie falowe musi mie¢ inng postac niz we wnetrzu.
Te fakty beda zilustrowane na przykladzie prostej fali skalarnej, propagujacej si¢ przez ofro-
dek stabo-niejednorodny.

B ofuiem ciiyuae, nosefieHHe HEOAHOPOHON cpeabl onpefenserca 3heKTHBHEIMU MapaMer-
paMH MaTepHana, KOTOpble 3aBRCAT OT BOJIHOBOIO BeKTOpa, H 3¢ ¢EeKTHBHLIMH KpPaeBbIMH
ycnoBuAMu. Bonee Toro, B OKpeCTHOCTH rpaHmMIlL] BOJTHOBOE YPABHEHHE HOJDKHO HMETh HPYTrod
BHJI, YeM JUIA TOMIH MaTepuana. DT (aKThl NMOKA3aHBLI HA MPHMEPe PACTIPOCTPaHEHMA CKa-
NAPHOH BONMHBI B crnabo HeoJHOpPOMHOM cpene.

1. Introduction

IN ORDER to examine the problem of wave scattering from a heterogeneous material, we
compare the typical length parameters. This is a question of the wave-length 4, given by
the wave number k, and the length / characterizing the extension of the heterogeneities.
These heterogeneities may be, for instance, inclusions or the perfect crystals comprising
a polycrystal. If the relation k/ < 1 holds, the material may be described by means of
effective material constants calculated by a perturbation procedure [1] or by the self-consist-
ent solution of an inclusion problem [2], or at least bounds may be given for these con-
stants [3].

In the case / ~ 4, the reflection and transmission coefficients depend on the propagation
constant k. The heterogeneous medium must be described by effective material parameters
depending on k, but that does not suffice. There exists a surface layer having a thickness
of order /, in which the wave equation is changed completely and the boundary conditions
are quite different from the usual ones.

All these effects are of the same order of magnitude and they can be disregarded if,
and only if, k! is sufficiently small. In order to demonstrate this fact, we use, in the interest
of simplicity, a scalar model equation. It has been shown in [5, 6] that the surface layer
must be taken into account in a medium with refractive index fluctuations. But media of this
type effective boundary conditions present no problems; the random operator is not a
differentional one, as in our case (cf. Sect. 2), so that the boundary conditions for average
field are of the same type as usual ones.
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The propagation of scalar wave u(r) in an inhomogeneous linear elastic medium may
be governed by the Eq.

(1.1) ew?u(r, w)+ -aa;-_f'(r)—g—u(r, w) =0,

where  denotes a given frequency, g—constant mass density, and ¢(r) denotes
a material parameter, which is a random function of positions.

We consider the reflection of a wave coming from homogeneous material at a hetero-
geneous semi-space with plane surface, assuming that the propagation vector k, of the
incident wave is perpendicular to the surface.

i‘_-.
Co clr)
homogeneous heterogeneous
malerial material
x=0 x=

Using a tempered Heaviside function 0,(x), the boundary conditions are implicitly
contained in the wave equation (1.1) (see Sect. 2). If the fluctuations of the material para-
meter ¢(r) are small, an ensemble average leads to an equation for the mean field:

(1.2) e u(r, m))+%fdr’c."(r, r')%(u(r', w)) = 0.

This equation is of the same type as the equation of a certain model of non-local elasticity
[7]. In the case where x > [, the kernel becomes dependent on the difference r—r’ if the
material is statistically homogeneous; thus, for x > I we may write

i) J‘ d
. i ’ S i ’ i
(1.3) 0™ ule, )+ 5 | d¥'calt—1) 5 Cu(r', @)) = 0.
Now, we seek a plane-wave solution (u) = D e of (1.2), and obtain
00+ 2 o) -Gy = 0

al' eff fr, ar ]
where
(1.4) Corter)) = [ A7 Cogglr—1") e -0
The material should be described by an effective material parameter c.(k) depending

on the propagation constant k. But in the other regions, called surface layers, the integral
equation (1.2) must be considered.
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We compare three cases.
1. For kI < 1, the propagation of the mean field {u) behaves in the same manner as
propagation in a homogeneous material c(0).

Co ‘ Cerr(0).
2. Disregarding the surface layer, the material property is given by c.q(k)
Co \ Cerr(K).

