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Properties of pure hysteresis behaviour of solids
Case of stainless steel and superalloy

S. HAN (BENING) and B. WACK (GRENOBLE)

PURE HYSTERESIS behaviour is recognized as the Jeading phenomenon in solid behaviour. Its
properties are made conspicuous by an analysis of cyclic test results in traction and torsion,
with a stainless steel ICL 167 SPH and a superalloy Inco 718, and concern : the notion of discrete
memory, the irreversibility of the deformation from the beginning; no boundary between an
elastic and a plastic domain can be determined; elastic behaviour is tangential behaviour
at the origin of each loading branch. The shape of the loading surface is axisymmetrical for
the stainless steel, but not for the superalloy; a nonsymmetrical rheological model is analysed.
Some explanations at the microstructural scale confirm the properties at the macroscopical
scale.

Czysta histereze uwaza si¢ za podstawowe zjawisko w zachowaniu si¢ cial stalych. Cechy tego
zjawiska mozna uwidoczni¢, analizujgc cykliczne proby rozciggania i skrecania probek ze stali
nierdzewnej ICL 167 SPH i nadstopu Inco 718; dotycza one pojecia pamieci dyskretnej i nie-
odwracalno$ci odksztalcenia; nie mozna ustali¢ granicy miedzy obszarami plastycznymi i spre-
zystymi; zachowanie spr¢zyste ma charakter styczny na poczatku kazdej galezi obciazania.
Ksztalt powierzchni obciazania jest osiowo-symetryczny dla stali nierdzewnej, inaczej niz w przy-
padku nadstopu; przeanalizowano niesymetryczny model reologiczny. Pcwne wyjasnienia do.
tyczace skali mikrostrukturalnej potwierdzaja te wiasnosci dla przypadku skali makroskopowej-

YueTblil THCTEPE3UC CUMTACTCS OCHOBHBIM siBlleHMeM B nosefeHuM TBepabix te. CsoiicTba
JTOr0 sIBJICHHS MOYKHO IIPpeACTaBHMTL, AHAJIHN3HPYs LHAKJIAYECKHE MCITbITAHHA PacCTAXKEHU A
H CKpyunBaHusi oGpasuoB M3 Hepykaperowen craan ICL 167 SPH u cBepxcruiasa Inco 718;
KacaloTCH OHHM TOHATHSA JUCKPETHOH MaMATH M HeoOpaTHMOCTH Jedopmaluu ; Helb3A onpeme-
JIUTh TPAHHMIILI MEKJy IUIACTHUECKUMH M YIPYTHMH 0O0JIACTSAMH; YIpyroe NoBeACHHE HMEeT
KacaTenbHbIN XapaKkTep BHAyYale Kak/Iol BeTBH Harpy)keHHs. Popma MOBEPXHOCTH Harpy-
YKEHMA ABJIAETCH OCECHMMETDMUHOM AJIA HEprKaBelollel CTalli, MHaue YeM B CIyuyae CBEPX-
CIUIaBa; NPOAaHATIM3UPOBAHA HECHUMMeTPHUHAs peoJlorHuecKkass Momeib. HekoTopble BbIsAC-
HEHMST, KacalollMecs] MUKPOCTPYKTYpHOTo Maciitaba, TMOATBEPXKIAIOT 3TH CBOKMCTBA [UIA
CIIyuas MaKpOCKOIIHYECKOTO MacIuTada.

1. Introduction

IN MOST OF THE ADVANCED technological applications, material solicitations are often
of the cyclic type and reach a stress level where the nonlinearity of the material behaviour
is important. Thus the force-displacement or the stress-strain diagram describes a quite
wide hysteresis loop; this loop can be closed or opened depending on the test conditions.

A closed hysteresis loop characterizes the phenomenon of mechanical pure hysteresis
related to the microstructural phenomenon of solid friction. During the material solici-
tation other phenomena can also take place, like the strain hardening phenomenon which
is importat for stainless steel, or the viscosity phenomenon which is responsible for the
creep or relaxation aspects of the macroscopical behaviour.
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When the scientist or the engineer wants to modelize such a complicated behaviour
it is important to know if all these phenomena are of equal importance, or if one is a lead-
ing phenomenon, the other one being considered as perturbating the leading phenom-
enon. In trying to give an answer to this question, consider the evolution of the hysteresis
loop in a classical push-pull test. At the beginning the cycle increases until a stable level
is reached ; this happens after about twenty to forty cycles. Then the stable cycle is repeated
during a long time before the damage phenomenon takes place, preceding the rupture
of the sample. Thus we verify that during about 95% of the sample life its behaviour shows
a stable and closed hysteresis loop.

Consequently, we have to consider the fact that the phenomenon of mechanical hyste-
resis represents the main aspect of material behaviour. And we also have to take into
account the other phenomena like strain hardening or viscosity, play the role of phenom-
ena perturbing the leading phenomenon of mechanical hysteresis.

