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Theory of disclinations in elastic Cosserat media

J. P. NOWACKI (WARSZAWA)

THe conNcePT of disclinations in a micropolar Cosserat medium is exposed in the paper. The
starting point is the surface model of Volterra which determines the disclination by means
of displacement discontinuities at a certain surface o. Green’s functions are used to derive the
general formulae for the displacement u and rotation ¢ fields. The displacement discontinuity
is then modelled by a suitable distribution of body forces and couples at the surface . Transition
from distortions to disclinations is shown and the distortional model of a disclination is construct-
ed. In the concluding section, effective solutions for the displacement u and rotation fields ¢
are derived in the cases of the fundamental types of disclinations.

W pracy przedstawiono koncepcje dysklinacji w ciele mikropolarnym Cosseratéw. Punktem
wyjécia jest powierzchniowy model Volterry, okreslajacy dysklinacje poprzez nieciaglosc prze-
mieszczenia na pewnej powierzchni o. Przy pomocy funkcji Greena znaleziono ogdlne wzory
na pole przemieszczen u i pole obrotéw ¢. Nastepnie wymodelowano nieciaglo$¢ przemiesz-
czenia na powierzchni o poprzez rozklad sit i momentéw masowych na tej powierzchni. Dalszy
ciag pracy po$wiecony jest przejéciu od dystorsji do dysklinacji; utworzono dystorsyjny model
dysklinacji. W ostatniej czeSci wyprowadzono efektywne rozwigzania na pole przemieszczen u
i pole obrotow ¢ dla podstawowych typoéw dysklinacji.

B pabote npencraniieHa KOHIENUUA JHCKIKHALMIT B MukpornionapHom Tene Koccepa. Mexoauoii
TOUKON ABJIAETCA TOBEPXHOCTHasA Mojensk BoneTeppa, onpefendiomas AUCKJIMHALMIO yepes
paspbIB MepeMellleHHA Ha HeKoTopoil moBepxHocTH ¢. [Ipn momoutn dyuxuunu ['puna HalineHb!
obuuue opmyJisl ANA MONA MepeMellieHH U B 110/IA BpallleHuii ¢p. 3aTeM pa3phIB NepeMeLiieHHsA
Ha TOBEPXHOCTH O MOJENHPOBAH uepe3 pacmpefesIeHne CHJI ¥ MacCOBbIX MOMEHTOB Ha 3TOH
noBepxHoct. [IpojomKenue paboThl MOCBAILEHO NMEPEXoAy OT AHCTOPCHHM K JHMCKJIMHALMH;
ofpa3oBaHa JUCTOPCHAsA MOJEJb JHCKIMHAUKK. B mocnenueit wactu paboTh! BeIBeNeHH! adh-
(eKTHBHbIE PELIEHHA [UIA MOJA MEepPeMellieHHIl U M 101 BpallleHHuit ¢ /A OCHOBHBIX THIIOB
JUCKJIMHALMH.

Introduction

IN THE classical theory of elasticity it is assumed that interactions of individual portions
of the medium, the contact interactions, may completely be described by means of the
force-stress vector. This assumption results in describing the deformation of the body
in terms of the symmetric strain and stress tensors.

The model does not comply, however, with experimental results concerning such cases
in which large stress concentrations occur, e.g. in the vicinity of notches or cavities and
holes. Considerable differences may also be observed in high frequency wave propagation
problems and in granular bodies and polymers; this seems to be the result of disregarding
the microstructure of the materials considered.

In order to explain those differences, W. VoiGT [19] introduced in 1887 the notion
of couple-stress vector, in addition to the usual force-stress vector. In 1909 the Cosserat
brothers [20, 21] outlined the complete theory of asymmetric elasticity. A rigid trihedron
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ascribed to any point of the deforming body moves and rotates in the process of deforma-
tion of the medium. The polar medium obtained consists of material elements, each of
which is characterized by six degrees of freedom, and is then used to model the deformation
of the body in terms of asymmetric stress and deformation tensors. The Cosserat theory
has been developed in recent years by R. A. ToupIN [22], A. C. ERINGEN and A. S. SUHUBI
[23], W. GiNTHER [24] and W. Nowack1 [25].