Here, the reflection and transmission-coefficient, respectively, are given by:
]/C_o = V’Cenﬂ‘)
]/co + V cene(k)
2V
(1.6) D(k) = —%
I/c_o + V'Ceff (k)

3. Taking into account the surface layer, we have two homogeneous materials with

(1.5) R(k) =

Co

Surface layer

the parameters ¢, and c.(k), respectively. These materials are connected by a layer in
which occurs the change of the behaviour of the materials.
The coefficients R.(k) and D (k) will be discussed for the special cases

3) Cp = <C>s

b) co <4C).
We apply this restriction because in these cases, the given Fourier transform of the Green
functions occurring can be easily transformed into the physical space.

2. Derivation of the effective equation

The wave u is the solution of the Eq. (1.1), which can be rewritten in the form:

Lu=0,
where

2.1) L= gw’-{-%'&(r)% and ¢(r) = co+ (c(r)—co)0,(x).
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The function 6,(x) is a tempered Heaviside function:

Oe(x) Be(x)=0 x<0

Be(x)=1 Xx2E

i
I
i
E
€ x

In the range 0 < x < ¢, 0,(x) is an arbitrary function of class C'. The parameter ¢ is very
small compared with the extension of the heterogeneities

e <l,
so that terms ¢/l or ke can be disregarded. Then, examination of (2.1) shows:
2.2 ux=0,y,2) =u(x =¢,y,2)

and integrating Eq. (2.1) over a small volume

1
i
I
L]
1
|

£

0 X
we obtain, disregarding terms of the order &
(2.3) co—g—u(x y,2) = c(r)-a—u(x ¥, 2)
8x " lece 0x T |y

In usual notations the boundary conditions are:

u(x = -—-0,}’, Z) = H(I o +0.}’, Z),

24

d d
coau(x,y,z) = c(r)-a;u(x,y,z)

x=+0

In order to derive the effective equation, the operator L is split into two parts
(2.5) L={Ly+L,
the averaged operator (L) and the fluctuating part

x= -0

(2.6) L' = E"i-(c(r)—(ic>)f.?.(x)% with (L") =0.

Thus the wave equation is:

2.7 {Lyu = (LY (uy— (L'u—{L'u)).
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By means of the averaging operator M
ML'u = {L'u),

we have:

(2.8) (Lyu = {Ly{u)—(1-M)L'u.
Now, a Green’s function g(r, r’) is used which is defined by
(2.9 (Lyg(x,r') =d(-r).

Here 4 is the Dirac delta function. The homogeneous solution must be so chosen that
for x < 0 and x > x', g describes outgoing waves only. When ¢, = {c), the solution
of (2.9)is [1]:

efklr—r'l
(2.10) 8. 7)) = g(r=r) = —
Here, the propagation constant is

/e _/e
k= -aw_.'l/@)w.

The formal solution of (2.8) now reads

.11) u=(1+g*(1=M)L) Xu).

Our aim is to find an equation for {u)

@12) Luiiy = 0.

Application of L to both sides of (2.11) yields together with (2.1):

(2.13) Lu=L(l+g+=(1-M)L) *u) =0.

Taking the expected value of (2.13), we obtain

.19 Ly = (L(1+g* (1- ML),

When (L) = 0 is used from (2.6) and O(L'®) is omitted, (2.14) becomes:
(2.15) Loy = {(L)—{L'g= L").

Substituting (2.15) into (2.12) and rewriting all terms explicitly yields our main equation
for (u)

(216)  gu(u+-o (o (<) — 0, (0) )

- %ﬂ,(x) f dr’ (‘aa‘r" (s r')) gi,—6,(x’)<(c(r)—(c'))(f—‘(l")""<f>)) %@ = 0.

This procedure is quite general [1].
In order to simplify (2.16), it will be convenient to introduce the correlation function
K(r—r'), defined by

@.17) (e*aK (r—r) = {(c@®)—L))(c®)-<{D))
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with the small parame.er
_ Le®—<ed) (c@- (C))>
e)?
Because of the statistical homogeneity assumed, the correlation function depends only
on the distance r—r’, and o does not depend on r. For explicit calculations, the simple

[r—r'|

(2.18)

correlation function K(r—r’) = K([r—r'|) = exp ( s ) is assumed to have the length /

characterizing the extension of the heterogeneities. In what follows, we specify our con-
siderations to a mean wave depending on x only. Thus (2.16) goes over to

Q0+ (eat ()= e0)0u(R) o <,
(2.19)
a2 ey [ ar (a% ¢(r, r')) 2 0.00)KG—1) sy = 0.