"A model which gives a response of pure hysteresis like mechanical hysteresis is repre-
sented by rheological models with springs and sliders. Since the first study done by MasiNG
[1], these models are well known by mechanical people who try to modelize macroscopic
material behaviour. Presently metallurgists also utilize these models to explain material
behaviour from the dislocation scale [2, 3]. Only recently has a complete interpretation
of these rheological models been made from the classical, mechanical point of view as
well as from the thermodynamical point of view [4] (see also [5, 6]).

This interpretation of pure hysteresis behaviour introduces the important notion of
discréte memory of the past inversion states. It follows that the stress appears with the
argument Ao = o— go where the reference stress po is a functional of the solicitation, the
value of which is chosen among all the inversion states of the past; the value of go is
piece-wise constant. Finally, the behaviour is described by a scheme constituted of three
essential parts: '

a) a constitutive equation with solicitation functionals as argument;

b) an inversion criterion which is able to define the inversion states in three-dimensional
stress states; this criterion is the expression of the second law of thermodynamics;

¢) an algorithm which defines at any time the functional values of the constitutive
equation.

The main feature of this pure hysteresis behaviour consists of the notion of discrete
memory, the property restoration after an inversion state, and the possibility of not using
the notion of boundary between an elastic and plastic domain.

If this rheological model really represents the behaviour foundation for the real ma-
terial, we have to recognize the pure hysteresis properties in the real material. Due to the
presence of the other phenomena, some particular precautions have to be taken. Thus
for stainless steel the viscosity influence is almost always present, even for our test condi-
tions at room temperature and at a low strain rate of the order of 3-10~% s~ [7, 8]. But
by doing all the tests at the same low strain rate it is possible to consider the fact that the
experimental results represent a valuable data body to study nonviscous behaviour.

In the following section the details of the experimental conditions and the description
of the material used are given. The properties of the loading branches are analysed in
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the third section and details about the curve fitting are given. Section 4 deals with the
question of a small cycle described within a stable large cycle. And in the last section the
shape of the asymptotic loading surface is studied.

2. Experimental conditions

Experimental data were obtained with a tube sample loaded in two directions by a servo-
controlled hydraulic machine. Two materials were tested. The AISI 316L type stainless
steel, the exact denomination of which is ICL 167 SPH, is used in the nuclear reactors
industry, due to its good resistance to corrosion and creep at the utilization temperature
of about 550°C. The second metal is a superalloy of nickel base Inco 718; this alloy presents
a high strength at the elevated temperature of utilization in the turbines of the aeronautical
industry. Details on the experimental conditions are given in [11]. We recall here only
some particular points necessary for our explanations.

All the tests are run at room temperature; they are strain-controlled, the strain rate
being of the order of 3.10~° s~!. The deformation of the cylindrical part of the sample
is measured with a set of three strain gages at an orientation of 45°.

The strain measurements given by the strain gauges are not strictly equal to the strain
tensor components. The difference is important for the axial strain in the case of a torsion
test [8, 9]. To remain homogeneous with previous and forthcoming papers, we will use
here the notation 4;; to represent the measurements of the strain gauges. By using a cylin-
drical coordinate system (radius g, angle  and axial position z), the strain gauge set is
able to measure the three components: 4., 4g and A,.

During a torsion test, the shear stress distribution evolves theoretically from a linear
variation with the radius to a constant value [10]. For simplicity we consider here a tube
thin enough to neglect these variations. The axial stress is corrected from the cross-section
variation. Thus we have

F. 3 C
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where F. is the axial force, C the torque, S, the initial cross section, R, and R; the outside
and inside radius, respectively.

3. Loading branches properties

Since the data are registered by a microprocessor, it is possible to determine the prop-
erties of the loading branches using of a curve fitting technique; this enables us to deter-
mine essentially the value of the derivative and its evolution along the loading branch.

3.1. The method of analysis

The data are separated by branches, each corresponding to a segment of loading path
comprised between two inversion states. Each branch is analysed in the space Ao, A4

with

7 Arch. Mech. Stos. nr 4/86
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Ao =o0—po and A1 = A—34,

where go, x4 are the coordinates of the reference state.

With the simple solicitations used here, (see for example Fig. 1) the reference state
rO, rA 18 In most cases the inversion state of the beginning of each branch. Since the in-
version point does not correspond exactly to a data point, Ro and g/ are the coordinates
of the first data point after an inversion; due to the high frequency of the data pick up
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FiG. 1. Push-pull test. Axial stress (a) and circumferential strain (b) versus axial strain. Stainless steel.
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this assumption will have a negligible effect: each loading branch is defined by a set of
50 to 100 data points and the strain interval between two data points is less than 1074,

The curve fitting technique used is a spline with tension allowing to modelize the
experimental points by a smooth curve. The spline tension is adjusted by a coefficient
whose value is chosen so as to just make the experimental scattering disappear, the field
of adjustment being comprised between the two extreme cases of interpolation and of
the mean square straight line. Thus the adjusted curve is always inside the band of experi-
mental scattering whose width is +0.2 MPa. It is then possible to determine the tangent
of the following curves and the values of the modulus M, and M, and of the coefficient
Gt

,for the push-pull test:

dAO’zz _ dAAog )
ME—_C?A_AI, Cv_ __EZ"E’
for the torsion test:
_ 1 ddo, -
B2 ddd,,

The accuracy of the slopes value can be characterized by the influence of the adjust-
ment coefficient around the retained value: thus the relative error on the determination
of the modulus My and M, is less than +0.7% and the relative error on the coefficient
C, is less than +0.5%.

