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Equations of steady flow through slightly curved multifilament bundles
A. SZANIAWSKI (WARSZAWA)

A STEADY filtration flow through a multifilament bundle of slightly curved, almost parallel fibres
is considered. The small curvature of fibre lines is due to their high inner longitudinal tension.
The presented equations allow to find pressure and velocity fields and forces acting on fibres.
High, almost constant inner tension, as depending on reological properties of fibres, is not
evaluated here. Fibre lines, assumed in first step as straight lines, may be consecutively determined
in the next step by means of corresponding differential equation. Interesting case of flow through
multifilament bundle, on which particular attention is paid, is the transversal flow. In transversal
flow all longitudinal components of gradients being very small, the filtration relative to the bundle
occurs across fibre lines. The wringing of plane or axisymmetrical convergent bundles is present-
ed as example. The equations describing flow through straight parallel fibres are also presented
as particular case.

Rozpatrywany jest ustalony przeplyw filtracyjny przez wiazke przedzonych widkien, ktérych
slabo zakrzywione linie sa prawie réwnolegle. Warunkiem slabego zakrzywienia wldkien jest
wystarczajaco silne ich napigcie rozciggajacymi sitami wewnetrznymi. Dla danej geometrii i kine-
matyki wigzki wyprowadzone roéwnania pozwalaja kolejno wyznaczyé rozklad ciénien, pole pred-
kosci i pole sit dzialajacych na widkna. Silne, prawie stale napigcie wewnetrzne, jako zalezne
od wlasnosci reologicznych wibkien, nie jest okre$lane w przedstawionym schemacie obliczen.
Linie wibkien, przyjete w pierwszym kroku jako proste, moga by¢ wyznaczane w kolejnym przy-
blizeniu przez zastosowanie okreslajacego je rownania rozniczkowego. Waznym przypadkiem
przeplywu wewnatrz wielowldknowych wiazek jest przeplyw poprzeczny, na ktéry zwrbcono
szczegblng uwage. W przeplywie tym skladowe wzdluzne wszystkich gradientéw stajg sie bardzo
male i przeplyw filtracyjny wzgledem wiazki odbywa sie w kierunku poprzecznym do wibkien.
Jako przyklad rozpatrzono tu wyzymanie plynu z plaskiej i z osiowosymetrycznej, zbieznej
wiazki prostoliniowych wlékien. Przedstawiono réwniez réwnania opisujace przeplyw wewnatrz
wigzki widkien prostoliniowych i réwnoleglych.

PaccmarpuBaeTca ycTaHoBHBINEecs (DHIBTPALMOHHOE TEUEHWE depe3 IYYKH NPAACHHBIX BO-
JIOKOH, KOTOPbIX cnaGo HCKPHMB/IEHHbIE JIMHHM TIOUTH [apaifenbHbl. YcinoBueMm ciaboro
MCKPHBJICHHA BOJIOKOH ABJIAETCA [OCTAaTOYHO CHJIBHOE HMX HaNps)KeHHE DPacTATHBAIOIHMH
BHYTPEHHMMH cunamu. [Ina 3amanHO# reoMeTpHH H KHHEMATHKH ITy4Ka BblBeleHbl YPaBHEHHA,
TO3BOJIAIOIIHE IOCIEOBATEIBHO ONpeNeSuTh pachnpefiefieHHe [aBJieHHii, NoNe CKOpoCcTel
M Mojie CHN AeHCTBYIOIHX Ha BoNoKHAa. CuiIbHOE, ITOYTH I[OCTOAHHOE BHYTPEHHEe Hamps-
YKEHME, KaK 3aBHUCALIlee OT PEOJIOTHYECKHX CBOMCTB BOJIOKOH, HE ONpEeNIfAercs B NpeacTaB-
JIEHHOit cxeme pacueroB. JIMHMH BOJIOKOH, NPHHATHIC B NEPBOM ILUAry KAaK NPAMBIE, MOTYT
ObITh OmpejenieHbl B MOCJIEAOBATENLHOM MPUOJIHIKEHHH ITyTEM NMPHUMEHEHUA ONPENENAIONUIEro
uxX muddepeHunanbHOro ypaBHeHHA. BayKHBIM ciyuaem TeueHMA BHYTPH MHOTOBOJIOKHOBBIX
MYUYKOB SIBJAETCA MNONepeyHoe TeueHue, Ha Kotopoe obpatieHo ocobeHnoe BHuMaHue. B aTom
TEYEHHH INPOMIOJIBHBIE COCTABJIAIOIINE BCEX T'PAaJAMEHTOB CTAHOBATCA OYEHb MalbIMH M uIb-
TPALHOHHOE TEYEHHE IO OTHOLUEHHIO K IIYUKY IIPOMCXOJAMT B IIONEPEeYHOM HANpaBJIEHMH K BO-
nokuam. Kax npumep paccMOTpeHO 3/16Ch BEDKHMAHHE YKUIKOCTH M3 IUIOCKOTO M M3 OCECHM-
METPHYHOrO CXOAALIErocsa NyuKa NPAMOIHHEAHBIX BoNOKOH. IlpencTaBieHs! ToXe ypaBHEHHA
OMHCHIBAIOUIME TEUEHHME BHYTPH NyYKa IPAMONHHEHHBIX M MapajUleNbHBIX BOJIOKOH.

