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Microstresses in homogenization
W.S. BARANSKI (LOD?)

THE PAPER concerns the problem of homogenization of nonlinearly elastic, periodic compo-
sites within the framework of the geometrically linear theory. It is assumed that the elasticity
moduli of the considered composite are upper and lower bounded. A new proof of the cor-
responding homogenization theorem is given. Strongly convergent approximations for defor-
mations and stresses are found. The proposed method of homogenization analysis aims also
at making clear the mechanical principles of the homogenization theory. This is achieved by
adapting the old concepts of macroscopic and microscopic mechanical fields.

Praca dotyczy zagadnienia homogenizacji nieliniowo sprgzystego, periodycznego kompozytu
rozpatrywanego w ramach teorii geometrycznie liniowej. Zatozono, ze moduly sprezystosci

rozpatrywanego kompozytu sg ograniczone z gory i dolu. Podano nowy dowod odpowiedniego

twierdzenia homogenizacyjnego. Znaleziono silnie zbiezne przyblizenia odksztalcen i naprgzen.

Zaproponowana metoda analizy homogenizacyjnej ma rowniez na celu wyjasnienie mechanicz-

nych podstaw teorii homogenizacji. Jest to osiagniete poprzez zaadaptowanie starych koncepcji

wielkos$ci makro- i mikroskopowych.

PaboTa KacaeTcsi 3aJaud TOMOTEHHS3ALHUKM HEJIMHEHHO YIPYToro, MEPHOAMYECKOTO KOMIIO3HTA
PaccMaTpHBacMOro B pamMKax IeOMETPHYECKH JHHeHHoH TeopuH. IlpeamnosioykeHo, 4To mo-
AyJIM YyOPYLOCTH PaccMaTPHMBAaeMOro KOMIIO3HMTAa OrPaHHMYEHbl cBepxy M cHu3y. Ilpuseaeno
HOBOE JIOKa3aTeJIbCTBO COOTBETCTBYIOIIEH TOMOTeHH3aLMOHHOM Teopembl. Haiimenbl cunbHO
cxopANmecs npHOMMKenus: aecdopmannid M HanpshkeHuit. [IpeanoskeHHBIH MeTOJ romore-
HHU3AIHOHHOI'0 aHaJIu3a HMMEET TOKe IeJIbI0 BBLISICHEHHC MEXaHHUYECKHX OCHOB TEOpHHM I'OMO-
TeHHU3alluH. 31'0 AOCTHTHYTO ITyTEM HpHCHOCOGHCHHH CTapbIX HOHHCHHMﬁ MaKpo- U MHKpo-
CKOMNMUUECKNX BEJINYHH.

1. Introduction

RECENT developments in the field of the homogenization theory have made clear the
mathematical foundations for a deterministic approach to the mechanics of composite
materials. The central problem in this theory is to find an accurate description of the
macroscopic behaviour of nonhomogeneous materials. For its basic concept we refer
to [5, 13, 25, 26]. Nowadays the theory develops in many different directions and success-
fully violates the range of linear problems [2, 3, 6, 7,9, 10, 12, 17, 20, 22-24, 26, 27],
Despite of this, there is still a lot of unsolved questions concerning, first of all, the effects
of degradation of the material. Moreover, there has not been a satisfactory answer as yet
to the question of finding strongly convergent approximations for nonlinear problems.
The present paper aims at establishing a new method of homogenization analysis,
which is as general as possible, and at examining the method in the case of physically
nonlinear elasticity. The considered particular case, analysed previously by Suquet under
somehow stronger assumptions, is relatively simple as compared with the generality of
the method which seems to be applicable to manv other problems including quasi-static
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and dynamic problems for viscous, plastic, cracked and degradating composites. The
case of physically nonlinear elasticity has been chosen for simplicity of the presentation.