The fact that (2.19) is an equation for a field (&> in a medium with a boundary is recognized
by 6.(x), and in general also, by g(r, r').

Now we shall seek the solution of (2.19) far from the boundary in the interior of the
right half space. Here, the Green’s functioen is given by (2.10), and we have to put6,(x) = 1,
together with 6,(x’) = 1, in view of the rapid decrease of the correlation function. Then
for large x, (2.19) becomes

(2.20)
d d ] i) i) i)
2 kil il e L Z Le Fckull i e — Sl s
80Xy + (e 5= 5 (e>? [ d ( ——g(ir r'n) S K(—1) 2 Cuy = 0.
The asymptotic solution is a plane wave:
(2.21) {u) = Dy e*ar®.

Substituting (2.21) into (2.20) yields the following equation for the propagation con-
stant kg

NKi d 0 xr—x
(2 22) gﬂ) (C)ke" + Cﬁkeﬂ(C)z f d'b' ('a-; g(‘r— r I)) 'a? K(r— l") 3}7 eu'"( ) = 0.

Let us introduce the abbreviation
(2.23) (c)fdr ( g(r, r)) P 0,(x)K (r—r")e* =0 = J(x),

ith k, =1/ -2
Wi <>m

We disregard terms of the order o?, which is consistent with omitting terms of order
O(L'®). From (2.22) and (2 23) we find:

(2.24) Figy k,( I +; J(co)).
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This effective propagation constant reveals an attenuation of the wave together with an
alteration in phase velocity, the discussion of these effects is given in Sect. 5. The effective
material property c.(k), defined in (1.4), is given by
@25) cen®) = cerelkr) = <) (1—aJ(0)).
Taking into account the asymptotic behaviour of (u), let us use the comprehensive expres-
sion:

ehi¥ e~ R ., x<0,

(2:26) uy = 2)co

Doye*t*+ o —
with &, = ]/ ci P
0

l/ Co+ V(f-')

Here, the plane wave is corrected by a new wave v(x) caused by the kernel of (2.19).
This kernel is not translation invariant near the boundary. The additional term is propor-
tional to the small parameter o, since for « — 0 Eq. (2.19) becomes an usual propagation
equation for two homogeneous media.

We decide on the assumption that o(x) satisfies the condition
.27 lim e~*e*y(x) = 0,

X~ 00

v(x), x>0,

in order to decompose {(u) in a well defined manner for x > 0. The factor
2) ¢
d _,_,—_
V Co+ l/<c>
facile the equations which follow. For the same reason, the following decompositions are
introduced:

(2'28) Defr ( : l/co ) +o ( £ P/fo ) D"

appears in the definition of the additional field, in order to render more

l/"—'o + i/‘-'cu ]/Co + ]/<f-'>
_ Vo1 fcrr) ( 2]/"0 ) R’
@2 e (I/fo+]/€erf f.o. ok I/‘-’n‘l' V(i"') .

The notation ( ). indicates that the usual reflexion and transmission coefficients (1.5)
and (1.6) should be taken up to first order in . From (2.25), we find that the relations

[ 2E ) e (i, V@ )
(2.30) D(k,)——(w—oﬂ/a;)” T Vet Vi \ +]/.co+|/<c) —

_(Veo l/cm) VeV . 2¥% o)
(2 31) R(kr) (‘/CD"""/C&[ - l;co_i_.l/(c) '/CO+I/<C> '/C0+V<C> 2 (w)

hold.