1. Introduction

CHEMICAL fibres, spun in liquid or gaseous environment, undergo hydrodynamic effects
which may influence spinning processes. Very often a large number of almost parallel,
slightly curved, flexible and extensible fibres is spun together in a multifilament bundle,
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the interior of which may be considered as an anisotropic porous deformable medium.
The filtration of the surrounding fluid through such a porous medium is the object of
our interest.

The equations of steady flows of a viscous fluid through arbitrarily curved multifilament
bundles were derived previously [1]. However, their application requires tedious calcula-
tions of terms containing curvilinear coordinates of tensor quantities. In our practically
interesting case of slightly curved bundles, these calculations may be simplified and we
will present them below. '

Taking into account all assumptions defining the considered model of multifilament
bundles [1], we will assume additionally that the deviations of fibre lines from parallel
straight lines are very small. Consequently, introducing a small parameter ¢ < 1, we
will Assume that the longitudinal derivatives of functions characterizing the geometry of
fibres lines are small and of higher order with respect to &. Only the lowest order approxima-
tion shall be taken into account.

2. General equations

Flows of a viscous incompressible fluid through a multifilament bundle of incompressible
but flexible and extensible fibres separated one from another by the surrounding fluid
were considered previously [1] and now we will present briefly the obtained general equa-
tions. The equations are presented in two coordinate systems: Cartesian x', x?, x*, or
curvilinear s°, s, s2, (Fig. 1), related one to another by the transformation

@1 X = xi(s% s, s?), i=1,2,3, x3=2x°

which allows to find its Jacobian J = det(dx'/ds*) and the coordinates of the metric
tensor gy, or g'* in both reference frames. Equations (2.1) describe simultaneously the fibre
lines: s° being the fibre length and dx/ds° the unit vector tangent to a fibre.

| x7
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Fic. 1.

To determine the geometry, the kinematics and the permeability of the interior of
a bundle, further information is needed. In steady motion the velocity o' = v(dx'/ds°)
of fibres should be tangent to them, so only one scalar quantity characterizes here the
velocity field. The porosity (1 — ¢) is characterized by the ratio @ of fibre volume to bundle
volume. The porosity, or the quantity ¢, is the main parameter determining the non-
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dimensional filtration tensor F", with the main axes directed along and across fibre lines.
The inner structure of a bundle is characterized not only by ¢ but also by the area S of
the transversal section of the bundle per one fibre. We will also introduce the tensor

ox™ ox"

2
(2.2) Hy = gu+ T-¢ o Skm8in 55" B0

characterizing the geometry of the bundle.
The laws of conservation of the number and volume of fibres

(23) J{S = F(sl’ 52)’ QJSD = Qf(slssz)s

give the restrictions imposed on S and v along fibre lines.