The dislocations and disclinations in Cosserat media were considered in several papers.
The first author who suggested the necessity of applying the Cosserat theory to those
problems was probably E. KRONER [1]. In considering the deformations produced by plastic
torsion he proposed to introduce the couple-stresses into the theory of dislocations.

Further papers in which the Cosserat theory was used were based on a special version
of that theory, and namely on the so-called model with constrained rotations. C. TEoDOSIU
[2] tackled the problem of determining the stresses produced by dislocations. The starting
point of his considerations was the set of non-homogeneous compatibility equations in-
volving the dislocation density tensor. Following the same line of reasoning, M. Misicu
[3] constructed the fundamental conditions of compatibility expressed in terms of stresses
(the generalized Beltrami equations) for the Cosserat media. A particular problem of
determining the stresses produced by dislocations has been solved for the case of a model
with constrained rotations.

Another particular problem was dealt with in the paper by Z. KNEsL and F. SEMEL
[4), and namely the calculation of couple-stresses produced by edge dislocations. Here
also the starting point was the set of compatibility conditions of the plane state of strain.
The equations were reduced to simple (biharmonic and Helmholtz-type) forms by means
of the Airy and Mindlin stress functions.

The fundamental theoretical concept of dislocations in a Cosserat medium was out-
lined by C. A. ERINGEN and W. D. Crauss [5]. It was based on the application of non-
homogeneous compatibility conditions, their right-hand sides containing the dislocation
and disclination density tensors. The concept was then generalized to meromorphic media
by the same authors.

K. H. ANTHONY [7] considered the problem of disclinations in Cosserat media by
following the concept of A.C. Eringen and W. D. Clauss, and discussed the problem
of a screw dislocation. Two-dimensional problems were analyzed by W. Nowack1 [8]
who also started from the non-homogeneous compatibility conditions.

The two types of defects discussed here may also be considered using another method.
In the classical theory of elasticity the Volterra model of defect description is used; it is
expressed as a set of forced deformations on certain surfaces [9-11].

The present paper is aimed at describing the disclinations by means of a Volterra-type
model defined for the Cosserat continuum. The derivation of fundamental equations
will be followed by a number of simple examples involving disclinations of various
types.

The paper combines and generalizes the results obtained in two other papers by the
author [12, 13] on the problem of dislocations in micropolar media. Static problems
will be discussed in this paper and hence the time-dependent terms of all equations will be
disregarded.
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1. The Volterra distortion

Let us consider the doubly-connected body subject to self-stresses. Once the deforma-
tions of that body are known, the displacements and rotations may be derived by the method

given by E. CEsaRrO [28]. Let P(x) be a point at which the displacements #;(x) and rotations
@i(x) are known. The values of #;(x) and @;(x) at another point P(x) are determined by
means of a line integral taken along a continuous and rectifiable curve connecting the

points P and P

P
(L) w() = a@)+ [ du+nb,
:

P
=(X) + &1i (0 — X)) P (%) + f [yui+ exji O — &) 2} Gy + nby,
$

P P
(1.2) @i(x) = @i(X)+ fdgvi+mu,- = @(X)+ f wpdl+nw;,
P B
where
(1.3) b = f(?ﬁ_ekji;;xlk)dcn
¢

f"!id‘ft-

c

(1.4) w;

Here n is the number of revolutions taken along the contour of integration C.
The integrals (1.3), (1.4) have constant values, independent of the position of the
closed contour C which lies within the body and can not be contracted to a single point [14].
Let the displacement and rotation discontinuities occur at the surface o. This surface
is selected in such a way that a cut performed along o renders the body simply-connected.
Let o* and o~ denote the surfaces neighbouring upon o, and P*(x*), P(x), P~ (x~)—the
points lying close to each other and located on the respective surfaces o*, 0, 07

Fic. 1. Fic. 2.
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After performing the cut along o let us write down the Cesaro integrals for the simply-
connected body, P~(x~) and P*(x*) constituting the lower and upper limits of integration,
respectively.

