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Equations of steady flow through slightly curved multifilament bundles 

A. SZANIAWSKI (WARSZAWA) 

A STEADY filtration flow through a multifilament bundle of slightly curved, almost parallel fibres 
is considered. The small curvature of fibre lines is due to their high inner longitudinal tension. 
The presented equations allow to find pressure and velocity fields and forces acting on fibres. 
High, almost constant inner tension, as depending on _reological properties of fibres, is not 
evaluated here. Fibre lines, assumed in first step as straight lines, may be consecutively determined 
in the next step by means of corresponding differential equation. Interesting case of flow through 
multifilament bundle, on which particular attention is paid, is the transversal flow. In transversal 
flow all longitudinal components of gradients being very small, the filtration relative to the bundle 
occurs across fibre lines. The wringing of plane or axisymmetrical convergent bundles is present­
ed as example. The equations describing flow through straight parallel fibres are also presented 
as particular case. 

Rozpatrywany jest ustalony przeplyw filtracyjny przez wictzk~ prz~onych wl6kien, kt6rych 
slabo zakrzywione linie set prawie r6wnolegle. Warunkiem slabego zak.rzywienia wl6kien jest 
wystarczaj(lco silne ich napi~ie rozcictgaj(lcymi silami wewn~trznymi. Dla danej geometrii i kine­
matyki wictzki wyprowadzone r6wnania pozwalaj(l kolejno wyznaczyc rozldad cisnien, pole pr~d­
ko8ci i pole sil dzialaj(lcych na wl6kna. Silne, prawie stale napi~ie wewn~trzne, jako zale:Zne 
od wlasnosci reologicznych wl6kien, nie jest okreslane w przedstawionym schemacie obliczen. 
Linie wl6kien, przyj~te w pierwszym kroku jako proste, mog(l bye wyznaczane w kolejnym przy­
blireniu przez zastosowanie okreslaj(lcego je r6wnania r6zniczkowego. Waznym przypadkiem 
przeplywu wewn(ltrz wielowl6knowych wictzek jest przeplyw poprzeczny, na kt6ry zwr6cono 
szczeg6lnct uwag~. W przeplywie tym skladowe wzdlui:ne wszystkich gradient6w staj(l si~ bardzo 
male i przeplyw filtracyjny wzgl~dem wictzki odbywa si~ w kierunku poprzecznym do wl6kien. 
Jako przyklad rozpatrzono tu wyi:ymanie plynu z plaskiej i z osiowosymetrycznej, zbiemej 
wi(lzki prostoliniowych wl6kien. Przedstawiono r6wnie:Z r6wnania opisuj(lce przeplyw wewncttrz 
wi(lzki wl6kien prostoliniowych i r6wnoleglych. 

PaccMaTpHaaeTc.a ycraHoBHBllleec.a <l>HJibTP31\HOHHoe TeqeHHe qepe3 nyqi<H np.a~eHHbiX ao­
JIOI<OH, I<OTOpbiX CJia6o HCI<pHBJieHHbiC JIHHHH nO~H napaJIJICJibHbl. Y CJIOBHCM Cna6oro 
liCI<pHBneHHH BOnOI<OH HBnHeTCH ~OCT3TOqHo CHnhHOC HX Hanp.R:)I{CHHC paCTHrHBaiOI.l.\HMH 
BHYTPCHHHMH CHnaMH. ,Un.a 3a~3HHOH reoMeTpHH H I<HHeMaTHKH nyqJ<a BbiBC~CHbl ypaBHCHHH, 
no3aon.aiOmHe nocne~oaaTeJibHO onpe~enHTh pacnpe~eneHHe ~aaneHHH, none ci<opocreH: 
H none cun ~ei:t:CTBYIOI.l.\HX Ha aonoi<Ha. CunLHoe, no~H noCTOHHHoe BHYTpeHHee HanpH­
)I{eHHe, Kai< 3aBHCHI.l.\ee OT peonoruqeci<HX CBOHCTB BOnOI<OH, He onpe~enHeTCH B npe~CTaB­
neHHOH CXeMe pacqeTOB. JIHHHH BOnOI<OH, npHHHTble B nepBOM lllary 1<31< npHMbiC, MOryT 
6biTb onpe~eneHbi a nocne~oaaTenLHOM npu6nu)l{eHHH nyTeM npHMeHeHHH onpe~en.aiOmero 
HX ~u<P<PepeHI.\HaJILHoro ypaaHeHHH. Ba)I{HbiM cnyqaeM TeqeHHH BHYTPH MHoroaonoi<HOBbiX 
nyqJ<oB .aan.aeTc.a nonepe~oe TeqeHue, Ha I<oTopoe o6pameHo oco6eHHoe ammaHHe. B 3TOM 
TeqeHHH npo~OnbHble COCTaBnHIOI.l.\He BCeX rpa~HeHTOB CTaHOBHTCH oqem MaJibiMH H <l>Hnb­
Tpal.\HOHHOe TeqeHHe no OTHOIIICHHIO I< nytrny npOHCXO~HT B nonepeqHOM HanpaaneHHH I< BO· 
noi<HaM. Kai< npuMep paccMoTpeHo 3~ecb Bbi)I{HMaHHe )I{H~OCTH H3 nnoci<oro H H3 ocecHM­
MeTpHqHoro CXO~Hl.l.\eroc.a n~a np.R:MonHHCHHbiX BOnOI<OH. Tipe~CTaBnCHbl TO)I{C ypaBHCHHH 
onHCbiBaiOmue TeqeHHe BHYTPH nyqi<a np.aMonHHeHHbiX H napanneni:.HbiX aonoi<oH. 