The surrounding fluid with the density o and the viscosity coefficient x flows through
the bundle with an absolute filtration velocity # in the fixed reference frame. The relative
filtration velocity w' in the reference frame moving with fibres is determined by the relation

(2.4 w = v —(1—@)o' = u'— (1 —¢)v(dx'/ds°).

In the filtration theory a fundamental role is played by Darcy’s law, stating the linear
relation between the relative filtration velocity w' and the gradient of piezometric pressure
V.(p—p) where p is the pressure and p is the static distribution of pressure due to the po-
tential body force f*. In our case of a deformable porous medium composed of extensible
and fiexible fibres not contacting one with another, the linear relation between the relative
filtration velocity w' and the resistance force acting on the medium was found [1] in a more
general form:

. S . . . F] ax* y
(2.5 W= — ;-F"[Vf(pw)-(p*p)Hu 5a5° («pS 330)] V5 = of*,

with an additional term taking into account the deformation of fibres. For parallel, straight,
cylindrical fibres this term disappears and the inner filtration is described by a “classical”
Darcy’s law.

Also in our considerations the filtration law (2.5) plays a fundamental role and introduc-
ing it into the continuity equation for the fluid V,u* = 0, we obtain the main equation

Fit ad ox* da(vS)
(2.6) v,{ 5 [SV(p ~p)—(p—P)Hu 5 Fro (@S aso):” = "850850’

which allows to find the pressure field for given characteristics of the bundle. Using then
the momentum equations for the fluid and for the fibres

@7) & = —opS/ - SV (-P)+ 5 (ps o)
d ox*
(2] gne

we may consecutively determine the force g* acting on a unity length of the fibre and
the inner tension T (g, is the density of fibre material). It should be emphasized however
that the geometry of fibre lines is not arbitrary here, because Egs. (2.8) should be
fulfilled by x'(s°, s, 5?) (2.1).

2%
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The above equations are presented in an invariant form but, to apply them; we must
choose a reference frame not always convenient to perform calculations. In the case of
slightly curved fibres it is easier to transform these equations to a form convenient for
analysis. Also in practical applications this case is the most important.

3. Filtration flow through slightly curved fibre lines

Let us choose for our particular case a Cartesian system of coordinates x> = x°, x!, x?,
with the x%-axis almost parallel to all fibres (Fig. 1). In this reference frame the fibre lines
equations (2.1) may be presented in the form ()

x% = 5s%—eb(o,5',5%), o=2e° e<I1,
x* = 5“(0'931; 52)9 a=1,2,

where s°, s!, s2 may be considered as a curvilinear system of coordinates with the trans-
formation matrix

G3.1)

R S 3

Frk € ast’ € Os2

ax! o&! o0& o0&t

22 ol %P H
o8 o8 282

L - o 257

In our approximation the coordinate s° is equal to the fibre length and we will require
that it should also be quasi-orthogonal to other coordinate lines s* (o = 1, 2), according
to

oxt ox* =1+0(s“), n=0,
Bk 350 35" = | 0@, n=1,2.

Taking into account these conditions we obtain
508 _ ael (552 )"
o i
I3 ff_’_aétﬁi,aﬁ
ds* = 8o 8* ' do és*’

The Jacobian J of the three-dimensional transformation of variables (2.1) here becomes
almost equal to the Jacobian j of the two-dimensional transformation (3.1),

(3.3)

|

a=1,2.

; . ox*
(3.4) J=j+0(?), j= det(_ﬁ!s_ﬂ)’ a,f=1,2.

() By means of Latin letter indices we will denote coordinates in three-dimentional space x/
(i =0,1,2). Also another notation, a Greek letter shall be simultaneously used for two-dimensional
space x® or 5% (x = 1,2), the coordinates in the x°—direction being considered as scalars.
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The geometrical interpretation of the parameter ¢ is very simple. If we introduce the
curvature of fibre line

1 28! 2 9282 2
T l/[ (60’)2] ¥ [(60’)’] ’

we find that the ratio of the fibre length s° = o/e to the curvature radius R is of the order
&:5°/R = 0(¢). As only the lowest order approximation is the object of our interest, the
higher order terms with respect to ¢ shall be omitted in further considerations.