The correction terms in (2.28) to (2.31) vanish if there are two homogeneous semi-
spaces with the material property ¢, and {c) respectively, since in these cases a tends
to zero.
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We have to omit the terms 0(«2) with respect to secular terms in all expressions. This
means that, for instance, the plane wave (2.21) cannot be expanded into a power series
of &, because x is not restricted to small values. But substituting (2.26) and (2.28) into
(2.19), the term which involves the integral becomes

! ! 2 ]/C ikepex’
s fdt (_ B ,')) o B K@E—x }Bx Veot l/a<c> %

1 X # 4 2'/"; . pikepp(x’'—X)
- ol (c)fdr( g(r, r)) - 0,(x")K(r— P)E;l/_%_-‘l:?(c)e* .

Here **1t*'=® jg multiplied by the rapidly decreasing function K(r—r'). For this reason,
the difference [x"— x| may be regarded as being at most of the order /; thus

(233)  etr*lc) f 3 (6% &(r, r')) % 0.(x)K(r—r) = I/cji ?(T P

Using the definition (2.23), the integral part simplifies to

(2.34) S O r— LJ(x),
I/Co 2 g l/("-')'

and the effective equation (2.19) reduces to:

(2.35)

Q0+ (0 + (e = o) — 0,09) o> — 3‘;(“50 \(x) ik, J(x) = 0

This is the equation which we shall now solve.

3. Effective boundary conditions

In view of ¢ < /, the first condition to be fulfilled is the continuity of the wave (1) at
the boundary

(3.1 (W) lxaz0 = {W|x=0
Integration of (2.35) from zero to &, and disregarding terms of order e, yields
d _ d 2;/0
B2 co: <w) s e 25 W . ]/ e > !kr<€>(9 ()J(e)—6,(0)J(0))

here, for continuity we put J(¢) = J(0). From the definition of the tempered Heaviside
function, it follows that 6,(0) = 0 and 6,(¢) = 1; thus, in usual notation, we have

N ik, () J(0).

=% <“>,_+o S

63 agd
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Substituting (2.26) and (2.28)-(2.31) into the boundary conditions (3.1) and (3.3) yields

34 R' = D' +9(0)
and

- VO (]/ A " )
(3.5 D= g S 2(0) + i, 2'(0)+ J(c0) — J(0)).

In (3.5), ©'(0) denotes the derivative of v with respect to x at the point x = 0. From (3.4)
and (3.5), we find the effective reflection and transmission coefficients (2.28) and (2.29)
to be

2V 21/ Ve ‘
3.6 eff = —— — el
G Vot V<o 1/c0+;/<c>“|/co+r<c> {2)

[ <> (0)+—v’(0J+-f(00) J(U)]}

Veo—y <) 2y/¢, Vi : 1
37 Repg = ———F—= J
el VotV arlin Yarlple o

+ [::(0) = ?"— v'(0)—J(0)+ J(O):u :

Here, v(0) and ©'(0) are not known previously and will be calculated in the next section.
In (3.6) and (3.7), and in accordance with (2.30) and (2.31) respectively, there occurs

% J(0). In the brackets, we find the correction caused by the surface layer. The expression

—;— J(o0), and the brackets are multiplied by the same factor. This fact has a consequence

concerning measurement of R,y or D, varying the parameter ¢,. Such measurements do
not lead to decomposition between the influence of c (k) and that of the surface layer.
If ¢y = {c), we have, instead of (3.6) and (3.7):

co={c)
39 Rac =5 {% J(00) + [vw) o v'(O)—J(oo)w(O)]l @

Within the limit ¢, < (c)>, we obtain:

(3.10) D,_.,,—Zl/ o J(oo) u[—l-9(0)+J(oo) 1(0)]}

@3.11) Ry'= —142 <>{1+ J(oo)+oc|:v(0)-———v’(0) J(oo)-i-J(O)]}

Here, the notation as indicates that for the terms in brackets the asymptotic values are
to be taken.
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4. The solution in the surface layer

In order to determine the values 2(0) and ¢'(0) in (3.6)-(3.11), we shall insert (2.26)
into (2.35). With (2.22) and (2.23), the result reads

@1 K-+ - 0 + - ik et*(J(0) — I () = 0.

In view of secular terms, we do not replace k. by k,. The solution of (4.1) for x > 0
turns out to be

@) o= f d'ehers=) L et (1(c0) —J(x)

_ f dx’ u,“(w-x) flefrx’(J(oo) J(x")).