1. Introduction 

CHEMICAL fibres, spun in liquid or gaseous environment, undergo hydrodynamic effects 
which may influence spinning processes. Very often a large number of almost parallel, 
slightly curved, flexible and extensible fibres is spun together in a multifilament bundle, 
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520 A. SV,NJI\WSKI 

the interior of which may be considered as an anisotropic porous deformable medium. 
The filtration of the surrounding fluid through such a porous medium is the object of 
our interest. 

The equations of steady flows of a viscous fluid through arbitrarily curved multifilament 
bundles were derived previously [1]. However, their application requires tedious calcula­
tions of terms containing curvilinear coordinates of tensor quantities. In our practically 
interesting case of slightly curved bundles, these calculations may be simplified and we 
will present them below. 

Taking into account all assumptions defining the considered model of multifilament 
bundles [1], we will assume additionally that the deviations of fibre lines from parallel 
straight lines are very small. Consequently, introducing a small parameter s ~ 1 ~ we 
will assume that the longitudinal derivatives of functions characterizing the geometry of 
fibres lines are small and of higher order with respect to e. Only the lowest order approxima­
tion shall be taken into account. 

2. General equations 

Flows of a viscous incompressible fluid through a multifilament bundle of incompressible 
but flexible and extensible fibres separated one from another by the surrounding fluid 
were considered previously [I] and now we will present briefly the obtained general equa­
tions. The equations are presented in two coordinate systems: Cartesian x 1

, x 2
, x~, or 

curvilinear s0
, s1

, s2
, (Fig. 1 ), related one to another by the transformation 

(2.1) 

which allows to find its Jacobian J = det(iJxiliJsk) and the coordinates of the metric 
tensor g1" or g1

" in both reference frames. Equations (2.1) describe simultaneously the fibre 
lines: s0 being the fibre length and iJxi I os0 the unit vector tangent to a fibre. 

Pibres 

FIG. 1. 

To determine the geometry, the kinematics and the permeability of the interior of 
a bundle, further information is needed. In steady motion the velocity vi = v( ox1 I os0

) 

of fibres should be tangent to them, so only one scalar quantity characterizes here the 
velocity field. The porosity (1- q;) is characterized by the ratio q; of fibre volume to bundle 
volume. The porosity, or the quantity q;, is the main parameter determining the non-
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.EQUATIONS OF STEA.DY FWW THROUGH SLIGHTLY CURVED MULTIFILA,MENT BUNDLES 521 

dimensional filtration tensor pil, with the main axes directed along and across fibre lines. 
The inner structure of a bundle is characterized not only by cp but also by the area S of 
the transversal section of the bundle, per one fibre. We will also introduce the tensor 

cp ox"' ox" . 
(2.2) Hkl = gkl+ -1 --gkmgl,~~ -cp vS vs 

characterizing the geometry of the bundle. 
The laws of conservation of the number and volume of fibres 

(2.3) 

give the restrictions imposed on S and cpv along fibre lines. 
The surrounding fluid with the density e and the viscosity coefficient # flows through 

the bundle with an absolute filtration velocity ui in the fixed reference frame. The relative 
filtration velocity wi in the reference frame moving with fibres is determined by the relation 