3.2. Stainless steel results

A typical push-pull test result with stainless steel is given in Fig. 1, with symmetric
cycles of small amplitude +0.75%, followed by cycles of large amplitude +1.5%. The
evolution of the stress A¢,, and of modulus M for the small cycles is given in Fig. 2.

The beginning of all the loading branches is identical; this is made conspicuous by the
constant M value at the origin; the scattering in the quasi-plastic region, for A4,, greater
than 1%, is due essentially to the hardening phenomenon. The evolution of the tangential
modulus M, shows no discontinuity, and the value at the beginning is the same for all
branches (Fig. 2b). At a strain difference of 0.2% the tangential modulus represents only
10%; of the initial value for the first loading branch and 609, for the other branches. The
initial part of the M curve is parabolic with a slope at the origin parallel to the strain
axis; thus the loading branch is well represented in that region by a polynom of degree
three: ‘

3.1 Ao, = E-Ad,,—k- A2}

zZZ?

where the constant £ is the limit value of My for A44,, — 0 and k is a positive constant.
As we will see later the constant E has the meaning of a Young modulus of an elastic
behaviour.

Despite the presence of strain hardening, we can see that the Masing rule roughly
applies; indeed if we transform the Aa(42) curve of the first loading branch by a similarity
coeflicient of two, the curve will join the group of the other branches and take the first

7*
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FiG. 2. Push-pull test. Variation of stress difference 1o.. and modulus M for the small cycles, a) Wholc
interval 0-1.6%; b) enlargement of interval 0-0.2%. Stainless steel.

place in that group (Fig. 2a). Likewise, an affine transformation pushes the Mg(14,;)
first loading branch into the pile of other branches.

Strain hardening has almost no influence on the evolution of the circumferential strain
(Fig. 3). The coeflicient C, evolves continuously between a value of about 0.28 just after
an inversion point to a value comprised between 0.44 and 0.48 in the quasi-plastic region.
The beginning of the C, (44,;) curves is also parabolic with a tangent at the origin parallel
to the axial strain axis.

We have to notice: that the Ay strain evolution shows a ratchet effect in the negative
direction (Fig. 1); this is always confirmed by all our push-pull tests (Fig. 6) and seems
to be independent of the sample cylindrical part height [8]. Unfortunately no satisfactory
explanation can be done for the moment; more systematic tests have to be run to clear
that point.

The analysis of a symmetric cyclic torsion test shows the same type of results (Fig. 4)
as the one obtained with a push-pull test: the loading branches are continuous at least
of the third order, the slope after inversion is the same for all branches and the Masing
similarity rule applies. So the initial part of the loading branches can be represented by
an equation like (3.1). For this test we see that the loading branches for the large cycles
(A2%y, = +0.9%) have the same properties as the one for the small cycles (47, = +0.45%),
except that they are longer. Similar results with push-pull tests were also obtained [8].

The results of Figs. 2b and 4b show evidently that the elastic behaviour of such a stain-
less steel is a behaviour tangent to the origin of each branch. The initial values of the slopes
define the coeflicient of the tangent elasticity:
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lim Mg=F and Ilm C, =,
44, —0 Ak =0

lim M, = u,

A2p,—0
where £'is the Young’s modulus, » the Poisson’s ratio and u one of the Lamé’s coefficients.
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FiG. 3. Push-pull test. Variation of circumferential strain difference A4y, and coefficient C versus axial
strain difference 47... Stainless steel.

Using the preceding results and complementary results with the same material [8], we

obtain for the stainless steel
E=199+2 GPa, »=0.280+0015, p=776+1.1 GPa

the error interval being the scattering of the mean value per test. These three values are
determined independently of each other and we check to see if they are consistent; for
example we have

E
Koo o
(3.2) P sy = T GPa



446 S. HAN AND B. Wack

a b
‘1“0{”(—7—!_'1—7*7' T T T—T—T—T—7—0.220E09 0.900E1—T——T—T ——t—t-1— 0.120£09
! N
| , 1
- H |
J Se
ﬂ(!gz 1
|
4 c{; ~
\, £
B =N L
bm Zl
<
-
|
4
[
| U
’
. ,1,}._-?::1:1»1,}0 Ll il'.‘\]'l\\\\lrllﬂ
5 A 0.180€-01 0 -0
A%, A, 0.210€-02

Fic. 4. Cyclic torsion test. Variation of stress difference Agy. and modulus M, versus shear strain difference,
a) whole interval 0~1.8%; b) enlargement of interval 0-0.2%,. Stainless steel.

and we see that this calculated value is within the error interval of the experimentally
determined Lamé’s coefficient.