The proposed method of homogenization analysis rests on the concept of microfields.
To present it, let us consider a composite occupying a domain of size 1, and having peri-
odic structure of dimension &. Obviously, the solution of any mechanical problem corre-
sponding to this composite depends on ¢ and on /, and can be denoted by s,;. From the
practical point of view we are interested in the analysis of s, when ¢ is very small with
respect to /. It is realized in the homogenization theory by introducing the concept of
macroscopic fields defined as the limit of s, as & tends to zero with a fixed /. It has oc-
curred that such defined macroscopic fields can be successfully analysed for many mechanical
and physical problems, providing us with a mathematically clear concept of macroscopic
properties of composite materials. However, the analysis is somehow artificial from the
point of view of mechanics. To make it more natural, we shall define microscopic fields
as the limit of s,; as 1 converges to infinity with a fixed ¢; this hence also realizes the po-
stulate that the structure of nonhomogenity is fine. However, the picture obtained in such
a realization is quite different. The material remains nonhomogeneous, the body becomes
infinite, and the most important fact — the limit depends essentially on the choice of the
fixed point of a collection of mappings extending the domain occupied by the composite
to the whole Euclidean space. Hence we should define the microscopic fields as functions

/s

of two variables.
For certain technical resons we shall not use the large parameter /. Instead of this,

we shall introduce local coordinate systems {y} by

X =r.,+¢&y
with r, pointing at centres of periodicity cells. We define the microscopic fields as the limit,
as & converges to zero, of the solution s,, considered as functions of local coordinates.

The paper concentrates on the mechanical aspects of the proposed method of homo-
genization analysis restricting the mathematical details to very essential ones. According
to this concept, we shall not present detailed proofs of the obtained results indicating
only the general line of the proceeding.

2. Notation

Let R" denote the n-dimensional Fuclidean space with the inner product denoted by
the dot -, and the norm denoted by | |. We shall denote the vectors in R" by x, y, z. Let
S" denote the space of symmetric second order tensors on R" with the same notation for
the inner product and for the norm.

Let Y = (y,, ..., yn) be a given set of n linearly independent vectors in R". We assume
the set Y to be uniquely determined by the structure of the considered composite. We
define the basic cell

P, {Zn'a,yi:zle}—l/z, 12[ for i=1,..,n},
i=1



MICROSTRESSES IN HOMOGENIZATION : i

and the basic net
N=N,= {Zﬂ.iy[:/'l,- =0,+41,+2,... for i=1, n}
iz

A function f defined on R" will be called Y-periodic if
fx+y) =f(x), forall yeN, ae xeR"
For a scalar « > 0, a vector x € R" and subsets 4, B of R" we define

od = {ay:yed}, x+A4= {x+y:yed},
A+B = {y+z:ye A, ze B},

For each subset 4 of R" we denote its Lebesgue measure by means A.

In the paper we shall deal with several Banach spaces. In general, we shall denote
the norm on a Banach space X by || ; X||. However, in the case of the space L2(£2; W)
of square integrable mappings of a domain £ in R”" into a finite dimensional Hilbert space
. W, we shall use simply || ||, for the corresponding norm. We shall simplify also the no-
tation for the norm on the space H'(£2; W) of square integrable mappings of 2cR"
into a finite dimensional Hilbert space W with square integrable first order distributional
derivatives denoting the norm by || |[[g;;.

Finally, we shall present the notation used for locally convex function spaces. Let
us assume that X(2) is L*(2; W) or H'(£2; W) with a finite dimensional Hilbert space
W and some 2<R". Then

X\0e(R") = {f; R* = W:f|, € X(w) for all open bounded w = R"},
L2 X,0e(RM) = {f; Q%X R") = W:f g0 € L2(2; X(w))

for all open bounded w in R"}.