(2.4) 

In the filtration theory a fundamental role is played by Darcy's law, stating the linear 
relation between the relative filtration velocity wi and the gradient of piezometric pressure 
V k(P-p) where p is the pressure and p is the static distribution of pressure due to the po­
tential body force Jk. In our case of a deformable porous medium composed of extensible 
and flexible fibres not contacting one with another, the linear relation between the relative 
filtration velocity wi and the resistance force acting on the medium was found [1] in a more 
general form: 

(2.5) wi =- !_pi'[V,(p-p)-(p-p)Hk,-0- (cps~xk)], Vkfi = efk, 
!-" S os0 os0 

with an additional term taking into account the deformation of fibres. For parallel, straight, 
cylindrical fibres this term disappears and the inner filtration is described by a "classical" 
Darcy's law. 

Also in our considerations the filtration law (2.5) plays a fundamental role and introduc­
ing it into the continuity equation for the fluid Viu1 = 0, we obtain the main equation 

{ 
pu [ 0 0 o ( 'oxk)]j o(vS) 

(2.6) vi --;;- SV,(p-p)-(p- p)Hkl osO q;S osO = SosO ' 

which allows to find the pressure field for given characteristics of the bundle. Using then 
the momentum equations for the fluid and for the fibres 

(2.7) t/ = - erpSJ'- sv•(p-P} + a~o ( pSrp ~~), 

(2.8) o ( oxk) k k 
oso T oii = -elq;Sf - q ' 

we may consecutively determine the force qk acting on a unity length of the fibre and 
the inner tension T (e1 is the density of fibre material). It should be emphasized however 
that the geometry of fibre lines is not arbitrary here, because Eqs. (2.8) should be 
fulfilled by xi(s0 , s1 , s2 ) (2.1 ). 

2* 
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522 A. SZANlA WSKI 

The above equations are presented in an invariant form but, to apply them,- we must 
choose a reference frame not always convenient to perform calculations. In the case of 
slightly curved fibres it is easier to transform these equations to a form convenient for 
analysis. Also in practical applications this case is the most important. 

3. Filtration ftow through slightly curved fibre lines 

Let us choose for our particular case a Cartesian system of coordinates x3 = x0
, x1

, x 2
, 

with the x0-axis almost parallel to all fibres (Fig. 1). In this reference frame the fibre lines 
equations (2.1) may be presented in the forme) 

(3.1) 
x0 = s0 -e~(O', si, s2), (j = ES0, E ~ 1, 

~ = ~«(u, s 1
, s2

), ex= I, 2, 

where s0, si, s2 may be considered as a curvilinear system of coordinates with the trans­
formation matrix 

I-e2 ~ [)~ [)~ 
-eail' -e--

ou ' os2 

(3.2) 
ox1 ()~1 ()~1 ()~1 

osk = E OU ' -os1 ' os2 

()~2 [)~2 ()~2 

E OU ' asc· iJs2 

In our approximation the coordinate s0 is equal to the fibre length and we will require 
that it should also be quasi-orthogonal to other coordinate lines s« (ex = l , 2), according 
to 

. oxi_ oxk _ { I +0(e4
), 

g,k os0 osn - O(e3), 

n = 0, 

n = I, 2. 

Taking into account these conditions, we obtain 

2~ = (~)2 + (ae )2 
00' ou au ' 

(3.3) 

The Jacob,ian J of the three-dimensional transformation of variables (2.1) here becomes 
almost equal to the Jacobian j of the two-dimensional transformation (3.1)2 

(3.4) J = j+ 0( <2
) , j = det ( ~~ ) , a., P = I , 2. 

(') By means of Latin letter indices we will denote coordinates in three-dimentional space x1 

(i = 0, 1, 2). Also another notation, a Greek letter shall be simultaneously used for two-dimensional 
space x« or s« (ex = 1, 2), the coordinates in the x0 -direction being considered as scalars. 
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EQUATIONS OF STEADY FLOW THROUGH SLIGlfrLY CURVED MULTIFIL.t\MENT BUNDLES 523 

The geometrical interpretation of the parameter s is very simple. If we introduce the 
curvature of fibre line 

1 2 .. I[ iP;
1 

]
2 

[ a2e ]2 

R = 
8 V (aa) 2 + (aa) 2 ' 

we find that the ratio of the fibre length s0 = a Is to the curvature radius R is of the order 
s: s0 I R = 0( s ). As only the lowest order approximation is the object of our interest, the 
higher order terms with respect to s' shall be omitted in further considerations. 

