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Maximization of circumferential opening resultants
Another aspect of the stress approach to mixed mode fracture

A. C. CHRYSAKIS (ATHENS)

A NEW MAGNITUDE, the pair of stress resultants R?, RE along two complementary arcs A DB
AEB of the singular circle (i.e. a small circle centered at the crack tip, Fig. 4) is introduced
and investigated. It is shown that their components RP, RE in direction perpendicular to OB
obtain maxima when OB coincides with the direction #, of crack propagation. On the basis
of this result a new criterion for mixed mode crack propagation is established with an excellent
physical interpretation, as RS, RS are the maxima of the opening force resultants acting on the
singular circle. This is the first “stress criterion” which takes under consideration the complete
stress field around the crack tip .

Wprowadzono i zbadano nowa wielkos¢ charakterystyczng w teorii pekania, mianowicie
par¢ naprezen wypadkowych RP, RE skierowanych wzdluz lukoéw ADB, AEB kola osobliwego
(czyli malego kola o srodku w wierzcholku szczeliny, rys. 4). Pokazano, ze ich skladowe RS, RE
w kierunku prostopadtym do OB osiagaja wartosci maksymalne gdy OB pokrywa si¢ z kierunkiem
propagacji szczeliny #,. Na tej podstawie zbudowano nowe kryterium propagacji szczeliny
o modach mieszanych, charakteryzujace sic doskonaly interpretacja fizyczna, gdyz R i RE
odpowiadaja maksymalnym sitom rozwierajacym dziatajacym na kole osobliwym. Jest to pierwsze
,,kryterium naprezeniowe” uwzgledniajace kompletne pole naprgzenia wokot wierzchotka
szczeliny.

Beemena M McCllejoBaHA HOBasi BEJIMUWHA, XapaKTepHas B TEOPDMH pa3pylIeHHsi, a HMEHHO
napa pesyJIbTHPYIOLMX Hanpsbkenuii RP, R manpasnennsbix Bpons ayr ADB, AEB ocoboro
Kpyra (T. e. MaJIoro Kpyra ¢ LEHTPOM B BepluuHe TpeluuHbl, puc. 4). ITokasano, 4to cocra-
pistionise R, R§ B NepleHAMKY/IpHOM HanpasieHHH K OB JOCTHraroT MaKCHMAJIbHBIX 3Ha-
uenuii, Koraa OB coBnajiaeT ¢ HapaBJIeHHEM PaCIIPOCTPaHeHus TpeluHb! ¢,. Ha aToii ocHo-
Be IIOCTPOEH HOBBIM KPHUTEPHH pacnpoCTpaHeHHs TPEIMHBI CO CMEIIAHHBLIMH MOJIaMH, Xapak-
TEPUSYTOUIHMIACA Xopollieit huanueckoii unTeprperatueil, T. K. R§ 1 R§ 0TBeUalOT MaKCHMalb-
HBIM PACKpPbLIBAIOIIMM CHJIAM, JelcTByIOImMM Ha oco0oM Kpyre. ODTo NEPBbIH ,,KPUTEPHIt
B HANPSHEKEHHSAX', YUHTBHIBAIOIMH MOTHOE IoJle HANPSKEHHS BOKPYT BEPIIMHbBI TPELIMHBI,

1. Introduction

The solution of the problem of mixed mode brittle fracture consists in determining the
direction @, of crack propagation and the load at fracture o* /o ", where o, of" are the
values of external load for which propagation starts in the mixed mode and mode-I con-
figurations respectively. The study of the above problem can be restricted to the model
of the uniaxially loaded inclined crack (Fig. 1) if the theoretical analysis is based on the
singular expressions of stresses, as has been pointed out, among others, by CHRYsAKIS [4].

Two approaches for the solution of the problem have been proposed:

(i) the stress approach by ERDOGAN and SiH [2] in 1963, and

(ii) the energy approach by SiH [3] in 1973.
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Fi1G. 1. Uniaxially-loaded inclined crack.

Both approaches are based on the singular expressions of stresses. In other words, the
investigations take place along the circumference of the singular circle: a circle centered
at the crack tip 0, of radius r small enough, so that the expressions of stresses are restricted
to their singular terms only, but not so small, so that the elastic solution is valid.

The stress approach has been founded on two hypotheses [2]:

(a) The crack tip extension starts at its tip in radial direction.
(b) The crack extension starts in the plane perpendicular to the direction of greatest
tension.