3. Variational formulation of the equilibrium problem

Let U*, called here a manifold of admissible displacement fields, denote the set of
displacement fields from H'(£2; R") satisfying a given system of kinematical boundary
conditions imposed on the considered family of composites with 2c R" being a fixed
domain. ,

We define the space of admissible displacement variations V“d,: {u—v:u,ve U™}

Let us consider the following set of equilibrium problems:

Pl,- For give £¢€]0, 1], b, e L*(2; R") and t e L¥92; R") find:

(i) displacement vector field u, € U*,
(ii) deformation tensor field E, e L*(2; S"),
(iii) stress tensor field 7. e L2(£2; S™) such that

3.1 E(x) = Du,(x) = sym(Vu,(x)), se xef,
(3.2) T.(x) = T°(x, E(x)) = 7 (x/e, E(x)), ae. xef,
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(3.3) [ Do Todx = [v-tds+ [o-bdx, Voer*,
Q o2 Q
where V denotes the distributional gradient on £,

We assume that the domain £, the manifold of admissible displacement fields U/*9,
the constitutive function &, the boundary tractions ¢ and the volume forces b, fulfill
the following assumptions:

Al. The domain £ is open and bounded in R", has modified cone property ([1] p. 91)
and has finite perimeter ([15] p. 474).

A2. The manifold U*® of admissible displacement fields is a closed linear manifold in
H'(£2; R") such that the induced space of admissible displacement variations V** includes
H(2; R").

A3. The constitutive function 7 (y, E) is Y-periodic and measurable in y for all fixed
EeS™

Ad4. There exist positive constants ¢; and ¢, such that

(E2—Ey) [T (v, E;)=T (v, E))] 2 ¢\ |E,— Ey|?
and
T (y, E;)—T (v, E1)| € c,|E;—E||, VE ,E,eS" ae yeR"
A5. The field 7 (-, 0) of initial stresses belongs to L.(R"; S™).

A6. For each ¢ €] 0, 1] the work done by external forces vanishes on the space of admis-
sible rigid body displacement variations, i.e.

fv-dex+ j‘v- tds =0
2 a0
for all ¥ from
N* = {peV*:Dv =0}
A7. There exists p > n, p > 2 such that
b—-> b, in LP(Q2;R"Y) weakly as &— 0.

Using the standard methods of analysis of quasi-linear elliptic equations [8, 19, 21],
one can prove that the assumptions A1-A6 are sufficient for the existence of solutions
for P}. Obviously, the solutions in deformations and stresses are unique, and the displace-
ment solutions are the unique modulo N*¢. To avoid this drawback, we introduce the
factor space ([28] p. 59)

HY(Q2; RM)IN* = {& = v+N*:ve H'(Q; R")}
with the factor norm

181172 = inf [foflg.

Consequently, the displacement solution #, can be considered as defined uniquely.
Moreover, the solutions can be proved to be bounded, i.e.

34 max(||ul|g;1, [1Eellas [ Tello) < ¢

with ¢ independent of e.
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In the further analysis we shall consider the deformation and the stress fields as defined
on the whole R" with zero value outside 2. The displacement fields #, will also be con-
sidered as defined on R" but with values outside £ obtained by applying an appropriate
continuous extension operator. The existence of such an operation is stated in the Calderon
extension theorem ([1] p. 91).

4. Macroscopic fields

From the practical point of view we are interested in the analysis of solutions of P!
in the case of small &. Hence, it is interesting to analyse the limit of solutions of P} as ¢
tends to zero. Therefore it is rational to define the macroscopic fields as the appropriate
limits of #,, E,, T,. We shall prove in Sect. 11 that such limits exist in certain weak topolo-
gies. Now we can write only formally

4.1) i, = limy,, E,=IlmE, T,=IlimT,.
e—0 e—=0 =0
However, certain results of the type (4.1) can be deduced now from the boundedness
of the solutions (3.4). Using the weak compactness theorem ([28] p. 126) and the Rellich-
Kondrachov theorem ([1] p. 143), one can extract a subset &, of the interval [0, 1] such
that inf &, = 0 and

i~ o in H'(Q: RMN* weakly and in  L*(Q2; R")/N™ strongly,
“4.2) E.—~ FE, in L*£;8" weakly,
T.—- T, in L*Q;S") weakly as e—-0 in &,.