To confirm the results obtained with the two preceding simple type tests, a combined
proportional traction torsion test was run with the following values of the small cycle
amplitude [8]: .
A, = +£04% and Ay, = £0.3%.

The variation of the modulus My and M, in the strain interval 0-0.2%; and of the coeffi-
cient C, in the whole interval 0-0.8% are given in Fig. 5; these results show essentially
the same properties as for the simple tests and we verify that the initial values correspond
to the preceding ones. We notice, however, that the C, coefficient reaches a value greater
than 0.5 in the quasi-plastic state; as for the simple push-pull test this coefficient always
stays under this value (Figs. 3 and 8).

Indeed for a simple push-pull test we may assume the homogeneity of the stress and
strain state in the annular tube cross-section and the equality of the radial and circum-
ferential strain. With the hypothesis of small strain, the rate of the relative volume variation
per branch is then given by

=g dA3,,

dt at
Thus for the analysis of volume variation, the coefficient C, can be interpreted in simple
push-pull tests like the Poissons’s ratio » in elasticity. Consequently, we see that the rate

(3.3)

= (1-2C)
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FiG. 5. Combined traction torsion test. Variation of modulus Mg a), coefficient C, b) and modulus My
c) versus strain difference. Stainless steel.

of the volume variation along any loading branch is maximum in the quasi-elastic state
just after an inversion point and tends to be null in the quasi-plastic state. On the oppo-
site, for the combined traction-torsion state the radial strain is not equal to the circum-
ferential strain; thus Eq. (3.3) applies no more and a value C, slightly greater than 0.5
may theoretically be admissible.
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3.3. Superalloy results

The results of push-pull tests with the superalloy show noticeable differences in compari-
son with stainless steel results (Fig. 6): the loading branches have an important quasi-linear
portion after the inversion points; the evolution of the circumferential strain shows a wider
cycle and the ratchet phenomenon is also obvious, with a slight dissymmetry due probably
to a sample misalignment. This material displays essentially a phenomenon of softening,
after a slight hardening effect during the first cycle [8, 11].

After the curve fitting, the results show that the variation of the modulus M is con-
tinuous, like for the stainless steel, with a slow variation at the beginning (Fig. 7). But
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FIG. 6. Push-pull test. Axial stress a) and circumferential strain b) versus axial strain. Superalloy.
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Fic. 7. Push-pull test. Variation of stress difference Ac., and modulus Mg for the small cycles, a) whole
interval 0-19; b) enlargement of interval 0-0.2%,. Superalloy.

the curves separate into two distinct parts during a strain interval of 5.1073: the upper
one corresponds to the loading branches whose origin is in compression and the lower
one corresponds to the loading branches whose origin is in traction. The first loading
branch shows a M initial value identical with those of the branches beginning in compression.

This result can be explained by a Young’s modulus E depending on the stress invariant,
say for simplicity in a first order, on the first stress invariant /. If we admit that E decreases
with the increase of / and decreases more rapidly when 7, is positive, then the M evolution
of Fig. 7 can be explained. We will see later in the text that microstructural phenomena
can justify this hypothesis. To compare the results of the two materials it has to be noticed
that the strength of the superalloy is three times greater than that of the stainless steel;
thus the dependency of 7, for E can exist for the stainless steel but is negligible.

The variation of the coefficient C, (Fig. 8) also shows a clear separation of the loading
branches into two groups, not only in the quasi-elastic region but also in the quasi-plastic
region: for the branches whose reference point is in transition, the coefficient C, varies
from 0.28 to 0.49, and for the branches whose reference point is in compression, the coef-
ficient C, varies from 0.305 to 0.45. A quasi-plastic state in compression shows almost
no volume variation, as in the quasiplastic traction states the volume variation is obviously
not null.

The results of a pure torsion test are given in Fig. 9 with the Ag,, and the M, varia-
tions for only the first group of small cycles ( +0.80%). All the branches, with the exception
of the first loading branch, have the same M, evolution, according to isotropic materials.
The evolution is of the same type as the M evolution of the branches beginning in a trac-
tion state. On the other hand, the M, evolution of the first loading branch is of the same type
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F1G. 8. Push-pull test. Variation of circumferential strain difference 44y, and coefficient C, versus axial
strain difference A4... Superalloy.

as the M evolution of the branches beginning in compression. As for the modulus My,
the variation of the M, modulus can be explained by a dependency of the Lamé’s coef-
ficient on the stress invariants; this will be developed later.

In summary the data characterizing the tangential elastic behaviour are given in Table
1. The error interval is determined by the dispersion of the value for all branches. For
the neutral state we have only one value; we check that, at a relative accuracy of 1.3%,
the three values of the neutral state are consistent since we obtain by Eq. (3.2) u* =
= 82.9 GPa. A valuable modelization of the two elastic parameters will be given later,
after an analysis at the microstructural scale.