ERpOGAN and SiH [2] implemented hypothesis (b) on the model shown in Fig. 2a:
they considered a polar element (dr, %) on the radial direction OB of the expected, accord-
ing to hypothesis (a), crack extension so that the “tension” which by hypothesis (b)
would cause separation of the material in this element, is the stress component c,. Hence
they proposed 9, to be the direction of maxog,.

The stress approach was identified with the max o, criterion —more precisely, nobody
talked about “stress approach™ as no alternative to the maximization of ¢, was thought
until CHRYSAKIS [4, 5] proposed that hypothesis (b) could also be implemented in the
model shown in Fig. 2b: the elementary areas are considered in pairs, one on arc ADB,
the other on arc 4EB, where OB is again the radial direction of expected propagation.
Then the pairs of stresses (o), o) exert an “opening action” (in the terminology of [4, 5])
or “tension” (in the terminology of hypothesis (b) of [2]), leading to separation of the
elastic material, enclosed in the singular circle, along the radius OB somewhere halfway
between D and E. This model has been applied to the two usual systems of stresses:
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FI1G. 2. Model of crack propagation; (a) for the maxa, criterion, (b) for the maxa, criterion and
(c) for the maxo, criterion.

[419]
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(i) In [4] to the remaining polar components ¢, and t,. The elementary areas were
the polar ones (dr, d¥), the search for extrema of o, gave for each value of f§ two directions
of maxo,, ¥y in arc ADB, ¥ in arc AEB and the direction ¢ of the bisector of the angle
of ¥p, ¥ coincided with the direction &, of propagation given by other criteria and experi-
ments [2, 3]. The same technique was applied to 7,; and again two absolutely maximum
values of 7,, were found at &y, #¢; the coincidence of 95 to ¥, was good except for small
values of . For the determination of load at fracture the projections of o,, 7., on #,—90
were integrated along arc ADB and their projections on #,+90 along arc AEB, giving
the corresponding components of stress resultants along the direction 9, + 90 of the open-
ing forces.

(ii) In [5] the principal stresses were investigated. Two directions of maxo, (o, is the
larger of o,, 0,) were found for each value of f: &, in arc ADB and ¥ in AEB. At these
positions the corresponding angles gp, @ of o, with the x-axis were evaluated and the

F16. 3. Boundary stresses for determining load at fracture.

bisector ¥ of the angle of directions ¢, ¢r was found again to coincide with ¢, (Fig.
2¢). For the determination of load at fracture, the triangular boundary elements were
considered with boundary stresses o,, 7, (Fig. 3). The projections of ¢,, 7, on the direc-
tions #,—90, ¥,+90 were integrated along the arcs ADB, AEB, respectively, giving the
stress resultants R§(¥p), R§(¥s) corresponding to these arcs. In both cases [4, 5] it is
assumed that propagation starts when these “circumferential stress resultants™ of the
mixed mode configuration reach the corresponding value of the mode I configuration —
and this equation determines ¢°"/af".

Thus two new criteria have been established in [4]: the max o, and max]| 7,,| and one
new in [5]: the max ¢, criterion, showing that o, is not the only component whose maximi-
zation can form a basis for the prediction of mixed-mode propagation. The common
point of all the above criteria is that they consider the maximum value (s) of a stress com-
ponent, at one point B in the case of maxa,, at two points D, E in the cases of maxa,,
max | 7,4 |, maxo, and they rely on these isolated stress values for their predictions. But
crack propagation is not due to the action of a certain stress component at one or two
points, but to the action of the complete stress field. If the material is cut along the cir-
cumference of a singular circle and the latter is loaded by the polar stresses which existed
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along this circumference in the infinite plane configuration, then the propagation of the
crack along OB will be due to the stress resultants R®, RE of stresses along arcs ADB,
AEB, respectively (Fig. 4). These remarks bring up the idea of investigating the possibility
to predict crack propagation on the basis of R”, RE, which is the objective of the present
paper.
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F1G. 4. Equilibrium of the singular circle under the action of the circumferential stress resultants.
For reasons of equilibrium it must be:
(L.1) RP(85) = R*(95)

for any value of #5. If RY, RE are the components of R”, RF along ¥ and Rg, R§ the
components along #z+90, then Eq. (1.1) is equivalent to:

(1.1)4 RY(#s) = RE(®5), RE(Ps) = RG(¥5) V.