Furthermore, the limit analysis of the equations (3.1) and (3.3) shows that the weak
limits u,, £y, T, fulfill the equations

Ey = Du, on £,

(4.3) | Dy Tydx = J v bodx+ f@- tds, Vovep™

D o a0
which can be understood as a macroscopic geometric equation and as a macroscopic
virtual work principle.

L

5. Approximation by averaging

In this section we shall present some properties of the method of approximation by
averaging which are essential in our approach to the homogenization procedure.

Let us recall that ¥ = (», ..., y,) denotes the set of n linearly independent vectors in
R" generating the considered family of periodic composites.

Almost everywhere on R" we define a vector-valued function » by the condition

( )_{y if 3 yeN such that (x—))eC,
d is undefined otherwise.

5.1
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Let
(5.2) r.(x) = er(x/e).

Obviously, if ¢ > 0 then r, is eY-periodic.
For f e L?(R") we define its approximation by averaging

(5.3) o) = e meas'C [ f(z) .

r (x)+eC
It is known [4] that such approximation is strongly convergent in L2(R"). Consequent-
ly, if
fo—>fo in L*R" weakly as e—0

then
(5.4) fe™ > fo in L*(R") weakly as e-— 0,
and by virtue of the relations (4.2), and (4.2); we get

E:™ > E, in L?(R";S") weakly
(5.5) and - e .

Te™ > T, in L*(R";S8") weakly as &—-0 in &,.

6. Local fields

We have seen in Sect. 4 that the macroscopic geometric equation and the macroscopic
virtual work principle result directly from the formulation (3.1)-(3.3) of the primary
problem. It should be mentioned here that the macroscopic constitutive equation does
not result directly from the equation (3.2). This is clear because the homogenization
procedure homogenizing the material loses its microstructure. To overcome this difficulty,
we introduce a set of local coordinate systems in such a way that the microstructure of
the material does not vary if it is referred to any of these systems. Mathematical realization
of this concept will be obtained by introducing local fields, i.e. functions of two vector
variables (x, y) € 2* x R"(Q* = Q+42C) such that

wl(x, ) = e u,(r(x)+ey), ae (x,)) EQ*xR,
(6.1) e = y'c 4 [2(Q*; RD"), on 2*x R",

E*(x,y) = E(r.(x)+¢y)
and
T’ (x,y) = T(r(x)+¢y), ae (x,))el*xR,
with
RD = {v; R"— R":Dv = 0}.

The x variable in the condition (5.1) can be understood as a global variable, and the
y variable as a local variable centered at r (x).

In fact, the local fields are deduced from primary fields by a rather simple coordinate
transform. Consequently, the local fields must fulfill certain laws of mechanics resulting
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from the laws (3.1)-(3.3) of the mechanics of primary fields. Indeed, one can show that
the following equations involving the local fields hold:

EF(x, y) = Dil"(x; y)
and
T°(x, ) = T (y, EX(x,y)) if  (rs(x)+ey) €2,

62 [o@ [ Do) T, pdvdx = " [ 9() [0(—rx))/e)- b(2)dzdx
Q Rn o 2

forg € CF(2) and v € CP(R", R") such that (suppp+ eC+ esuppv) < Q2.

Equations (6.2),-(6.2); can be understood as local forms of geometric equations,
constitutive equations and of virtual work principle. However, the local fields have other
properties which will prove to be very useful in our analysis.

First, let us observe that the eY-periodicity of r, implies the result
EX(x, y+z) = E*(x+ez,))
(6'3) and loc ) loc n
TP (x, y+z) = T*(x+ez,y), ae (x,y)ef2*xR VzeN

which can be called quasi-periodicity of local deformations and of local stresses. Next,
from Eq. (5.3) we get
B 5 = meas“CfEi“”(x,y)dy
(6.4) and ©
T2 (x) = meas‘lcf T(x, y)dy, ae xe0¥
C

what indicates equality of appropriate mean values of primary fields and local fields.
Furthermore, the concept of zero extension of E, and T, outside £ implies
(6.5) EX(x,p) = Ti*(x, ) = 0 if  (r(x)+ey) ¢ 2.
Finally, note that as a result of the integral calculus we have
| [ EX(x, ) T'(x, y)dydx = measC [ E,- T,dx
o@* C Q2
and by the relation (3.3) we get the following energetic identity for local fields:

©6.6) [ [ E(x, ) T(x, p)dydx

QcC

~ measC{ [ [Dit- Ty+ (it~ ) bldx+ [ (i1, —i0) - 1|
Q2 an

with a certain arbitrary % € U*®. Consequently, using the standard methods of “a priori”
estimates, we obtain the following, local in the second variable, estimates for local fields:

6.7 max (|[2;°: L*(2*; H'(w; R)/RD")||, [|EXa* s I Tl x) < €()

for all open bounded w in R" with ¢(w) independent of .
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7. Microscopic fields

Formally we define the microscopic fields as limits of local fields, i.e.

(7.1 ii, = lim@’,  E, = limE", T, = limT

&0 e—0 e=0

without precise specification of the topology of convergence. As in Sect. 4 partial results
concerning the problem can be deduced from boundedness (6.7). One can prove that
there exist

e € L* (82%; Hioo(R™; R")[RD"),

El® e L2(2*; L, (R"; S"))  and

T € L* (2%; Li(R"; 57)
such that for all open bounded » = R" there exists a subset &, of &, such that inf &, = 0
and

(1 =) gryw — 0 in L2(Q*; H'(w; R")/RD")  weakly,
(1.2) (B —Ef)|geo— 0 in L2(Q*xw;S") weakly,
(T —TE)grw = 0 in L2 (2xw;S") weakly as  e—0 in &,.

Now we should proceed to the limit analysis of Egs. (6.2)-(6.6) characterizing the
mechanics of local fields. We claim that the result of such analysis is as follows:

(7.3) ElF° = Dul* on fxR",
(7.9 T (x,y) = T (v, Eg°(x, ), ae (x,»)eQ*xR",
(1.5) [ Do) To*(x, »)dy = 0, VoeCE(R;RY), ae xef,
Rﬂ
(7.6) E¢*(x,y+2) = Eg™(x, )
and
1.7 To(x, y+2) = T%(x,y), VzeN, ae (x,))el*xR",
(7.8) Eo(x) = mt:a.s"CfEcl;’C (x, y)dy
C
and
(1.9) To(x) = meas™'C [ T4°(x,p)dy, ae. xe®,
C
(7.10) uyt = E* =T =0, on (@N\QxPR,
(7.11) lim [ [ EX<(x, y). TP(x, y)dydx = measC [ Eo- Todx.
=0 gv © 0

Equations (7.3) and (7.6)-(7.11) follow directly from the previous results. The re-
maining ones require some additional analysis.
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To prove Eq. (7.5), it is sufficient to show that the right hand side of the relation (6.2),
tends to zero. Note that by virtue of the Holder inequality we have

[ 0(G=r@)e)- b.@ldz < | [lo(G=royerrdz) " l.; L2@; R,

o]

But the coordinate transform

y = (—rdx))/e
gives

[e(G-ro)ard = | 00"z < lie; L7 (R R

) e“(!)—rs(x)

Hence the right hand side of the relation (6.2); can be estimated by
e="7llg; LA Q)] [lo; L7 (R"; RO [lbe; L*(2; R)|
and the condition (7.5) follows because by Assumption A7 the sequence b, is bounded
in L” and p > n.
We shall prove Eq. (7.4) in several steps. Let us note that the Y-periodicity of T¢*(x, »)
in y makes the condition (7.5) equivalent to

(712 [ Do(y)- T¥*(x, v)dy = 0, for all ¥ periodic
i
ve HL.(R"; R"), ae. xe£.