The Cartesian coordinates of the metric tensor obviously form a diagonal unit matrix.
In the curvilinear system s°, s, s2, we obtain for them in our approximation

1, 0 0 1, 0 0
g = |0 g*=|0 ,
|| gas il I g*8||
(3.5) 0 ! 0
_oeae o L, 1| Em —n
85 = 35 358 T st 057’ T g ‘—

8215 811
g =j '

For the unit vector dx'/ds° tangent to fibres and for the curvature vector d2x'/(ds°)?

we find in the x°, x!, x? frame:

_ax_'—Hl 3651 6652‘
6 0 — ) ‘_'a_: _a_ AL
(3.6x) o 7 T
9%x , 0% , 028 , 0283
@92 ~ || 7% @02 ¢ e’ © oy
and in the s°, 5!, s2 frame:
oxt
%9 =1, 0, 0|,
i _a_z_él_ a!él 6251 _‘?352
(3.65) st (30)* (oY @97’ @o)?
——— = —— O’ s =
(659 o8t og? o8 o
852’ o5t ost’ ast

To describe tensor quantities we may use either the Cartesian x°, x*, x2 or the curvi-
linear s°, s, s? coordinate system. As the local anisotropy of the bundle is determined
by fibre lines geometry, we will use prevailably the curvilinear reference frame s°, s, 52

In this curvilinear reference frame we find

1/(1-¢), 0,0 |
3. Hy = 0
w0 Sl N P
and the filtration tensor F may be presented in the form
Fi, 0,0 |
3.8 F'=|0 i
o o IFg |

where the filtration coefficients along and across fibres are denoted by F, and F, .
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Applying the known rules of tensor calculus, as for instance

i1 S _al - L_i — S a(p—p)
vi[F ;VI(P P)] = ]/E as? l]/g u F Bs!

1 8. S a( — 8 <%
= 76_56[} - gs"p)] l/ 0s* [V’g el i L

osP
_ 9 [sF awe-p) ],y [SFL _,,] SF, & a(p—p)
0s° | u 0s° La Vir-p|+ p jée  8s°
we may transform Eq. (2.6) to the form
o _|SF, a[(1- 90)(p-p)]} SF| oy o] _ 9(S0)
(39) aso{ U (1_99)330 +V u V(P_P) = Sos0

In an analogous way, from Eq. (2.5), we obtain

A iy 201, M=) (P )]
Colmg=wo= = T =g

(3.10)

w = W= —%V“(p—ﬁ), a=1,2.

For given geometry, kinematics and permeability of a bundle, we may determine the
inner filtration flow in the slightly curved fibres approximation by means of Eq. (3.9)
and (3.10). In this approximation all derivatives 8/ds° of geometrical quantities &, &%, j have
been omitted. Other derivatives, as not obligatorily small, are taken into account,

To find the force ¢*, with which the fluid acts on a unit length of fibres, the momentum
equation (2.7) should be used. Neglecting higher order terms, we find its tangent ¢° and
normal ¢* (¢ = 1, 2) components

ll-g)(p—p)] , . O
0 — e FINME B
g= S{ 0s° i as° )’
¢ = S[-V(p-p—e¢f’], a=1,2.
Taking from Eq. (2.8) only the s°-component and eliminating ¢°, we find for the inner
tension in fibres T the following equation:

(3.12) oT _ o[ ol1-9)p) wfa}_

@3.11)

0s° os°

The transversal components of Eq. (2.8) give a differential equation of fibre lines
az o
3.13) (aso)z = (o—o)@Sf*+SV*(p—p), oa=1,2.