The Cartesian coordinates of the metric tensor obviously form a diagonal unit matrix. 
In the curvilinear system s0

, s 1
, s2

, we obtain for them in our approximation 

(3.5) 

1' 0 0 

Ktk = 0 jj ll 
0 KafJ1 

1, 0 0 

glk = ~ 11 g«P jj 

a;l a;l o;2 a;2 
KatJ = as« asP + os« asP' 

g =j2. 

For the unit vector ox1jas0 tangent to fibres and for the curvature vector a2x1f(os0) 2 

we find in the x0 , x 1, x2 frame: 

ox' 11 a;1 a;2 'j 
os0 = 1 ' c oa ' c oa 1 ' 

I ,, 

iJ2x 11 3 iJ2; 2 iJ2;t 2 iJ2;z 'I' 
(aso)z = - s (oa)z ' s (oa)z ' e (oa)z ! 

(3.6x) 

and in the s0
, s 1

, s 2 frame: 

ox1 

osO =Ill, 0, Ojj, 

(3.6s) 
az;l az;2 

(Ba)2 ' (aa}2 

I aze az;z 
(oa) 2 ' (aa)2 

a;1 ae a;l a;z 
os 2 ' os 2 os1 ' os1 

To describe tensor quantities we may use either the Cartesian x0 , xi, x2 or the curvi­
linear s0

, s1
, s2 coordinate system. As the local anisotropy of the bundle is determined 

by fibre lines geotpetry, we will use prevailably the curvilinear reference frame s0 , st, s2 • 

In this curvilinear reference frame we find 

(3.7) 
1/(1-tp), 0, 0 

0 
11 Krz.p 11 0 

and the filtration tensor F" may be presented in the form 

F 11 , 0, 0 
(3.8) F" = ~ 11 F1_g«P 11 ' 

where the filtration coefficients along and across fibres are denoted by F 11 and F j_. 
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Applying the known rules of tensor calculus, as for instance 

v-[Fu S V ( -po)] =_I_~[·;- !_pu o(p-p)] 
1 /i l p yg OS1 t' g ft OS I 

A. SZA.NIA.WSKI 

_ 1 a [ . s o(p- fi) ] 1 a [· 1- s P a(p _ fi) ] - T fJs 0 J--;; F" OS0 + yg os« r g --;; F j_ g« --- iJsP-

= __!__ [ SFjl o(p-p)] +VIZ [SFl_ V«(p- 0)] + e SFII _ _!!_ o(p-p) , 
os0 p. OS0 p. p p. jot:1 os0 

we may transform Eq. (2.6) to the form 

(3.9) _!__{SFj 1 o[(I-cp)(p-p)]}+V [SF1_ V«( _ o)] = o(Sv). 
OS0 fl ( 1 - f{J) 0S0 IZ fl p p S OSO 

In an analogous way, from Eq. (2.5), we obtain 

SR o[(I-cp)(p-p)] 
u0 - (1- cp )v = w0 = - _ll --:---:--::-~-

p. (1- cp) os0 

(3.10) 
SF 1_ «( o) if=#=---V p-p, ex=l,2. 

p. 

For given geometry, kinematics and permeability of a bundle, we may determine the 
inner filtration flow in the slightly curved fibres approximation by means of Eq. (3.9) 
and (3.10). In this approximation all derivatives ojos0 of geometrical quantities~, ~,j have 
been omitted. Other derivatives, as not obligatorily small, are taken into account. 

To find the force qk, with which the fluid acts on a unit length of fibres, the momentum 
equation (2.7) should be used. Neglecting higher order terms, we find its tangent q0 and 
normal q« (ex = I , 2) components 

qo = s{ _ o[(I- cp)(p-fi)J + 0 acp } 
(3. 11) 0S0 p OS0 

' 

q(l = S[-V«(p-p)-ecpf«], ex= I, 2. 

Taking from Eq. (2.8) only the s0-component and eliminating q0
, we find for the inner 

tension in fibres T the following equation: 

(3.I2) ar = 8 { o[(l- cp)p] _ ,+o} 
os0 os0 f!f({JJ • 

The transversal components of Eq. (2.8) give a differential equation of fibre lines 

(3.13) 
iJ2x« 

T (oso)2 = (e-eJ)cpSf«+SV«(p-p), ex= 1, 2. 