Differentiating both sides of (4.2) twice with respect to x shows that (4.1) is fulfilled.
In order to examine the asymptotic condition (2.27), we look for the asymptotic behav-
iour of J(x)—J(c0). To this end, we define

r ’ 52 I
@3) £, %) = &> [ dyde (m (. r')) K@),
so that (2.23) becomes, omitting terms 0(e),
(4.4) J@) = [ de'fix, x) e,
V]
2

The expression %g(r, r') is not a function, but a distribution [4]. It is defined in prin-
ciple by
4.5) f dt’ (—i g r')) h(¥') = — f dt’ (i g(r r’)) 9 h(r')

doxox' °*’ ox°Y 7 ) ox' ’

We shall treat it with considerable care. First, let us consider the case ¢, = {¢). Then
g(r,x’) is given by (2.10) and f(x, x’) = fo(x—x’) is valid.
In order to make use of (4.5), we rewrite (4.3) with the Dirac é-function in the form
0o " 62 ’r —p' L
(4.6) fm(x—x) = —<C>J.d'( (W;g(r, r ))K(I.' )6(): X ),

which goes over to

@7 folx—x) =< fdf" (aix g(r, l'")) (éi— K(r— r”)) 3(x'—x")

+{c> f a't"(-;; g(r, r")) K(r—r”)ag; o(x' —x").
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The evaluation of the integrals

(4.8) fdy" fdz" («(%— g(r, r”)) (%,,— K(r—r"))
and
(4.9 f dy" f dz" (;%— g(r, r”)) K(@r—r")

is performed by means of the substitution

y=y"'= pcosp,

(4.10) ;
z—2"= psing,

and after the integration with respect to ¢ we put

@.11) r=yo*+(x—x)?
and integrate, if possible, or transform the integrals to
1
e(.f —T r

fdr

x—x|

r

Finally, integration with respect to x" yields:

@12)  folr=x) = 6(x—x’)+zl[—=|:l+2£k!— "‘:x'[ (1+:‘k!)]

e(ik— l!)|x—x'r

(=x)? 0 o 7oAk
| 2 (1~ Gty -2 | j']dr--—;——‘[-
lx— x|

/
nant terms for x &~ x’, are the §-function and the integral with its logarithmic singularity.

For large distance|x —x'|, the function f(x—x’) behaves as exp ( - ) The domi-
The difference J(o0)—J(x') in (4.2) is proportional to exp (- il-) for large x’, so thatv(x)
given in (4.2) fulfils the asymptotic condition (2.27). Because of the exponential decrease as
exp( = i;:) , secular terms do not appear, if we expand v(x) into a power series with respect

to a such that, omitting 0(«2), (4.2) takes the form

CRE N 5
’ L d ) 1 ’ i d i x’ r
o) = 5 xf v el ekt (J(c0) = J(x) = ! dv et =92 giox (J(c0) ~ J(x)).

In the generai case, g(r, r') = g(x, x', y—»', z—2'), we find an expression for the Green
function by means of the Fourier transform with respect to y—)' and z—z'

4.14) 86, %,7,2) = s [ dlydhse-tven(x, ¥, oy, k).

3 Arch. Mech. Stos. 6/77
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With this, and with (2.1), the relation (2.9) takes the form
i PO 0 A
(15) Qg [0+ ()=o) (NG +KZ+ 5—(co+(eD— co)Bu(X)) - = d(x—x).

We observe that this equation yields boundary conditions similar to (2.4)

(4.16) 8(=0,x, ky, k.) = g(+0, X', ky, k).,
08 .
@.17) o AR e

Since we need g(x, x’, y,z) for x’ > 0, the solution of (4.15) fulfilling the boundary

conditions (4.16) and (4.17) proves to be:
X+ (YK —cok! GO o
2kF ey Cokt +eykr 2ikrey ¥

(4.18) §(xs x’s ky) kz) == L] L
2(0)1(: elk'xe-——iklx

| okt +<eokE  20ki<ey

kf =yki—-ki—k? and kf =|/k§—k§—§;",
where the real and imaginary;parts of k¥ and k¥ are not negative for all k, and k.
The first term for x > 0 in (4.18) leads to (2.10); the second cannot be transformed
in a simple manner, but in the case ¢, < {¢) its transformation into the physical space
behaves like

4.19) de =

S x<0.