Since 9%x*/(8s°)* = £20%£%/(d0)? is very small and the terms on the right hand side
do not vanish with ¢—0, the inner tension 7 should be sufficiently large 7 = 0(¢~?) so
as to maintain the fibres in a slightly curved form. On the other side, from Eq. (3.12), we
obtain 07T/ds° = 0(1) and, consequently, the large tension 7 should be almont constant
T =0 (¢72) = const [1+0(¢?)]. The small curvature 82x*/(8s%? = 0(e?) of extended
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fibres is due, according to Eq. (3.13), either to buoyancy force (p—g,)f*pS4s° or to the
transversal component of the drag force SAs°V*(p—p) = —uw*/F| acting on an ele-
ment of the fibre length As°. However, both forces should be small in comparison with
the tension 7. To fulfil this condition for a bundle of the length and thickness L and b un-
dergoing the pressure difference 4p, two criterial numbers
_ SLAp
=
should be sufficiently small, at least of the order . These numbers characterize the influence
of buoyancy force and pressure difference on the transversal deformation of fibre lines.
It should be stressed that the assumed geometrical form of fibre lines is not arbitrary,
because Eq. (3.1), x* = £%(es%, s', 52) should fulfil the differential equation (3.13). How-
ever, for sufficiently small B and P the deflection of fibre lines would not be very large
and the shape of straight line may be generally taken as the first approximation. Equation
(3.13) could then be used in an iterative scheme to correct the previous approximation
of fibre lines (Egs. (3.1)).
Till now there has been assumed nothing about the coefficient of viscosity u which, in
further considerations, shall always be taken as constant.

(3.14 B=-o)lflpS L, P

4. Transversal filtration flow

4.1. Simplified equations

Till now, by introducing ¢ < 1, we assumed only that the considered bundles were
composed of slightly curved, almost parallel fibres. This assumption concerned the geo-
metrical shape of fibre lines only; no assumption about the rate of stretching or about
the pressure field have been introduced. As a result, all longitudinal derivatives of geo-
metrical quantities d/ds® = ed/do were assumed to be small, but nothing was stated
about the order of d¢/ds® and 8(p—p)/ds°.

During spinning processes two cases are possible. In some particular regions, as in
the vicinity of the spinerette, the longitudinal derivatives of pressure and, often, also the
stretching rate of fibres are very intensive and should not be disregarded. However, other
regions exist, as well regions where these longitudinal derivatives d/ds° are very small and
where further simplifications of equations are admissible. In these regions, according to
Eq. (3.10) w° = 0, the relative filtration flow should be almost perpendicular to the fibre
lines. This particular case of transversal filtration through a bundle shall be the object
of our interest now.

For this case, from Egs. (3.9) to (3.13), neglecting higher derivatives in respect of s°,
we find

SF, _, o | _ 9(Sv)
(4'1) V.: [_#'_V (P_p)] = Sos°?
@2) = (1-g)v, w=—TLyip-p), a=1,2,
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(4.3) q°=0, g = —S[V'(p—p)+egf’l,
o2&
(00)*
These equations describe the transversal filtration flow in slightly curved and slightly
stretched, almost parallel fibres.

@4 T = const = 0(1), = 2 le—e)of +V(p -

4.2. Wringing of convergent bundles

As examples, let us consider plane (Fig. 2) or axisymmetrical (Fig. 3) bundles of con-
vergent fibres moving at the constant speed v through the surrounding fluid, which re-
mains in static equilibrium. The tension T in fibres shall be assumed to be so high that
B = P = 0; straight line approximation of fibre lines is admissible. The fibres are dis-
tributed uniformly across the bundle within the angle 2¢ < 1. The region surrounding
singularity in the intersection of fibre lines, as physically unjustified, will be excluded from
our-considerations.

Fic. 2. FiG. 3.