3.4. Attempt of explanation at the microstructural scale

To confirm the preceding results analysis, it is of interest to try finding, at the micro-

structural scale, qualitative explanations of the properties revealed at the macroscopical
scale.
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Table 1.
state stress (MPa)
A 0
B +1140
C - 1250
D + 700 |

1
\

E (GPa)
(mes.)

212.7 J
202.7+0.5

212.7+£0.8
/ |

v 1 1 (GPa) 4 (GPa)
(mes.) \ (mes.) (cal.) (cal.)
0.283 L 818 82.9 108.1
0.278 + 0.005 } / 79.3 99.3
0.305 £ 0.005 | / 81.5 127.5
/ | 79.5+0.4 J /

a. Immediate irreversibility of the deformation. For polycrystalline materials, the crystalline
lattice of each grain has any sort of orientation with regard to the external solicitation.
‘Thus it is possible to imagine that there always exists a “sensitive grain’ in which a preexist-
ing dislocation may unpin for a very low external stress variation due to its particular
position in that grain. When the external stress continues to increase, other preexisting
dislocations in other grains will unpin and further, new dislocation loops will be created,
by the mechanism of Franck-Read sources for example. This progressive phenomena
explains the nonlinear aspect we obtain for the stress-strain curve at the macroscopical

scale.

Theoretically it is possible to imagine the existence of a threshold under which no
dislocations will unpin, the material deformation being due only to the crystal lattice
deformation with its imperfection and to moving dislocations without unpinning. But
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the value of this threshold is of a very low level, with no comparison to the value used
in the classical elasto-plastic behaviour (for example [12]).

This immediate irreversibility of the deformation is well known by metallurgists.
Instead, for example, fifteen years ago VELLAIKAL [13] claimed clearly in the introduction
of his article: “It is well known that high sensitivity stresses measurements or dislocation
etch-pit techniques can detect small plastic strains well below the macroscopic yield stress
in many metals and alloys”. A great number of measurements was made on copper which
has the same FCC structure as the stainless steel: for mono- or polycrystals of copper
as for aluminium solid dilutions in copper, a few authors have made conspicuous the
fact that irreversible dislocation movements appear for bending stresses of a few g/mm?
[13 to 16], which represents one thousandth of the ultimate strength. We notice last the
work done by ArGon and BRYDGES [17]: the authors define for monocrystalline cop-
per an elastic limit of 7 g/mm? and a multiplication stress, beyond which the dislo-
cations creation multiplies, of a value of 20 g/cm?.

All these results are now confirmed by in situ dynamical observations with an elec-
tron microscope. For example we can refer to the work done by Funra and co-
authors [18, 19].

b. Elastic tangential behaviour. Consider first the case of stainless steel which is simpler.
After any inversion state the tangential modulus of the loading branches is the same,
at a relative accuracy of one per cent, whatever the amplitude of the cycles and the stress
level; however, the latter increases about 409 due to the consolidation phenomenon.
An analysis at the microscopical scale shows the reality of this intrinsic property of the
modulus: it is nothing other than the deformation modulus of the initial polycrystal with
its defaults and its network of preexisting dislocations. ’

In fact consider what happens around an inversion state. Before an inversion, there
exists a given dynamical state of moving dislocations and, in particular, some dislocations
leave one part of a joint, cross the subgrain and pile up on the opposite side of the sub-
grain boundary or on internal barriers. When the solicitation changes its sign,. all
this dynamical state has the tendency to change direction and the dislocations will move
in the opposite direction [18]. Thus, during a short time, the dislocation speeds drop to
zero and change sign. At that time the rigidity of the material is that of the polycrystal
without dislocation unpinning.

For the superalloy the results seem more complicated: on one hand the modulus
after an inversion seems to depend on the stress state and on the other hand the evolution
of the modulus does not always have a parabolic variation near the origin. The dependency
of the modulus with regard to the stress state is well known by the acousticians who have
made conspicuous the wave speed variation with different stress conditions [20, 21]. This
phenomenon can be intuitively explained by the equilibrium between attractive and repulsive
forces acting on individualized atoms. Thus the evolution of the total force acting between
two atoms with regard to their distance is represented by the classical atomic interaction
diagram (Fig. 10) [22]: if we want to increase the distance between the two atoms, the
total force must be attractive and has to increase with the distance and passes theoretically
through a maximum before decreasing. On the contrary, to reduce the distance it is neces-
sary to exert a compressive fort which increases regularly with the decrease of the
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distance. The deformation modulus of this simple system is proportional to the slope
of this curve; due to its shape the slope varies more rapidly in the attractive state than
in the compressive state for the same force interval. This may explain the modulus variation
near the origin.

FiGg. 10. Atomic interaction diagram.