P+ P+

(1.5) it (x*) = uy (x7)+&(xf —x7) i (x7) + f 71— i i 2u) dCi+ x; f &xji %y,
F- P-

P+
(1.6) @t (x*) = i)+ [ auds.
P

Passing with surfaces o*, o~ to the surface o we obtain

xf-=xj, xXj-ox;, xf—-xj-0
and the integrals in Eqs. (1.5) and (1.6) are transformed to the integrals taken over closed
contours

(1.7) ut (xt)—ur (x7) = f(?u—ﬁua Coxey)dC+ x; '{Bm"udﬁ,
c c
(1.8) gt () —or (x7) = § mude.
Cc

Using the formulae (1.3) and (1.4) and denoting by [u;(x)], and [g;(x)], the respective
displacement and rotation discontinuities calculated at points x € ¢, we obtain

(L.9) [ui(x)]), = bi+ eji X0,

(1.10) [9: (0], = .
It is seen that if the surface discontinuities of displacements and rotations are introduced
into a doubly-connected body in the manner shown above, the discontinuities must be
of the forms given by Egs. (1.9) and (1.10).
In the case of Hooke’s bodies, such an operation of introducing the stresses into
a simply-connected body was performed by V. Volterra who called the resulting defect
a distortion.

2. Surface model of dislocation and disclination

Let us consider an elastic micropolar body which is homogeneous, centrosymmetric
and isotropic. A disclination in such a body will be described by discontinuities of the
fields of displacements and rotations on a bounded open surface o (Fig. 3). The discontinui-
ties are given by the following relations:

@1 )], = Bi(X) = b1+ 10 2, (%, — %),
2.2) [p(®)], = 2.

Here b—Burgers vector, 2—Frank vector, Xx—a point on the axis of rotation.
From the conditions of geometric compatibility on the surface of discontinuity [15, 16]

2.3) Viuil, = V,[ul,



THEORY OF DISCLINATIONS IN ELASTIC COSSERAT MEDIA 535

X3

FiG. 3. FiG. 4.

we obtain the following relations for the derivatives of displacements and rotations:
(2.4) [Viuds = £582,,
(2.9) Vi@l = 0,

what yields the conditions of continuity of the force-stress and couple-stress tensors at
the surface of discontinuity

[O}i]o =0, [pid, = 0.
Let us surround the surface o by a closed surface S and denote the region lying outside S
by V. The introduction of the displacement and rotation discontinuities, Eqs. (2.1) and
(2.2), produces in the body the state of deformation characterized by the displacements
u;, rotations g; and stresses oj;, u;;. The displacements and rotations should satisfy in
the region V the generalized Lamé system of equations

(26) Lj;ﬂ;'l‘.Rﬁtp; = 0.
(2.7) Dj;¢i+ Rjiu; = 0.
Here the following notations have been introduced:
Ly = AjpiV, Vs = [A0;,0;5+ (4 ) 855 85+ (— o) 055 6,1V, Vs,
.Dﬁ = B_”,;_,vas‘—‘4ﬂ6u = [ﬁéﬂ, (sj,‘}‘(y‘f‘&) 6?’ 6,1'{' (}’—'S) (51, 3P|]VPV,——40:5U,
R_“ = Zasjpivp;
A, u, @, B, v, € are material constants of the Cosserat medium. The discontinuities (2.1)-(2.5)
play here a role analogous to that of the boundary conditions in a bounded body. It is

moreover required that u—0 and ¢ =0 at x— oo.
In order to solve the above system of equations let us now introduce the Green func-

tions G;,, @;, and (;‘i,,, eﬁ,, for an infinite region. The functions satisfy the corresponding
systems of equations:

(2.8) LjiGin+ Rji Din+ 0ja 3(x—x") = 0,
(2.9) Dy P+ R;iGy =0

3 Arch. Mech. Stos. nr 4/77
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and
(2.10) Ljiéin'f‘Rji‘Din =0,
2.11) Dﬂfﬁm+Rﬁ Gin+ 9jad3(x—x") = 0.