Since o2x« f(os 0
)
2 = e2 o2 ~a f(oa)2 is very small and the terms on the right hand side 

do not vanish with e-+ 0, the inner tension T should be sufficiently large T = O(t- 2
) so 

as to maintain the fibres in a slightly curved form. On the other side, from Eq. (3.12), we 
obtain oTjos0 = O(I) and, consequently, the large tension T should be almont constant 
T = 0 (e- 2) = const [I +0(e2)]. The small curvature o2x« f(os 0)

2 = O(e2
) of extended 
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EQUATIONS OF STEADY FLOW THROUGH SLIGHTLY CURVED MULTIFILA,MENT BUNDLES 525 

fibres is due, according to Eq. (3.13), either to buoyancy force ((!- (!J)ff%cpSt1s0 or to the 
transversal component of the drag force St1s0 VaCp-p) = -pwafF_L acting on an ele­
ment of the fibre length LJs0

• However, both forces should be small in comparison with 
the tension T. To fulfil this condition for a bundle of the length and thickness Land b un­
dergoing the pressure difference t1p, two criteria! numbers 

(3.14) p = _SLLJp 
bT ' 

should be sufficiently small, at least of the order e. These numbers characterize the influence 
of buoyancy force and pressure difference on the transversal deformation of fibre lines. 

It should be stressed that the assumed geometrical form of fibre lines is not arbitrary, 
because Eq. (3.1 h xf% = ~a ( t:s0

, s 1 , s2
) should fulfil the differential equation (3.1 3). How­

ever, for sufficiently small B and P the deflection of fibre lines would not be very large 
and the shape of straight line may be generally taken as the first approximation. Equation 
(3.13) could then be used in an iterative scheme to correct the previous approximation 
of fibre lines {Eqs. (3.1)). 

Till now there has been assumed nothing about the coefficient of viscosity p which, in 
further considerations, shall always be taken as constant. 

4. Transversal filtration flow 

4.1. Sin1plified equations 

Till now, by introducing e ~ 1, we assumed only that the considered bundles were 
composed of slightly curved, almost parallel fibres. This assumption concerned the geo­
metrical shape of fibre lines only; no assumption about the rate of stretching or about 
the pressure field have been introduced. As a result, all longitudinal derivatives of geo­
metrical quantities ofos0 = t:ofoa were assumed to be small, but nothing _was stated 
abOUt the Order Of ocpjos0 and o(p-p)jos0

• 

During spinning processes two cases are possible. In some particular regions, as in 
the vicinity of the spinerette, the longitudinal derivatives of pressure and, often, also the 
stretching rate of fibres are very intensive and should not be disregarded. However, other 
regions exist, as well regions where these longitudinal derivatives a I os0 are very small and 
where further sill;lplifications of equations are admissible. In these regions, according to 
Eq. (3._1 0) w0 = 0, the relative filtration flow should be almost perpendicular to the fibre 
lines. This particular case of transversal filtration through a bundle shall be the object 
of our interest now. 

For this case, from Eqs. (3.9) to (3.13), neglecting higher derivatives in respect of s0
, 

we find 

(4.1) V [ SF_L vac _ o)] = o(Sv) 
!l fl p p Sos0 ' 

(4.2) u0 = (1-cp)v, • .a . SF l_ vac 0) u=- - - p-p, 
fl 

<X = 1' 2, 
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(4.3) q0 = 0, q« = -S[V«(p-p)+e<pf«], 

(4.4) e2 T = const = 0(1), (~~: = e~T [(e-e,)<pf«+V«(p-p)). 

These equations describe the transversal filtration flow in slightly curved and slightly 
stretched, almost parallel fibres. 

4.2. Wringing of convergent bundles 

As examples, let us consider plane (Fig. 2) or axisymmetrical (Fig. 3) bundles of con­
vergent fibres moving at the constant speed v through the surrounding fluid, which re­
mains in static equilibrium. The tension T in fibres shall be assumed to be so high that 
B = P = 0; straight line approximation of fibre lines is admissible. The fibres are dis­
tributed uniformly across the bundle within the angle 2e ~ 1. The region surrounding 
singularity in the intersection of fibre lines, as physically unjustified, will be excluded from 
our-considerations. 

FIG. 2. FIG. 3. 