In this paper it is shown that in the direction ¢ = &, of propagation it is:
(1.2), R3(d,) = maxR3(d5)

and "

(1.2), R2(3,) = 0.

Hence a new criterion can be established on the basis the present results: that of the
maximum circumferential opening resultant in which 4, is a root of dRE(9)/dds =0

or, alternatively, of Eq. (1.2),, while the load at fracture is found by simply evaluating this
stress resultant for ¥4 = 4,.

2. The circumferential stress resultants

As already explained in the Introduction, the model for the study of mixed mode crack
propagation is based on the singular circle. The material enclosed in this circle, already
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separated along radius OA4 by the existing crack, is expected to separate along another
radius OB by the propagating branch of the crack under the “opening action™ exerted
on it by the boundary stresses. The obvious choice for expressing boundary stresses along
a circumference are their polar components, so that the normal boundary stress is ¢, = o,
and the tangential one 7, = 7,5. If one employs Cartesian components, then the expressions
of ¢,, 7, in terms of o,, 0,, 0,, are essentially the transformation formulae of Cartesian
to polar components. Engaging in the [4, 5] usual notation:

s = sin TS\) ¢ = COos (?—) ! = tan ?9)
= *2" > - 2 s — 2 5

2.1)
= sin —@2—) = CosS (n—ﬁ) t, = tan (ﬂ) n=2,3
8, = 7 ) & = 5 ) g > = 2.3 w0
and
sg = sindy, cp = cosdy,
(2'2) B B B B

s, = sind,, ¢, = cosd,

the singular expressions of stresses are [1]

a5} ]/?z—ra = Kyc(1+52)+ Ky s(1 =352,
V2rrt,, = K, sc?+ K, c(1—3s?),

K, = (oV/7a)sin?, K, = (o /za)sinfcosp.

The projection of the force, per unit thickness of the plate, due to o,, on 95+ 90 is
[4]
dp,(#) = + o, sin(d—p) rdd

and, substituting from the expressions (2.1), (2.2) and evaluating the indefinite integral,

3

7 s3 K
(2.9) I/Zr pr(9) = + [‘5 (2K, 55— 6K, cp) + 3 (Ky55+2K,cp)—s(K, s)

5 3
5 CS (2K, cy+ 6K, 55) — C3 (4K, cy+ 7K, 55) + (2K, s,,)] )

Similarly, because of 7,; one finds

ap.s(9) = + 1,9c08(F5— D) rdd
and

7 53 B
(2.5) 1/7 Pro(P) = £ [? (— 2K, 55+ 6K, cp)+ 33— (2K, 55— 5K, cp)+5(K; cp)

5

3
b %‘ (—2K,c5—6K,55) + *63 (K;cg+4K, SB)] .

Adding Egs. (2.4) and (2.5) one finds the indefinite integral representing the combined
action of o, and 7,4:

2.6) ]/ S Po(0) = £ (Kysa—Kzcn) —s(Ky 5= Ko ) = (Ky cat-Ka 52)
+c¢(2K, s5)].
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The upper sign corresponds to #5+90 (arc AEB) and the lower to #3;—90 (arc ADB).
The resultant of these forces for arc ADB is given by the definite integral of Eq. (2.6):

@), RE(0s) = ]/ 7y [P-(@)—p_(~180)) = ]/ o P-(0)
and that of arc AEB:

@7, RE(6;) = ]/ 5 [P+ (180 —p, (9] = — ]/ o P+ (0w

since it is easily seen that p,(+180) = 0.

F1G. 5. Components of boundary stresses along the opening direction %, and the direction of propagation¥,.

Working similarly with the projections along &, one has (Fig. 5):-
(2.8) dq.s(P) = 1,48in(d5— D) rdd,
2.9 dq,($) = o,cos(dg— F)rdd
with the indefinite integral of their sum (dg,+dq.s):

(2.10) % q(®) = —s*(K,cp+K;55) + (K, cg+ K, 55) + 3 (K c5— K, 55) — ¢(2K; ¢)
and resultants along the arcs ADB, AEB, respectively:

RP(B5) = q(¥5)—q(—180) = q(s),
@.11)

RE(35) = q(180)—q(dp) = —q(Fp).
At this point one verifies from Eqs. (2.7) and (2.11) that these resultants are of equal

magnitude and opposite sense, as expected. Actually, Fig. 6 represents the distribution
of o, along the circumference of the singular circle (the scale of lengths is exaggerated
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o

FiG. 6. Distribution of 0']/ r for f = 30 along the singular circumference. The scale of the singular circle
radius is exaggerated.

in comparison with that of stresses for the sake of clarity). Similar diagrams hold for the
distribution of 7,, and the combined action “c,+ 7,4”. Since there is equilibrium, the
resultant of “o,+ 7,,” along the circumference (C) must be zero, hence their resultant
along any arc ADB must be opposite to the resultant along the complementary arc AEB.