Since the fields u and ¢ are of the class C(?) in the entire region ¥, the following identities
must hold true:

(2.12) ) = [ (%) 85 (x~x)dV(x),
v
@.13) a0 = [ gax) 83(x—x)dV(x).

Consequently, elimination of the Dirac function (2.12), (2.13) by means of Eqgs. (2.8)-(2.11)
and application of the formulae (2.6) and (2.7) yields

214 wu,(x)=— f[AUkl(ulen.lde_ui.ijndSl)]_ fzaeut(“i@n'i‘%cn)dsj
$ §
= J.[Bl‘jk!(?:’t@tu.ldsj_‘Pi.j¢kndsl]:
$
@15 g0 = — [ [AijpiGrn1dS) =, ;CiadS]— [ 20,40t Bra+ 91 Gin) dS;
$ $

- sf [Biju1 (9 Prn,14S; ~ @i, Pra dSD)].
Passing with the surface S to ¢ and using the conditions (2.1)-(2.5), we obtain
216) %) = [ dV(X) [Ajjp1 Gra(X,X)7]1,1(X)
’ — 205 D (X, X)7;:(X") + Bijr DPpa(X, X) O 1(x')],
@217)  @u(x) = f AV(X) [Aij Gea(X, X)7j1,1(X)
’ — 20, Pin (X, X)754(X") + Bijrs Pun(x, X') 0y, (X')].

Here
(2.18) Tu(x) = [ Bi(x)85(x' =) do, (©),
(2.19) 6,(x) = [ 9,6,(x'~8)do, ().

The displacement and rotation fields given by Egs. (2.16) and (2.17) are the fields sought
for. They satisfy the generalized Lamé system of equations within the entire region out-
side the surface o, and the conditions (2.1)-(2.5) on the surface ¢. The formulae for displace-
ments and rotations due to a dislocation is obtained by substituting £ = 0 into Egs.
(2.16)-(2.19):

(2.20) Uy(X) = de(x’) [Aijs Gra (X, X) 71, 1(X") — 2 e ju Prn (X, X) 75(x)],
7 .

Q21 @® = [ aV&) [ Cen(x, XY (X) = 20815 Brn(%, X')71(X)]
v
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where

222) ) = by [ 03¢ =8)do;®).

3. Introduction of fictitious body forces and couples

In the preceding section we considered a homogeneous system of equations in terms
of displacements and rotations with the boundary (discontinuity) conditions on the surface
o. Now we shall try to obtain the results previously derived by solving the non-homogeneous
system of equations written in terms of displacements and rotations; to that end, certain
fictitious body forces and body couples will be used. The forces and couples will be de-
termined by equating the results previously obtained to the displacement and rotation
fields produced by those forces and expressed by means of the Green functions. Let us
solve the following non-homogeneous system of equations:

(31) Lﬂu;+Rﬁtp;+X} == 0;

(3.2) Dj; i+ Rjiu;+Y; = 0.
Apply now the reciprocity theorem for an infinite region,

(3.3) [ X+ vighav = [ Xiu+Yigddv.
Vv 1 4

Under the assumption that
{uf, 1, X1, Y} = {Gm Dy, 0in03(x—x), 0}
we obtain

(3.4) ) = [ (XiGiutYiP)dV(x')
v

and assuming
{“:squa X;n Y;} = {Gl‘m@imosainaJ(x_x’)}
we have

(3.5) 7a®) = [ (X6t Vi Bip)dV (x).
vV

On comparing the formulae (3.4) and (3.5) with Egs. (2.16) and (2.17), we obtain
]

0x;
o

(3.60) Xi = Ayjumnjia = Aiju Bi(x') 83(x’ —¥)do;(%),

(3.7 Yy = Bijl:l@ji.l“"2aaijkﬁji

0
ox;

= Buu

[ Qi35 doy @)~ 22015 [ Bx)3,(x Dy @

The fields of displacements u and rotations ¢ are now derived by solving the non-
homogeneous system of Eqgs. (3.1) and (3.2) in which the body forces X and body couples Y
are given by Egs. (3.6) and (3.7).

