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A computational model for the prediction of two-dimensional 
non-equilibrium turbulent recirculating two-phase flow<*> 

B. DOBROWOLSKI (OPOLE) 

A coMPUTATIONAL model for the prediction of elliptical, non-equilibrium turbulent two-phase 
flow of a dilute mixture has been formulated. The model is based on a two-velocity field method 
for the description of the hydrodynamic non-equilibrium flow. A new form of the motion and 
turbulence model equations has been obtained by time-averaging of the motion equations for 
laminar flow and by neglecting the turbulent correlations of volume fraction fluctuations. A series 
of calculations for two-dimensional recirculating flow based on the proposed computational 
algorithm has been presented. A considerable influence of particJe diameters of the dispersed 
phase and the non-equilibrity of flow on the local and global characteristics of two-phase stream 
has been found. A simple form of the correction function, based on four non-dimensional 
similarity groups, has been proposed for the calculation of the pressure drop in case of transi­
tionally non-equilibrium dispersed two-phase flow. 

Sformulowano model matematyczny do obliczania eliptycznych, nier6wnowagowych przeplyw6w 
turbulentnych rozrzedzonych mieszanin dwufazowych. Model oparto na metodzie dwupolowej 
dla uwzgl~dnienia hydrodynamicznej nier6wnowagowosci zjawiska przeplywu. Now~ postac 
r6wnania ruchu i modelu turbulencji otrzymano przez usrednienie r6wnan dla przeplywu la­
minarnego, przy pomini~ciu korelacji fluktuacji udzialu obj~tosciowego faz. Przedstawiono 
modyfikacj~ k- e modelu turbulencji w celu uwzgl~dnienia turbulentnych oddzialywan mi~dzy­
fazowych. Opracowano algorytmy obliczen oraz zrealizowano seri~ obliczen dla dwuwymiaro­
wego przeplywu z recyrkulacj'f. Stwierdzono duzy wplyw srednicy c~stek fazy rozproszonej 
oraz przejsciowej nier6wnowagowosci przeplywu na lokalne i globalne charakterystyki strugi 
dwufazowej. Zaproponowano prost~ funkcjct korekcyjn~ opart~ na czterech bezwymiarowych 
liczbach podobienstwa do obliczania straty cisnienia przy przejsciowo-nier6wnowagowym dys­
persyjnym przeplywie dwufazowym. 

C<t>opMy.JIHpoaaHa MaTeMaTWieCI<aH Mo~eJIL MH pacqeTa 3Jimmrnqeci<HX, HepaBHoBeCHbiX 
ryp6yJieHTHbiX Teqei-mif pa3peffieHHhiX ~ayx<t>a3HhiX cMeceif. Mo~eJ!b oiiHpaCTCH ua ABY­
noJieBhiH MeTO~ MH yqeTa m~po~aMlfqCCI<oro uepaaHoaecHH HBJieHHH TeqeHHH. Hoabm 
BH~ ypaBHCHHH ~BH)f{CHHH H MO~CJIH ryp6yJICHTHOCTH llOJiyqeH nyTeM ycpe~eHHH ypBB­
HCHHH MH JiaMHHapHoro TeqeHHH, npH npeHe6pemeHHH I<oppeJIHJ.UIHMH <l>Jiyi<TyaUHH ofu,e­
MHOro yqaCTHH <l>a3. Tipe~CTRBJieHa MO~H<l>HI<aJ.UIH k- e MO~eJIH ryp6yJieHTHOCTH C UeJlLIO 
yqern Typ6yJieHTHhiX Mem<t>a3HbiX B3aHMo~eifcraHif. Pa3pa6oTRHhi aJiropHTMbi pacqeToB 
~JIH ~ByMepHoro TeqeHHH c penHpi<yJIHiufeii. KoHCTRTHpoaaHo 6oJILllloe B.JiJ!HHHe ~Ha.Merpa 
qaCTHU pacceHHHoH <t>a3bi H nepexo~oro HepaaHoaecHH TeqeHHH Ha Jioi<aJILHbie H rJio6aJIL­
Hbie xapai<TCpHCTHI<H ~BYX<l>R3HOH CTpyH. TipeMomeHa npoCTaH I<Oppei<UHOHHRH <l>YHI<J.UIH, 
onHparoruaHcH Ha qeThipex 6e3pa3MepHbiX qHcJiax no~o6HH, MH pacqeTa noTepH ~aBJICHHH 
npH nepexo~HO-HepaBHOBCCHOM ~HCnepCHOHHOM ~ayx<t>a3HOM TeqeHHH. 