Let us introduce the Cartesian coordinates x°, x!, x? and, for plane (Fig. 2) or axi-
symmetrical (Fig. 3) cases, cylindrical or spherical reference frames s°, s', s2 respectively,
where es! is the angle of convergence and —1 < s' < 1. In these reference frames the
functions &(g, s*, s?) (3.1); and &*(o, s', s?) (3.1), may be presented in the approximate
form

o £ = os', £ =52 Bl
T 132
(4.3) v 2 ()", & = ags'coss?, &2 = os! sins’} for :.:i-sym e
Afterwards, from Eq. (3.5) we find
1 1
(4.6) 812=81=0, g, = ‘gﬁ = (0)%, 822 = 337 F (Usl)u.

Vg =Jj = o(os'),
and from Eq. (2.3) for v = const we obtain
0,)*+1 N (SO)kn B O/N 1

1
4.7 S=W(~s— =—N (p_TW’
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where
0 plane
4.8) ko= {l for or case,
axi-sym.

and N is the number of fibres per unit angle and per unit length in the plane case or per
unit spherical angle in the axisymmetric case.
Now, Eq. (4.1) and (4.2) d/ds* = 0 for the two-dimensional flow may be reduced to

the form

,ka(p =P _ an()
[( ) “+DF @ \»

(4.9)

F\(9) (p—p)
0 _ _ 1 - L\F) rooy1+k
wW=(-¢)v, u “uN ()=

In static equilibrium, on the boundary s’ = +1 the pressure is equal to the piezometric
pressure p(s°, +1, s2) = p(s°, +1,s?) and the solution of Eq. (4.9) in the reference
frame 59, 5!, 52, is

e uNo  1—(s')?
pP=p 2F.L((P) (50)2+k *

(4.10)

0o 1 s! 2

W=(I1-pv, u'= —v-5, U = 0.
The physical components of filtration velocity are

ul 51

@i = =glo, w = e ot

(=2

stream lines

==

FI1G. 4,
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To give an illustration of the pressure distribution, we will now restrict ourselves to
very rare bundles ¢ < 1, for which [2, 3]:

7T

F]_(q’?) ~ 'gll— (in;l’?--l.S).

For this case, (Fig. 4), a uniform velocity field with parallel straight stream lines is
obtained and the pressure distribution is given by the formula

A2+k(p—5 1—(s1)? N\
R P o s TR o L

Now we may see (Fig. 4) that in the considered case the values of longitudinal components
of the pressure gradient are smaller than those of transversal ones and that the approxima-
tion of transversal flow may here be satisfactorily applied.

5. Uniform bundles composed of straight parallel fibres
5.1. Simplified equations

For the limiting case of infinitely large inner tension, the fibre lines become straight
lines. Now, we will consider particular cases of bundles composed of straight, parallel
fibres distributed uniformly in space. The fibres may eventually be stretching along their
axes in dependence on one variable s° only.

For this case ¢ = 0, the coordinates x° = s° coincide and the transformation x*
= £(s', 5%, a = 1,2, may be eventually used to introduce the more convenient for
calculations cylindrical coordinates s°, s', s2. The area S per one fibre and the flow rate
Q; of fibres should be constant and ¢(x°), v(x°) = Q/[S®(x°)] should depend on x° = s°
only.

On the basis of the additional assumption introduced here, Eq. (3.9) may be reduced
to the form

L0 ald—9)(p—p)

(CRV I LT oF, A-9)(p=p) _ _ nQs¥

(—pow T F, VPPV ESs T (—go®  ~ FSo

The other equations (3.10) to (3.12) remain the same and we will not write them here.
For very rare bundles, ¢ < 1, the filtration coefficients F),, F| may be presented in
the form [3]
1 1

(5.2) F“ = 2F_L = E(lﬂ; — 1.5),

for which Eq. (5.1) may still be reduced to the form

*@=p) | 1o ooar o ¢'(x%) d(p—p)  4muQ;
(5.3) _W +7V¢V (p—p) = "[ ax quy(xo) 2

é 1
p(x )[In ———(P(xo) - 1.5]
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5.1. Homogeneous bundles

In the case of homogeneous bundles, ¢ = const the right hand side in Eq. (5.3) dis-

appears and by corresponding change of coordinates, as for instance x° = ]/fx, we obtain
for pressure the Laplace equation

(5-4) A(p-p) = 0.