3*



538 J. P. NowACKI

The system of Eqs. (3.1) and (3.2) may also be written as

(3.8) Aipa Vi, i+ Aijaix,j = 0,
3.9 Biju?‘rk.j‘l‘ZG'!Eijk?jn+Bukr§lk.j+2°‘3:jk’_}'jk =0.
Here

Yik = U1 —EmPi> %k = P

and use has been made of the identities 4;;,; = Auij, Biju = Buij-
In the entire region the equilibrium conditions must be satisfied,

(3.10) gji,j =0,
(3.11) &ijk O+ i, g = 0

and hence we obtain the following relations between the fields of force-stresses o;; and
couple-stresses y;;, and the fields of strains y;; and torsion-flexure deformations z;;:

(3.12) 0ji = AijuVu+ Aija e,
(3.13) i = Bijuru+ Biju O

4. Distortional model of dislocation and disclination

Let us consider an infinite elastic body containing the initial distortions y;;, #;. If

. 4 3 & A Y
the elastic deformations produced by y;;, #; are denoted by y;;, #;;, then the complete
deformations may be written in the form

4.1) Yii = }'5,«:+§’ja. %ji = &Ji"';ﬂ'
Stresses o;;, u;; are given by the formulae

4.2) 0 = Ay Yi— AP
(4.3) #ji = Bijaar— Bijia Xk -

The deformations y;;, »;; may be expressed in terms of the displacements u; and rota-
tions g;,

4.4 Vii = Ui j—EkjiPrs  %ji = Pu,j-

Substituting the expressions (4.4) into Egs. (4.2) and (4.3) and then into the equations of
equilibrium

4.5 gjij =0,

(4.6) &k Ot i,y = 0

the non-homogeneous system of equations is obtained

4.7) Lju;+Ru@; = AijaaPie.is

4.8) Dji?’_('f‘Rji“j = Bljkl;‘Ik.J‘l'zusilk?lk-

Let us introduce the following notations for the right-hand terms of Eqs. (4.7) and (4.8):
4.9) = AijuPu.; = Xt,

(4.10) = Biju¥,j—20emPu = YF.
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Using the reciprocity theorem for distortions and following the way of reasoning of
the preceding section we obtain

@11 = [ (X} Gt YD)V,
v

(4.12) o= [ (X2Gt YD)V
v

Let us now compare the formulae for displacements and rotations, Egs. (4.11) and
(4.12), and for the force- and couple-stresses, Eqs. (4.2) and (4.3), in the distortional
model, with the corresponding formulae (3.4), (3.5) and (3.12), (3.13) obtained by introduc-
ing the fictitious body forces and body couples. It is readily seen that they are identical
(i.e. all of them represent the solutions of the problem of dislocations and disclinations)
provided

(4.13) Pux) = —i(x) = — [ B(x)05(x'~%)do, (%),

(4.14) #i(x) = —Ou(x) = — [ 2:65(x' —8)do; ().

Thus the dislocations and disclinations have been modelled by means of the distortions
described by Eqs. (4.13) and (4.14). Inserting Egs. (4.9) and (4.10) into the formulae (4.11)
and (4.12), we obtain

415 ukx) = - I[Ai;'kt!;jt.:(x')ckn(x, x’)
v
— 2084 Y ji(X') Pun(X, X') + Bijuaji, 1 (X) Ppan(x, X)]dV(X'),
@16)  7u®) = — [ [ jisx) Gealx, X')
v

== 2“5511;‘}?'1;(7‘!) ékn(xy X')+ Biju?zﬂ.l(x')ékn(x: x)]dv(x’).
Integration by parts and substitution of the following Green functions [17]

A 2 At p
G;, = —BH [(5_,,,57 R m;V_,-V,, R]

o 5 erhh=1) . e
+4:m(a+,u) [f VJ-V,.( R Oim R |’