After an inversion in a traction stress state, the modulus has a small value; when the
stress decreases the material rigidity is a consequence of two opposite phenomena: an
increase of polycrystal rigidity due to the decrease of the stress (Fig. 10) and a decrease
due to the moving dislocations. These two combined phenomena give the quasisinusoidal
evolution of the Mg curves (Fig. 7a). If the inversion takes place in a compressive state
the influence of the stress state and of the moving dislocations will be of the same type,
a decrease of the rigidity, and we obtain a parabolic evolution like those of the stainless
steel. When the influence of the moving dislocations is predominant, the two groups of
Mg (A21..) curves join. In the frame of this explanation the quasi-plateau of Fig. 9a has
to be interpreted as a very flat sinusoidal portion; in fact this group of curves joins the
first loading curve transformed by affinity. The first loading curves (Figs. 7 and 9) belong
to the curve group beginning in a compression state; this in accordance with the shape
of the atomic interaction diagram: the slope in the compressive state is almost equal to
the value at the origin (Fig. 10).

These phenomena must also influence stainless steel behaviour; but the stress variation

being about three times smaller than for the superalloy, the effects are too small to be
noticeable with regard to the accuracy of our test device.

The preceding analysis allows us to modelize the stress influence on the elastic par-
ameters, expressed by the Lamé’s coefficients A and u for which the theory [5, 23] predicts
a possible stress variation by the stress invariants (Table 1).

A variation of the A coefficient with only the first stress invariant 7, is sufficient to
modelize the results as follows:

(3.4) A= loexp(— L ) .

Po

With i, = 108.1 GPa, p, = 2.40 GPa and n, = 3, we obtain:
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state | A ‘ B C {
A (GPa) ’ 108.1 l 97.1 124.5 ’

It is not useful to try finding a more complicated stress dependency, due to the small
amount of experimental results.

The variation of the x coefficient is more complex: the maximum value is obtained
for I, = I, = 0 and is near the value obtained in the compression state. We admit that
M. varies with the second invariant of the stress deviator II; between the maximum value
and a value depending on the stress phase & such that

3.5 u = po— ¢ JIL(14cos38)".
With the four experimental data, a good approximation is given by:
o = 81.8 GPa, ¢, =10/3,. n, =1/6.

Using Eqgs. (3.4) and (3.5) in the constitutive scheme, the modelization of the superalloy
push-pull test (Fig. 6) gives a M evolution (Fig. 11) which is very similar to the experimen-
tal resu'ts (Fig. 7).

0 220£05

Mg (MPa)

0 Ay, 0.200€-01

F1G. 11. Modelization of the cyclic push-pull test (see Fig. 7a). Variation of the modulus Mg. Superalloy.

4. Small cycle described in a large cycle

The discrete memory notion was made conspicuous by the analysis of the loading
branches in the Ao, A4 axes: at the beginning all the branches are identical and they
differ afterwards due to the presence of strain hardening. A solicitation path describing
a small cycle into a large cycle makes this notion of discrete memory more obvious. To
avoid the influence of the strain hardening phenomenon, this test is run after the satura-
tion state is obtained.
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Fi1G. 12. Small cycle described in a large cycle, b) push-pull test; ¢) and d) proportional traction-torsion
test.

In that case the constitutive scheme predicts a behaviour described by an equation of
the following type:

o—go = f(A—RrA).
Consider a stabilized cycle AE, in which we inscribe a small cycle BCD (Fig. 12a). Along
the branch CDE the reference state (zo, r4) will change abruptly at point D: for the arc
CD the reference state is defined by the state of point C and for the arc DE by the state
of point 4 ; so the arc DE is the continuation of the branch AB.

The experimental curve describing such a push-pull type test is given in Fig. 12b.
This is analogical with the recording chosen to avoid the truncation given by the
ordinary digital recording. We see first that the solicitation describes a small cycle which
is closed and has a finite area. Secondly we see that at point D the branch CDE shows
a very rapid change in the curvature. At a relative accuracy of 1% of the stress we may
say that the branch CDE is constituted by two arcs with a discontinuous slope change
at point D and that arc DE is the continuation of the branch 4B.

This result is confirmed by another small cycle described in a large cycle: Figs. 12¢
and 12d show such a cycle obtained this time by a digital recording with a combined
solicitation of proportional traction and torsion. The same properties as with the preceding
cycle are made conspicuous for the axial force variation as for the torque variation.

From the view point of the macroscopical constitutive scheme the notion of discrete
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memory is introduced by the properties of the heuristic model of springs and sliders [4, 5].
If this notion has really a meaning, we have to find its correspondence at a microstructural
scale. In other words, the notion of discrete memory must be stamped in some microstruc-
tural phenomena.

It seems to be possible to give a satisfactory response making use of the analysis of
the dislocations mechanisms. Different authors in metallurgy (for example [24, 25]) refer,
like authors in the field of mechanics, to the original work done by MasING [1]. They
make a direct parallel between the rheological model with springs and sliders and the
individual mechanisms of dislocation creation or movement, classified by a threshold
of activation (in energy for example). The individual mechanisms have to be understood
in a broade sense, that is mechanisms of different types as the same mechanisms at different
positions and/or orientations with regard to obstacles (grain or subgrain boundary, default
or imperfection). Thus MUGHRABI [2] introduces a composite model of the material with
walls of high dislocations density and channels of low dislocations density, each region
characterized by a threshold for the activation of the dislocations: this model (Fig. 4 of
[24]) is”identical to the two layers model analysed by us (Fig. 4b [5] or Fig. L.12 [8]).
Otherwise HoLsTE and BURMEISTER [3] introduce a model at a scale of dislocations struc-
ture, called half-macroscopic volume, whose properties are continuously distributed.