The filtration flows through homogeneous bundles in plane and axisymmetric cases
in the vicinity of the spinerette were considered previously [3] to [6] and some of the
obtained results were compared with experiments [7, 8]. For bundles with asymmetric
section the solution of the Laplace equation (5.4) would require numerical methods.

6. Final remarks

The equations presented above with boundary conditions additionally added, allow
us to determine the steady filtration flow through bundles of slightly curved fibres moving
along their axes with the velocity v(s%, s, s?). The fibre lines are defined by a small para-
meter & and by the functions &(g, s*, 5?), §%(0, 5%, s?). The inner structure of the bundle
is determined by giving the area per one fibre S(0, s*, s?) and the porosity 1—¢(0, s!, s?)
in one section s° = 0, other sections s° # 0 being obtained from Eq. (2.3). The permeability
of the bundle is determined by two coefficients F|(¢) and F (¢) along and across fibres,
respectively. To describe anizotropic properties of boundles, a curvilinear system of co-
ordinates 5%, 5!, 5% is introduced, in which all terms should be expressed. Using the curvi-
linear reference frame connected with deformable fibres, we might expect that some diffi-
culties would appear in such problems, in which the geometry of fibres depends strongly
on acting forces. In our cases of slightly curved fibres such interaction between fibres and
the surrounding fluid should be rather weak.

After solving the pressure equation (3.9), we may find from Egs. (3.10) the filtration
velocity field «°, u!, u2, and the forces ¢°, ¢', g2, acting on a unit length of a fibre. It should
not be forgotten that the obtained contravariant vector coordinates in the curvilinear
reference frame are not equal to physical coordinates which may be easily found after-
wards according to known rules of tensor calculus.

The inner tension T in fibres is not determined by the presented model, supplementary
information about the rheological properties of fibres would be needed here. The quasi-
constant large quantity T exerts a great influence on the geometry of fibre lines described
by the differential equation (3.13). This equation states that the functions &(g, 5!, 5?)
(3.1), &(o, 51, 52) (3.1),, defining the geometry of fibre lines, may not be chosen arbitrarily.
They should fulfil the conditions of orthonormalization, Eq. (3.3), and, additionally, the
differential equation (3.13). However, for B € 1, P <€ 1, a straight line shape may be
assumed as a good approximation.

The-assumption of slightly curved fibres is strongly related to the conditions

6.1) B<l, P<l,
imposed on the criterial numbers B and P, Eq. (3.14). To fulfil these conditions and to
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apply the equations presented above, the inner tension T should be sufficiently large in
comparison to other forces acting on fibres. For infinitely high tension T, we obtain the
limiting case B = P = 0, for which the approximation of straight line fibres should be
exact. This limiting case may be explored further as the first step in an iterative scheme of
determining the geometrical shape of fibre lines.

Very often, when all derivatives in respect of s° are negligibly small, it is not necessary
to use the equations of filtration flow in their general form Egs. (3.9), (3.10), because
their simplified form of transversal flow, Egs. (4.1), (4.2) may here give satisfactory approxi-
mation and is much easier to solve. The transversal flow approximation reduces a three-
dimensional problem with three independent variables s°, s, 52 to a solution of the differ-
ential equation (4.1) with two independent variables s', s*, and a given function of s°.
Many practically interesting cases may be solved using the transversal flow approxima-
tion, but in some particular cases, such as the vicinity of the spinerette, the longitudinal
derivatives of pressure should be taken into account.

The obtained equations, either in general or in simplified form for transversal flow,
with properly chosen boundary conditions, allow us to determine approximately many
practically interesting cases of filtration flows in deformable bundles of spun fibres. It
seems that the presented approximation should describe satisfactorily such cases for which
the inner tension is sufficiently high. Knowledge of flow phenomena in multifilament
bundles may allow to study more thoroughly the physico-chemical processes which accom-
pany spinning technology.
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