Let us introduce the Cartesian coordinates x0 , x1, x 2 and, for plane (Fig. 2) or axi­
symmetrical (Fig. 3) cases, cylindrical or spherical reference frames s0

, s 1
, s2 respectively, 

where es 1 is the angle of convergence and -1 ~ s 1 ~ I. In these reference frames the 
functions ~(a, s 1

, s 2) (3.1)1 and ~«(a, si, s 2) (3.1h may be presented in the approximate 
form 

(4.5) 

Afterwards, from Eq. (3.5) we find 

(4.6) gi2 = g2t = 0, gu = g.! 1 = (a) 2
, 

Jig= j = a(as 1
)
1

, 

and from Eq. (2.3) for v = const we obtain 

(4.7) S = __!__ (_!!_)k+ I = (sO)k+ 1 
N e N ' 

f 
plane } 

for or. case. 
axt-sym. 

1 ( 1)2k 
g22 = ---u- = as , 

g 
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where 

(4.8) for 
{

plane } 
or. case, 
axt-sym. 

and N is the number of fibres per unit angle and per unit length in the plane case or per 
unit spherical angle in the axisymmetric case. 

Now, Eq. (4.1) and (4.2) 8/8s2 = 0 for the two-dimensional flow may be reduced to 
the form 

a [ 1 k 8(p-p) ] _ p,Nv ( s1 )k 
8sl (s) 8sl -(k+I)Fl_(q;) so (so)2' 

(4.9) 

u0 = (1-q;)v, 

In static equilibrium, on the boundary s 1 = ±I the pressure is equal to the piezometric 
pressure p(s0

, ± 1, s 2
) = p(s0

, ±I, s2
) and the solution of Eq. (4.9) in the reference 

frame s0 , sl, s 2 , is 

0 

p-p= 

(4.10) 

u0 = (1-q;)v, 

p,Nv I- (s1
)

2 

2F j_ (q;) (so)2+k , 

u2 = 0. 

The physical components of filtration velocity are 

(4.1J) u0 = (1-q;)v, 

FIG. 4. 
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To give an illustration of the pressure distribution, we will now restrict ourselves to 
very rare bundles q; ~ 1, for which [2, 3]: 

FL (<p) "" ;:rr; (In ~ -1.5 ). 

For this case, (Fig.- 4), a uniform velocity field with parallel straight stream lines is 
obtained and the pressure distribution is given by the formula 

(4.12) 
Il= _Al+k(p-p)- 1-(s1)2 

47qtNv - (so )2+k[ ( so)l+k ] ' 
A In A -1.5 

A= (Q:N) ,: •. 

Now we may see (Fig. 4) that in the considered case the values of longitudinal components 
of the pressure gradient are smaller than those of transversal ones and that the approxima­
tion of transversal flow may here be satisfactorily applied. 

5. Uniform bundles composed of straight parallel fibres 

S.l. Simplified equations 

For the limiting case of infinitely large inner tension, the fibre lines become straight 
lines. Now, we will consider particular cases of bundles composed of straight, parallel 
fibres distributed uniformly in space. The fibres may eventually be stretching along their 
axes in dependence on one variable s0 only. 

For this case e = 0, the coordinates x 0 = s0 coincide and the transformation X
00 

= ~(s1 , s2
), a = I, 2, may be eventually used to introduce the more convenient for 

calculations cylindrical coordinates s0 , s 1 
, s2

• The area S per one fibre and the flow rate 
Q1 of fibres should be constant and q;(x0

), v(x0
) = Q1 /[Sq;(x0

)] should depend on x 0 = s0 

only. 
On the basis of the additional assumption introduced here, Eq. (3.9) may be reduced 

to the form 

(5.1) _a_ 8[(1-q;)(p-fi)] F1_ V V«( _ o) ~ 8[(1-q;)(p-fi)] __ f-lQfq;' 
ox0 (l-q;)ox0 + Fj, a p p + F,,ox0 (l-q;)ox0 - Fll(Sq;) 2 ' 

The other equations (3.10) to (3.12) remain the same and we will not write them here. 
For very rare bundles, q; ~ 1, the filtration coefficients F 11 , F 1_ may be presented in 

the form [3] 

(5.2) F11 = 2FL = 4~ (In ~ -1.5), 

for which Eq. (5.1) may still be reduced to the form 

(5.3) 
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5.1. Homogeneous bundles 

In the case of homogeneous bundles, cp = const the right hand side in Eq. (5.3) dis­

appears and by corresponding change of coordinates, as for instance x0 = y2x, we obtain 
for pressure the Laplace equation 

(5.4) t1(p-p) = 0. 