This, in terms of their components along the directions é‘;‘,, +90 and 9, is written as
(2 12) Rg(ﬁﬂ) = Rg(ﬁa) - Ro(ﬁx),
' R?(ﬂp) = _Rﬁ(ﬁB) = Rp(ﬁ'B)

for all values of 9.

Now it will be shown that for any given crack inclination f#, the value of #3 maximiz-
ing Ro(¥p) is the root of R,(#p) and is also equal to the direction of propagation &,
determined by other criteria as well as experimentally. First of all, from Eqgs. (2.5), (2.7)
and (2.12) it is

(2.]3) V—zy:'— RO('&B) = Sinaﬁ—;(KISB-—chB)—Sin %‘-B— (KISB_KZCB)

)
—cos? % (K,cs+ K, s5)+cos TB (2K, sp).

Sg, cp are expressed in terms of (d5/2) and, introducing the notation

. - ?93 _ '193 . 193
(2.14) S = sin T’ C = COS—i . T = tan -—2—,
after some algebra Eq. (2.13) becomes:

2.15 / ?— = S3+3K,S—-K,C?
(215) VY 2 Rol®s) = —3K: 543K, 5- K, C>

The equation dR,/d%s = 0 in terms of T is found from Eq. (2.15) to be
(2.16) 2T?—uT—1 =0,
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where
2.17) u = 711%4 = tanfp.

Similarly, from Egs. (2.10), (2.11), (2.12) and, in the notation of Eq. (2.14), it is found
that:

‘/;’r R,(05) = —K,SC*+K,C(2—-3C?)

or, in terms of T,

T ; _ CK, § i
(2.18) l/—zr—R,,(ﬁB)-lﬁQT uT—1).

Comparison of Egs. (2.16) and (2.18) shows that dR,/d?s and R,({s) have common
roots. The physical interpretation of this result is obvious: for the directions &, which
give extrema of the opening component (R,) of the circumferential stress resultant, the
other component (R,) vanishes.

Furthermore, for the determination of load at fracture, the mode I case is considered
too. The stress resultant is obtained from the general equation (2.15) for 45 = 0:

(2.19) Ry= —Kl = —ofVna.

On the other hand for each solution @, of Eq. (2.16) the corresponding S, C given by the
notation (2.14), are substituted in Eq. (2.15) and give

(2.20) Ro(®,) = — 0 Y/ ma [3Kx(S*—S)+K, C?].

Hence, on the basis of the usual assumption Ry = R,(#,), one obtains from Egs. (2.19)
and (2.20)
O,Cf

(2.21) o= [3K,(S?*—-S)+ K, C3]~".

3. Numerical results and conclusions

A new criterion for mixed mode crack propagation can be stated on the basis of the
theory developed in Section 2:

Initiation of crack propagation under mixed mode conditions:

(i) takes place in the direction 9,, in which the opening component Ry of the circum-
Jerential stress resultant becomes maximum (i.e. root of Eq. (2.16)); then its other component
R, along the direction of propagation vanishes (since &, is a root of Eq. (2.18), roo);

(ii) takes place at the moment when the imposed load obtains a critical value c°*, given
by Eq. (2.21).

Numerical values of #,, obtained by the above criterion for various values of g, are
given in line (1) of Table 1, while the coresponding values of ¢°"/o{" are given in line (1)
of Table 2. They are seen to be in good agreement with the corresponding values deter-
mined by other criteria or experimentally. The results are plotted in Figs. 7 and 8.