Next, let us choose a function 2" € L*(2; H|,.(R"; R™) such that
(7.13) EF(x,y) = Eog(x)+DZ(x,y), ae (x,y)eRxR"

Such a function exists by virtue of Duvaut’s lemma ([20] p. 24 and [14]) and the con-
ditions (7.6) and (7.8). Taking the function Z as a test function in the relation (7.12),
we get

’ Ef*(x,;p) T (x, y)dy = f Ey(x) - TE(x, y)dy = meas CEy(x) - To(x).
C C

Consequently, Eq. (7.11) leads to the identity
(7.14) lim [ fEE'“(x, y) - TR(x, ) dydx = f [[Ele(x,y)- T(x, y)dydx

>0 g ¢ 2c

which enables us to deduce Eq. (7.4) from Eq. (6.2), using the standard arguments [21]
of limit analysis of monotonic constitutive functions.

8. Self-equilibrated periodic deformation state

Let us analyse the set of equations (7.3)-(7.8). It is clear that taking the x variable as
a parameter one can consider this set of equations as a variational formulation of a one-
parameter family of self-equilibrium problems of infinite Y-periodic composite in Y-peri-
odic deformation state with mean deformation prescribed by Eq. (7.8). For our aims it
is convenient to formulate these problems in the following, somehow moregener al form:

3 Arch. Mech. Stos. nr 4/86
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P2. For a given F e S" find
fip € Hioo(R"; R)/RD", EpeL}{.(R";S") and TypeLi (R";S")
such that

(8»1) EF = Dﬁp on Rn,
(8.2 Tr(y) = 7 (v, Ex(»)), ae. yeR,
(8.3) [ Do - Trdy =0, VoecCpE®; R,
R'l
(8.4) [ Epdy = measCF,
C
(8.5 Er is Y-periodic.

As in the previous section we can represent the Y-periodic deformation field Er in the
form
(8.6) Ep=F+D%y on R"

with a certain Y-periodic 2’ € H(R"; R") such that
8.7) [ @rdy = 0.
C

Using again the arguments of Y-periodicity of stress fields, we can formulate the vir-
tual work principle (8.3) in the form

(8.8) va- Trdy = 0, for all Y-periodic ve HL.(R"; R").
C
Consequently, the problem P2 has the following equivalent formulation:
P3. For a given Fe S” find:
Zr€ Hio(R"; R"), EpeLi(R";S") and Ty e Li(R"; S")

such that Egs. (8.2) and (8.6)-(8.8) are fulfilled.

As in the case of the problem PI,, the existence and the uniqueness can easily be
proved. Moreover, it can be shown that the solution-is Lipschitz continuous in F, i.e.
there exists a positive constant ¢ such that

(8.9 max(”vorrl‘“grr,“c;n“EF,_EFlHCsHTF,—Tan)i clF,—F,|, VF,, F,e8"

9. Effective constitutive function

The existence and the uniqueness of solutions for the problem P3 enable us to define
the effective constitutive function 7 °; S” — S” putting

©.1) T(F) = meas™'C [ Tp(y)dy.
C



MICROSTRESSES IN HOMOGENIZATION 379

The Lipschitz continuity of T in F implies Lipschitz continuity of the effective con-
stitutive function, i.e. 3¢ > 0 such that

9.2) | T (Fy)— T*(F,)| < c|F,=F|, VF,F,eS"
Moreover, the assumed monotony of ﬂ’(y, E) in E implies monotony of 7, i.e.
3¢ > 0 such that

(9.3 (F,—F) - [T (F) T ~(F)] > d|lF,—F,|>, VF,F,eS"

10. Homogenized problem

It results from Sects. 8 and 9 that the set of equations (7.3)-(7.9) implies
(10.1) To(x) = T (Eo(x)), ae. xef.

Thus we see that the weak limits #,, E,, T, constitute a solution for the following
equilibrium problem:

P4. For given by € L*(2; R") and t € L*(é2; R") find:

foe U, E,eLl?(R2:5" and T,elL*(R;S"

such that Egs. (4.3) and (10.1) are satisfied.

The problem P4 can be proved to have unique solutions.