Thus the foundation of the discrete memory notion would befound in the dislocation
mechanisms activated or not. Coming back to the small cycle described in a large cycle,
it is possible to give an explanation from the microstructural point of view. Until point
B (Fig. 12.b) a great number of mechanisms of dislocation creation or dislocation move-
ment become progressively activated, the most energetic one having a threshold Ti,,..
After inversion, all these mechanisms will stop and have the tendency to activate in the
reverse direction beginning with those of lower energy. Until point C only mechanisms
of threshold lower than T, are activated. After the inversion C these mechanisms stop
again and have the tendency to change direction, that is the same direction as during
the initial solicitation AB. As we approach gradually point D, which is identified with
point B, the memory of the dislocation history occuring during the path BC is erased.
At point D all the memory of the events comprised between the threshold 0 and T,
corresponding to the path BCD is erased and the material is exactly at the same situation
as before the inversion B. If we continue the solicitation to DE, the material will activate
mechanisms of dislocation of thresholds greater than T, as if we had extended path
AB directly to path BE, without doing the small cycle BCD.

In summary, at the microstructural scale the activated dislocation mechanisms will
jump, along the path CDE at point D, from those in the threshold interval 0 — T,;, to
those in the threshold interval 0 — T,,,,. This jump corresponds on the macrostructural
scale to the jump of the reference state (zo, z4) and the jump of the reversible power.

The preceding explanation has to be taken, in the author’s opinion, as a predictive
explanation since there does not exist at the present time any direct experimental obser-
vation of this phenomenon. But due to the powerful possibilities of the microscopical
technique it may be possible now to verify the author’s statement by direct in situ micro-
scopical observations.
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5. Shape of the loading surface

The loading surface defines an asymptotic limit stress state in the sense that the repre-
sentative point of the material stress state never reaches it [11]. A material subjected to
a strain hardening (or softening) phenomenon is characterized by a loading surface mo-
ving as this phenomenon takes place. We make the hypothesis, as a first approximation,
that its shape does not change; therefore in the following we will deal only with the loa-
ding surface of the pure hysteresis behaviour o,. We recall that the constitutive scheme
expresses the constitutive equation as a sum of partial stress [4]; thus for a material sub-
jected to strain hardening:

(5.1) ' o= 0,+0,,
where o, corresponds to pure hysteresis and o, to strain hardening; for the virgin material
o, is null and ¢ = g,.

Due to the experimental data available, we consider only cylindrical §urfaces which
are characterized by the section in the deviatoric plane I}a, (&), where II;, is the limit
value of the second invariant of the stress deviator ¢, and £ is the phase angle. The stress
limit values for pure hysteresis behaviour in traction, compression and torsion are res-
pectively Y,, Z, and S,, and we have

s, e SIS 5 2]

These values cannot be determined directly by experimental measurements due to the
presence of strain hardening (or softening); with symmetrical cyclic tests it is possible
to usc a method of extrapolation of the values at the inversion points and the limit values
are defined by

(5.2) 1L, = lim IL(N),

N=0
where N is the number of half-cycles [8, 11].

For the stainless steel the experimental data obtained with the strain-controlled sym-

metric cyclic tests give the following mean value for traction and compression:

Yo = Zo = 300+9 (MPa).
We have to notice a slight systematic difference between traction and compression, but
within the dispersion interval of all the experimental values. The torsion tests give

V35S, = 281+10 (MPa).

The dispersion intervals of these two values are tangent; due to this small difference
it is possible to admit a global mean value and thus a von Mises loading surface; the
mean value retained is

(Yo» ={Zy) = Y3 {Soy = 294+10 (MPa)
the value and its uncertainty interval (at 95%) are statistically defined with all the available

test results.
For the superalloy only one test is available for each of the three values and we obtain

Yo = 1150, Z, = 1250, /3 S, = 1170 (MPa).

8 Arch. Mech. Stos. nr 4/86
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~ As the maximum relative difference is equal to 9%, we have to admit that a von Mises
loading surface cannot correctly represent these results. We choose a cylindrical surface
whose section in the deviatoric plane is given by

(5.3) I1,,(8) = I, (0)[1 + ¢, (1 —cos 36)™].

This section is similar to the one proposed by Stutz [23] for granular materials. The
three coefficients 77; (0), ¢, and n, are directly determined by the three experimental
values and we have

11,,(0) = 659 (MPa), ¢, = 0.0256, n, = 1.33.

This dissymmetry, experimentally established, obliges us to verify the possibility of
modifying the unidimensional symbolic model of springs and sliders in such a way as to
include the case of dissymmetry in traction and compression.

Gp prm———— == A
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1 A

Ale—— -W0a
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Fi1G. 13. Loading and unloading branches of the dissymmetric symbolic model — the notion of dissymmetry
factor &.