6 Arch. Mech. Stos. nr 4/86
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Table 1. Direction of propagation.

B 2 4 6 8 10 | 20 30 | 40 50 60 70 80 82 84
Present - 7
results 1| —69.9 —69.2| —68.5| —67.9| —67.21 —63.8] —60.0 —55.6| —50.3| —43.2| —33.3| —18.9| —15.4| —11.7
maxa, 2 | —70.0| —69.4| —68.8| —68.2| —67.6| —64.5| —61.0| —56.9| —51.8| —44.7| —34.5| —19.3| —15.7| —11.9
max : —61.4] —60.9) —60.4| —60.0 —59.5| —56.9, —54.1/ —50.8 —46.5| —40.7| —32.0/ —18.7 —~15.3 —11.7
maxo, T —76.5 —75.6 —74.6 —73.7 —72.8 —68.1 —63.1| —57.7 —51.4| —43.7 —33.4 —@ —15.5 —11.8
I | .

maxa, 5 | _602| =557 =502 —432 332 —19.3

vs - w; :E; —56.7 :9; T4; —31.8 ——_18—.5

Experim. 7 —62.4| —55.6| —51.1| —43.1] —30.7) —17.3

Table 2. Critical loading ¢ /of".

p 2 4 6 8 10 20 | 30 40 50 60 70 80 82 84
s —— ‘ i L ;1‘ S —
Present ‘ | .
results 1 244 | 12.0 7.9 5.9 4.7 23 i LS 1.2 1.1 098 | 097 | 099 | 0.99 | 0.99
Ref. [5] 21 247 | 122 8.0 5.9 4.7 2.3 } 1.5 1.2 1.15| 098 | 0.97 | 0.99 | 0.99 | 0.99
i
R e I | S I |
maxog, \ 3 244 1 120 :\ 7.9 ] 5.9 4.7 2.3 ’ 1.5 1.2 1.1 0.98 | 097 | 099 | 0.99 | 0.99
e . o e e e e S, (S P

! S
I
S 4 264 131 87 | 65 5.2 \! 26 | 1.8 1.4 12 | 1.1 1.1 1,0 1.0 1.0
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Fi1G. 7. Angle of propagation &, versus crack inclination f. C.O.R. stands for Circumferential Opening
Resultant (present results).

L n

The small difference in the values of ¢°*/¢{" reported in Table 2 of Ref. [4] is due to
the fact that the evaluation of Rj, R§ due to 7,, was based on an inappropriately chosen
boundary element.

In conclusion, the following remarks should be made. In order that somebody be
able to judge the importance of the new criteria proposed by CHRYSAKIS in [4, 5] and in
the present paper, one should go back to 1973 (S-criterion [3]) and 1963 (max o, criterion
(2)). An extensive literature has been created, devoted to modifications, applications to
particular cases and comparisons of the S and maxg, criteria. Even more important,
in [2], p. 520, it is stated that “According to hypotheses (a) and (b), only the tangential
components of these stresses can initiate crack growth...”. This restriction to ¢, raised
the question, how the remaining stress components in the vicinity of the crack tip, although
singular, wouldn’t and/or couldn’t participate in the phenomenon of fracture. And it
was considered one of the main advantages of the energy approach, compared to the maxa,
criterion, that the cxpression of the strain energy density factor S was taking under con-
sideration the contribution of all the stress components to the initiation of propagation.

In [4, 5] and the present paper for the first time the above-mentioned restriction to
max oy has been questioned and it has been shown that if the model of Fig. 2b is adopted
instead of that of Fig. 2a, then there are alternatives to the max o, criterion: the maxa,
and max |7,y in [4], the maximum principal stress ¢; [5] and the maximum circumferential
opening resultant in this paper. They cover all the cases of prediction of (&,, ¢°") on the basis

6+
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Fi1G. 8. Normalized load at fracture o"/of® versus crack inclination p. C.O.R. stands for Circumferential
Opening Resultant (present results).

of the variation of the singular stresses and, all together, form what is called here “the

stress approach to mixed mode fracture”.
Finally two basic differences should be pointed out.

(i) In [2] propagation is identified with separation of the material of the polar element
(dr, d) under the action of maxo, (Fig. 2a). In [4, 5] and the present paper it is identified
with separation of the material enclosed in the singular circle under the action of stresses
at its circumference (Fig. 2b).

(ii) In [4, 5] the determination of &, is based on two isolated stress values: the extrema
of a certain stress component at two points D, E of the singular circumference. On the
contrary, in the present paper the determination of #, is based on the maximization of
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the resultant action of both boundary stresses (o,, 7,) along the whole circumference.
Thus it is observed that the maxima of the circumferential stress resultants RS, RS hav
the same axis of symmetry (radius OB in direction #,) with the extrema of their particular
stress components (i.e. o, = g,, 7,3 = 7,) — a result neither self-evident nor derivable
from general equilibrium considerations.
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