11. Homogenization theorems

The uniqueness of solutions for P4 implies that the convergences (4.2) hold with
&, =10, 1]. Hence we have proved the following result:
THEOREM 1. Suppose that the assumptions A1-AT are fulfilled. Then

u,— uy in  H'(Q; RN weakly and in L*(Q2; R")/N*® strongly,
E,— E, in L*(Q;S") weakly and \
T.- T, in L*(2;S8") weakly
as 6> 0 with (u,, E., T,) and (uo, E,, T,) denoting solutions for the problems P} and
P4, respectively B
Next, the uniqueness of solutions for P3 implies that the convergences (7.2) hold
with &, = 10, 1]. Moreover, using the classical energy method, we can prove that these
convergences are locally strong, i.e.
THEOREM 2. Suppose that the assumptions A1-A7T are fulfilled. Then for each open
bounded o in R"
=) e = 0 in L2(2*; H'(w; R")/RD") strongly,
(EX*—EN9)ge,, » 0 in  L*(Q2*xw; S") strongly and
(T — TP e = O in L2(2*xw; S") strongly
as € = 0 with u®°, E¢, T defined by (6.1) and

ugc(x, y) = Eq(®)y+Zem(y), ae (x,p)€ QxR

3%
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Ep°(x, ») = Er,m(). ae. (x,y)efxR
T3 (x, ») = Teuo(¥), ae. (x,y)eQxR
iy = Ep* = Ty =0 on (@) xR,

where (Zgyxy» Eryxys Teyx) denotes the solution for P3 with F = E,(x) R
Theorems 1 and 2 justify our definitions of the macroscopic (4.1) and the microscopic
(7.1) fields. Obviously,
Uy = g, E,=E,, T,.=1T,, on Q,

H, =i E,=EY, T,=TY, on QxR

(11.1)

Furthermore, Theorem 2 provides us with a strongly convergent approximation for
local fields. Consequently, taking into account the clear correspondence between primary
and local fields, it seems that Theorem 2 should give us an opportunity for constructing
strongly convergent approximations for primary fields.

THEOREM 3. Suppose that the assumptions A1-A7 are fulfilled. Then

(E,—EX®)— 0 in L?*(2;S™ strongly,
(T,—T)—> 0 in L*(£2;S") strongly as &—0,
with
EPFP(x) = EP(E™(x), x[e), on L2,
T (x) = TP (E§*(x), x/¢),  on 2
where
EP(F,y) = Ee(y), T°(F,y)=Tr(y)M

The proofs of the considered two convergences are similar. Therefore we shall analyse
only the first one.

Applying the partition

U (E+e0)nQ2
feeN
of £ and using the coordinate transform
x =&+¢ey
on each set (§+eC)NR2, we get
IE~E=®3=¢" Y [ |E*(, )~ E?(ES™©), ) dy

EeeN Cn[(2-8)/e]
< meas~IC||E;**— Eo E§™|| &1 200y xc -

Next, by the triangle inequality we have
(11.2) ||EX*—EP0 Ed*ll(@+ 2¢00xc S ”Eem = E(lx°°”(9+ 26CyxC
+1|Eg* — E? 0 Epllia+ 20cyxc+ IEP© Eg— EP© E§™||(04 20cxc -
The first term of the right hand side of the relation (11.2) converges to zero by virtue
of Theorem 2. For the second term we have '

1
[|Eo*—EFo Eo”(zgusoxc = ||E?(0, ')H[Z(Quec;\nhc

= meas[(2+2:C)\92] [ |E*(0, y)[2dy.
C
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Consequently, the second term converges to zero, because the Lebesgue measure of

[(2+2:C)\ 2] tends to zero by virtue of properties of domains with finite perimeter [15].

The estimate (8.9) implies

[|[E? 0 Eq—EP0 E§™ ||+ 2600xc < € [|Eo—E§™ |4 26c

and the last term converges to zero by the properties of approximation by averaging [4].

Note. The paper was supported by the Polish Academy of Sciences within the Pro-

gram [-23.
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