The proposed dissymmetric model differs from the symmetric one only by the fact
that each slider is characterized by two thresholds e* and e~ depending on the direction
of sliding, the dissymmetry factor @ = e~ /e* being kept the same for all sliders; on the
other hand, to guarantee the continuity around the origin, the spring modulus must be
kept the same for each direction. An analysis identical to the one done for the symmetric
model shows that this proposed model has the same fundamental properties as the orig-
inal one [4, 8]:

a) All the loading arcs o(s) are similar to each other (Fig. 13); they are defined by
a general equation:

&—RéE

(5:4) gt i f(4 *)_

w

Three different cases are recognized, with a given value of the Masing similarity coef-
ficient w:

w=1 first loading in the traction direction,

w=0 first loading in the compression direction,

w = 14+® second loading in any direction,
we verify that this includes the symmetrical case for the dissymmetry factor @ equal to

unity.

I
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b) We verify simply that the “help function” W, takes the same value at points A, A’
and B (Fig. 13); thus the use of the algorithm to define functionals does not change.

c) The state of the symbolic model is represented by the same topological diagram,
the only difference being the fact that the representative points of each couple move on
straight lines having a slope not parallel to the spring deformation axis; this slope depends
only on the dissymmetry factor @.

d) The thermodynamical variables rates have also a dissymmetrical evolution. This
is made conspicuous by the diagrams of Fig. 14 corresponding to a strain-controlled sym-
metrical solicitation with & = + 1. For the second loading type branches, the evolution

L
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Fi1G. 14. The dissymmetric symbolic model. Evolution of the thermodynamical vartable rates for é = +1
(P, power of external forces, E internal energy, I disorder variable, ¢p intrinsic dissipation, z reversible
power, — @ heat rate associated with the irreversible phenomena [4, 5].

of some rates depends on the solicitation sign; this is a consequence of the fact that the
stable value in the quasi-plastic state of the heat rate — (0 is different in traction and in
compression. Thus another parameter 2, taking the values 1 or @, has to be introduced
to give the expression of the thermodynam‘ical rates [8].

¢) The extension from the unidimensional symbolic model to the three-dimensional
case is not simple. For convenience it is possible to introduce a relation between the dissym-
metry factor @ and the shape of the loading surface |8]. This procedure consists in defining
the dissymmetry factor as a function of the stress phase & through a stress ratio:

. I1,(8)
5.5 « = — .
(5.5) 2(E) 0

Thus a similarity coefficient can be again defined in the algorithm by a simple “if” condi-
tion:

8=
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for an arc of the first loading type w = o(&),

for an arc of the second loading type o = @(&)+a(&+a).

As we see, this includes the simplest symmetrical case of the von Mises loading surface
with the similarity coeflicient equal to 1 or 2. This procedure has to be taken only as a pre-
liminary proposition. A complete study of this problem exceeds largely the frame of this
article; it is related to a recent work presented by GUELIN ef al. [24 to 26].

Finally we have to emphasize that, by taking into account a nonaxisymmetrical loading
surface in the preceding works as in this one, the coupling between the mechanical and
the thermodynamical aspects of the constitutive scheme is made clearly conspicuous.

6. Concluding remarks

The pure hysteresis phenomenon is recognized as the leading phenomenon in solid
behavior. It introduces the notion of discrete memory in the constitutive scheme. The
validity of the discrete memory notion is confirmed by the fact that this notion has a micro-
structural support at the dislocations scale.

It has been shown that the stress-strain curves present no discontinuities, at least to
the third order. The notion of boundary between an elastic and a plastié domain does
not correspond to reality, at least for the superalloy and the stainless steel tested. Thus
the material deformation, in the range of engineering stresses, has to be considered as
irreversible from the beginning; metallurgists state that such a boundary may exist but
at a very low stress value of magnitude [ /10 MPa. Moreover, the properties of the material
are restored after each inversion state, as it is made conspicuous by the results at the
macroscopical scale; a microstructural explanation at the dislocation scale is also given.
Consequently, the notion of elastic behaviour as an approximation of the real material
behaviour has to be considered as a tangential behaviour at the origin of each loading
branch, just after an inversion state.

The introduction of an axisymmetrical loading surface made more obvious the coupling
in the constitutive scheme between the mechanical and the thermodynamical aspects.
A complete solution of this problem is not simple and is still a partially open problem,
for example with regard to the question of uniqueness.

The results obtained show that there are no contradictions between the prediction
of the discrete memory constitutive scheme and the results at the macroscopical scale.
Moreover, some explanations of the constitutive scheme main properties can be found
at a microscopical scale. Further studies have to be done to consider a larger experimental
field. On one hand, other types of materials have to be tested, and aluminium alloys seem
to be particularly interesting. On the other hand, a systematic parallel between macro-
scopical and in situ microscopical tests appears to be possible now. The comparisons
which are possible to obtain present a special interest to confirm, or infirm, the
hypotheses and thus to improve and develop the discrete memory constitutive scheme.
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