The filtration flows through homogeneous bundles in plane and axisymmetric cases 
in the vicinity of the spinerette were considered previously [3] to [6] and some of the 
obtained results were compared with experiments [7, 8]. For bundles with asymmetric 
section the solution of the Laplace equation (5.4) would require numerical methods. 

6. Final remarks 

The equations presented above with boundary conditions additionally added, allow 
us to determine the steady filtration flow through bundles of slightly curved fibres moving 
along their axes with the velocity v(s0

, s1
, s 2

). The fibre lines are defined by a small para­
meter e and by the functions ~(a, s 1 , s 2 ), ~a(a, s 1

, s 2
). The inner structure of the bundle 

is determined by giving the area per one fibre S(O, s 1
, s2

) and the porosity 1- cp(O: s 1 , s 2
) 

in one section s0 = 0, other sections s0 =1: 0 being obtained from Eq. (2.3). The permeability 
of the bundle is determined by two coefficients F

11 
( cp) and F 1_ ( cp) along and across fibres, 

respectively. To describe anizotropic properties of boundles, a curvilinear system of co­
ordinates s0

, s 1
, s 2 is introduced, in which all terms should be expressed. Using the curvi­

linear reference frame connected with deformable fibres, we might expect that some diffi­
culties would appear in such problems, in which the geometry of fibres depends strongly 
on acting forces. In our cases of slightly curved fibres such interaction between fibres and 
the surrounding fluid should be rather weak. 

After solving the pressure equation (3.9), we may find from Eqs. (3.10) the filtration 
velocity field u0

, u1, u2 , and the forces q0 , qt, q2 , acting on a unit length of a fibre. It should 
not be forgotten that the obtained contravariant vector coordinates in the curvilinear 
reference frame are not equal to physical coordinates which may be easily found after­
wards according to known rules of tensor calculus. 

The inner tension Tin fibres is not determined by the presented model, supplementary 
. information about the rheological properties of fibres would be needed here. The quasi­
constant large quantity T exerts a great influence on the geometry of fibre lines described 
by the differential equation (3.13). This equation states that the functions ~(a, s 1

, s 2
) 

(3.1), ~a(a, s1 , s2 ) (3.1h, defining the geometry of fibre lines, may not be chosen arbitrarily. 
They should fulfil the conditions of orthonormalization, Eq. (3.3), and, additionally, the 
differential equation (3.13). However, for B ~ I, P ~ I, a straight line shape may be 
assumed as a good approximation. 

The--assumption of slightly curved fibres is strongly related to the conditions 

(6.1) B~l, P~l, 

imposed on the criterial numbers B and P, Eq. (3.14). To fulfil these conditions and to 
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apply the equations presented above, the inner tension T should be sufficiently large in 
comparison to other forces acting on fibres. For infinitely high tension T, we obtain the 
limiting case B = P = 0, for which the approximation of straight line fibres should be 
exact. This limiting case may be explored further as the first step in an iterative scheme of 
determining the geometrical shape of fibre lines. 

Very often, when all derivatives in respect of s0 are negligibly small, it is not necessary 
to use the equations of filtration flow in their general form Eqs. (3.9), (3.10), because 
their simplified form of transversal flow, Eqs. (4.1), (4.2) may here give satisfactory approxi­
mation and is much easier to solve. The transversal flow approximation reduces a three­
dimensional problem with three independent variables s0

, s 1
, s2 to a solution of the differ­

ential equation (4.1) with two independent variables sl, s2
, and a given function of s 0

• 

Many practically interesting cases may be solved using the transversal flow approxima­
tion, but in some particular cases, such as the vicinity of the spinerette, the longitudinal 
derivatives of pressure should be taken into account. 

The obtained equations, either in general or in simplified form for transversal flow, 
with properly chosen boundary conditions, allow us to determine approximately many 
practically interesting cases of filtration flows in deformable bundles of spun fibres. It 
seems that the presented approximation should describe satisfactorily such cases for which 
the inner tension is sufficiently high. Knowledge of flow phenomena in multifilament 
bundles may allow to study more thoroughly the physico-chemical processes which accom­
pany spinning technology. 
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