1 e~Ril_]
Dy = — T sﬂJPVP(T)’
i I Rl |
Gju= — gasnjpvp(“"_ﬁ‘"‘)’
& 1 e—RI_1 1 e~RIh— g=RIl pta e Rl
D om e g g e Wi o
in 167 V’V"( R )+ 1672 VJV"( R )+ Tomaui® RO
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yields the formulae

1 ,, . 1 .
(4.17) "n(x) = -ﬁ'j? f[?j”R-JPP+y"jR-PDJ_ﬁ R-Hj’jyjp
Vv
+ ——l; R un?’jjldV(X)+ e f?'ﬁ[’ T in—8 :6;1dV

1 o
~San Vf"Ji[(?+8)8u:p1”,,J+(y—s)s.,jpf_,,]dV,

l o
(4.13) q:a,,(x) = —m‘ f}’j,‘ [(‘u+ot)s,;pf‘p}+(p—a)e,,_,-pf_p,
Vv

1
+s,ﬁ(yw—af)',,,.+s,,ﬁﬁ;_a.9]dl/+ ¢ P o J‘{xﬂy(p!f-’ al) i+ foz % E ,
v

+ % [(y+e), Q.+ (}’*5)5".'19-1]} av.
Here
e~RI_1 e kil e Rih—1
= R » Y R : . R 2
o _ i . wtdgte
g’ =F F, Y= m’ 2 4,““ ?
A2 = r+8 R = [(x—xp) (= x)IM2.

4o ’
In the case of Hooke’s body (« = 0) we obtain the well-known result

1 . o 1
4.19) u(x) = B f [?J»R.Jpp"‘?uR.np g ?Jp 'wr]d
V

1
(4.20) on(X) = Tsn}k V;u.

Equations (4.13), (4.14) and (4.17), (4.18) are useful in considering certain particular cases
of dislocations and disclinations in a micropolar medium.

5. Examples

In this section the displacement and rotation fields will be derived for several simple
cases of disclinations; let us rewrite Egs. (4.13) and (4.14) in the following form:
(.1) P = — 0(0) {by+ e1qr Lo(x1 — -;Cr)} s
(5.2) g = — ()2
with the notation

4(0) = [ 8:x' -0 dor(®).

Let us assume for the surface of discontinuity the plane x; x5 at negative values of x3 (x;
= 0, xj < 0) characterized by the normal vector directed towards negative x5, n = [0, —1,
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0]. The axis of rotation passes through the origin of the coordinate system. Then do,
= —d{,dl;, while

0 w0
8:0) = [:(x' —Qydoa®) = — [ 8(xi—L)dti0(xs) [ o(xi—Ls)dls =
= —H(-x})8(x}),
H(~-x3) denoting the Heaviside function is defined as follows:
) 0
H(_‘xl) = I
Let us observe that the only non-vanishing components of the distortion tensors y;; and
#j; in Egs. (5.1) and (5.2) are
(5.3) Var = (it e1gr 2y x,) H(— x1)8(x2),
(5-4) % = Sy H(—x1)8(x3).

for x} >0,
for x} <0O.

Q
Qw/

Fi1G. 5. Fi1G. 6.

It is seen that the above expressions may be composed of two parts, one of them
corresponding to the assumption £ = 0 and the other to b = 0. The first part is due to
a dislocation; it'was discussed in the paper [12] and it is not necessary to repeat the deriva-
tions here. Let us rather pass to the second part, that is to the assumption b = 0. Consider
the case shown in Fig. 6.

The assumption 2; = 2, = 0, 2; # 0 yields the following equations:
(5.5) V21 = P23 =0, 22 = Q3x1 H(—x})d(x3),
(5.6) May = #22 =0, %3 = 23 H(—x1)3(x3).
After substituting the results in Eqs. (4.17) and (4.18) we obtain

o 2 2
L B A R )

U = u

4mpu 0x; 0x,
— Qi(y+e) | 02 x. a
U, = “2—347 ox2 [x:(fz“ll)l—';—: fz"'g;z—(‘rz_ll) ’
(5.7) uy = 0,
9"1 = 0:
?’3 el 0:




542 J. P. NOwWACKI

Here
Iy = =lnr, L =Ky(r/l), Is= Ko(r/h),
X2 ? =
I, = —x(Inr—1)—x,arctg -2, I5 = | Ko(F/Dac,,
1 —0o

r= [+, T = [ —C0)2+ 3],
K, (z) is the modified Bessel function of the third kind (McDonald function). Displacements
U, , u, have the form

- 25| v=1)2 X3

u = _“in_{T—v— x,(lnr—l)+xzarctg-x—l~],
6.8 Q 1/2

e el | ¥R e X2

U, = I [ i x;(Inr—1)—x, arctg x;]

and they represent the solution of the problem of disclination in a Hooke’s body.
Let us now consider the case shown in Fig. 7. Here 2, # 0, 2, = Q, = 0 and
hence the only non-vanishing components are
V22 = —XQ-Q,; H(—x7})8(x3),
#21 = 2, H(—x})d(x3).
Substitution of Eqs. (4.17) and (4.18) yields

= _ixs(y+e) o

(5.9

U =u dnp ox2 (I,-1,)
- 2 +e 6
U; = uz+ lx;:::: )[a 3 Us—1y)— 15],

_ = 1 a2
U = ua'l'm[(?“‘s) %, (Iz—fl)—(}"!'”)agus—l'&) ,

2 é
610 gi= g f T L) -a -1~ 5 )

2ua Oxy 0x,
_ Q, y & y—¢ }
¥ = —ﬂ{mw (L —6L)—a(l—1)]+ yre I,
_ I;Ql 6 _
P3 = o= 5}‘;([2 1,).

The displacements u,, u,, u; assume the following values:

i = s |- o o

_ 02, x, XiXa ' ]
(5.11) U, = 27 [2(1_?)’.2 —arctg—xT i

= Q 1-2»
Uy = 2—7: [xzarctg ;1 =) xl(lnr )]

and are the solutions for the disclination of that type in Hooke’s body. Observe that u,
for r = 0 possesses a logarithmic singularity.
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T— G

FiG. 7. FiG. 8.

Let us now finally consider the case illustrated by Fig. 8. Here 2, = 2, =0,

2, # 0 and the non-vanishing tensor components are
P21 = Qx5 H(—x1)d(x3),
(5.12) Y23 = —82,xi H(—x}) 6(x3),
#ay = 2, H(—x1)6(x3).
On substituting these in Eqs. (4.17) and (4.18) we obtain
_ ix3(y+e) 0?

Ui = #i— A m([z—ﬂ),
_- x| (vt+e) 52
_ a
Uy = U3z— 2::;:: B% 2—1),
(5.13) o1 cNu(h—L)—a(l,—1 i I;—1
. Y= T cx,u axz L’-‘ y—DL)—a(l,—1)]+ 3 hz(‘,' 1)
+ d
T ox z[("a Jr13)——”3 f'.r)] $ra 6 [x2 (12— !1)]—72_ s}a
72 = ——%—{ ) A - -,r)1+—‘3 o)y ,
- 4n | au 6 3 e s ST 0x, | pad? 1s
7] i)
+"m'(fs—fd.) “xzﬁ“g(fa"fl) )
_ 2;x3 d o+ p
¥s = 45.,_.# (u +a) z U L)+ (p—a) o, (—1)— 2 Is¢,
where
; r 2 rz X2 3 2
ls = rd':‘K“ L L =- xi+ 5 lnr—xlxzarctgx—-q-fxl,
- 1

— u —
Iy = de1§|Ko(:r), Iy = detCIKo(‘;;)-
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The displacements ,, u,, #; have the following form:
- Q,x, | X, Xy X3
u = —275 arc tg'?l- + _2_(_1—_——1))!‘2 s

_ 2,x X3
5.14 = 23 __. 22
(5.14) iy = Gty [(1 2)nr+ =3 ]

- _ Qle X 1—2» _
Uz = "-2-;— [al"c tgx—l + m (lnr l)]

and represent the solutions for that type of disclination in Hooke’s body. Observe that
@; and u, exhibit logarithmic singularities for r = 0.
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