Here

eikr/ X+ =P+ +2)?
4l )Y G+ XV + -y +(z—2)
or like (2.10), replacing there, however, x—x’ by x+x'. The correction dg is a function

without any singularity in the range x > 0 and x’ > 0. Therefore, the second derivative
in (4.3) is a function not a distribution. From (4.3) and (4.4) it follows that

@20) IO = [ dful—x)0, () s

¥
—{e f dr' (% og(x+x', y—y', z— z’)) K(r—r)0,(x) ekt ),

After substituting r' —r = r’* with —3% = —:lf Fi— , the correction term may be written in
the form

<C> r ’ 1" az P I Iy Hikex'
.21 el ) e dy dz" | 0gQx+x", ", 2") | K(r") e,

In view of K(r') = e 7, the values of x”’, " and z", respectively, are, at most, of the

rH

X' _— ;
order /, so that = is very small for x > /. Now we assume k/ &~ 1 at most; this is consistent
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with application of the perturbation theory, used to arrive at (2.15) from (2.14). Then, the
asymptotic value of dg may be written:

eikr(2x+x")
(4.22) 08 =

T 4nlcy2x”

The result, after integration is that (4.20) bahaves as %, in particular:

[

“2) S s~ 4T 4 falx).

The surface layer is not restricted to the boundary, as in the case ¢, = {c), but its charac-
teristic length is also /. Next we compute v(0) and »'(0) from (4.2): .

o o
1 Cd 1 d
(424 o(0) = a[ dive~thettx % ehei(J(c0) — J()) of delkets 2 trs(J (c0) - J (),
and

i

4.25 2'(0) = 12(' f dxe—*"eff"—‘%—e"‘°ffx(J(oo)—J(x))

i, [ d
3 J dxeikertx yr ekerex(J(00)— J(x)).

+

5. Results

In exploring the example ¢, = {c}, we arrived at the results (3.8), (3.9), where v(0)
and ¢'(0) are given by (4.24) and (4.25), respectively. Here, J(x) is defined by (4.4), with
f(x, x') = fo(x—x") from (4.12) and

[+4]

.1 J(o0) = f dxf, (x)e™*.
A straightforward rearrangement yields:
(52 Degr = 14 % [—;— f dx fo (x)e** — fkf dxxfm(x)e“”"],
surface layer
P ®
(5.3) Rege = —; [—]2— J dxfo(x)e** + _ilf f dxfo (6) (™ — e_ux):l_
_‘m 0

surface layer

3.
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Calculation of (5.2) and (5.3) yields somewhat lengthy expressions which we shall not
write out. We shall give the result up to order (ik/)2. In doing this, f(x) is expanded as

(54 Jo(x) = 3(x)+ —‘fo( )+"'ﬂ' Ni (__) - Gkl /2 ( )

We observe that

(5.5) 1 (%) =

which is to be seen, without any calculation, from (4.3) with (2.10), by evaluting g(r—r’)

into. a power series of k. It will be convenient to introduce %= z. Omitting terms of

0((ikl)®), the effective coefficients D, and R., become:

(56) D= 1+— { f dzfo(z)-}--— (ikl)? f dz(fo(2) + 22 fo(2)) — ikl f dzzfo(z)}

(57)  Rur= { defo(z)+—(fH)’ f d=(f2(2)+221o(2)

ikl f dzzj},(z)+—%—(£kl)32 f dzfo(z)zz}-
0 . 0

But disregarding the surface layer, we find:

69 p=1rglis f d2fo(2) + - Gkl f H1E @)

59) R=2 15+ f d2fo(@) + - Gkl)? .,f SO+

This procedure has removed all the parameters in the integrals; their values are obtained
by comparing (5.4) with (4.12):

[ater=-5. [ @nerro) - - .
b ; .
(5.10) ]
deZfo(z - - f dez? fo(e) = — —.
Thus ' '
6.11) Due = 1+ —;— {%_ i %— ikl -]75- o (;km}
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and
o l
o )1
(5.14) R - F_-Ig 3 (kl)’}

The coeflicients Dy, and D differ one from the other in phase by an amount of the order kl/
while the difference in their absolute values is of order (k/)2. The same applies to R, and R.

In the case ¢, <€ {c¢), we have terms as in (5.11) and (5.12), respectively, and additional
parts resulting from dg. Nevertheless, it is also true that the alteration in the phase is
proportional to k/ and the difference of the absolute values has a factor (k/)2. The physical
importance of this result is as follows: in far as k-dependence of the reflection- and trans-
mission-coefficients must be taken into account, it is necessary to describe heterogeneous
material by the effective material parameters c.,(k) and by effective boundary conditions:
further, the wave equation turns out to be quite different from the usual ones in the
vicinity of the boundary. This is already valid in first order in &/
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