1. Introduction 

THE HOMOGENEOUS model used traditionally for two-phase flow calculations is based on 
the assumption of thermal and mechanical equilibrium between phases and it is not capable 

(*) Paper given at XVII Symposium on Advanced Problems and Methods in Fluid Mechanics, Sobie­
szewo, 2-6 September J 985. 

http://rcin.org.pl



612 B. DOBROWOLSKI 

of predicting the flow distribution under conditions which cause departure from the equi­
librium. In the case of a thermal or mechanical non-equilibrium flow, a more complex 
approach is needed for the prediction of the local and global flow characteristics. 

There are basically two methods for the calculation of two- or multi-phase non-equilibrium 
flow: the multi-fluid method and the trajectory method. The average equations which 
describe the continuous and dispersed phases as two interactive fluids are the basis of the 
two-fluid method. Some examples of computational schemes, based on the two-fluid ap­
proach, are given by HARLOW and AMSDEN [1], RIVARD and TORREY [2], and SPALDING (3]. 
Although the two-fluid models, applied to diluted dispersed flow, have the advantage 
of using numerical procedures already established for single-phase flow, there are some 
difficulties in their use. When treating more than one particle size, it is necessary to regard 
each size category as a separate fluid which demands considerably more computer time 
and storage than in the case of a single phase flow. 

The other possibility of modelling dispersed two- or multi-phase flows is the trajectory 
approach, first proposed by MIGDAL and AGOSTA [4] and then developed by CROWE eta/. 

[5] and DUKOWICZ [6]. This method, called the PSI-Cell model, is based on the idea 
of introducing the Lagrangian approach for the motion of the d~spersed phase. The model 
incorporates the most natural computational scheme for each phase, namely the relaxation 
method for the continuos phase and the marching method for the disperse phase. The 
PSI-Cell approach, however, seems to be not quite suitable for the two-way coupling 
solutions and requires in any case an additional computation effort to evaluate the source 
terms introduced by particles in the continuous phase equations. 

In the case of turbulent flow it is necessary to introduce the ~turbulent interphase 
interactions into the models. As shown in some new measurements performed by MAEDA 
and HISHIDA [7], TsuJI et a/. [8] and MoDARRES et a/. [9], the presence of particles or 
droplets exerts an influence both on the time-mean characteristics of turbulent two-phase 
stream and the turbulence structure. 

In the DUKOWICZ [6] model, the particle dispersion, due to turbulence, is modelled 
by the diffusion force requiring the selection of a diffusion coefficient. The other technique 
is based on the Monte Carlo method, presented by GosMAN and loANNIDES [10], in which 
the turbulent gas flow field is modelled as a steady flow plus random velocity fluctuations. 
DANON et a/. [11] attempted to develop a one-equation turbulence model based on the 
modified equation of the turbulence kinetic energy and an empirically prescribed length 
scale. The differences between the results of calculations and experimental data were large 
so that some arbitrary empirical corrections were introduced into the model in order 
to achieve agreement with the data. 

Recently, ELGHOBASHI et a/. [12, 13, 14] have presented a new computational model 
for two-dimensional, parabolic, turbulent dispersed two-phase flow. In the paper [12] some 
new forms of the motion and turbulence model equations were proposed, by modelling 
all new correlations to the third order inclusive. Some new additional terms and constants 
were introduced into the standard form of the LAUNDER and SPALDING [15] k- e turbulence 
model. The proposed calculation method was applied ~n the computation of gas-particle 
[13] and gas-droplet [14] free stream flow and good agreement with the experimental data 
was achieved. 
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The disadvantage of the ELGOBASHI and ABou-ARAB [12] model is its considerable 
complexity even in the case of a parabolic flow. Moreover, there is no information whether 
the additional empirical constants are of universal character or if the model may be used 
in an elliptical flow with a large pressure gradient and with the presence of walls. 

The aim of the present paper is to formulate a simplified physical and computational 
model for the prediction of recirculating, two-phase flow of a dilute suspension of dense 
particles in air. The computational model is then applied in the prediction of the effects 
of the interaction phenomena and transitional non-equilibrium between the two-phases 
in the two-dimensional, recirculating flow system. 

2. General formulation of mathematical model equations 

2.1. Two-phase motion equations in the case of laminar flow 

It is assumed that a two-phase mixture is a dilute suspension and both phases are 
microscopically incompressible. Two-phase flow is treated as the motion of interpenetrating 
and interacting continuous fluids. The steady motion of both components is described 
by the set of equations 

(2.1) V·cxdVd=O, 

(2.2) V·cxc Uc = 0, 

(2.3) edV·cxdVdVd = -ttdVp+F(Vc-Vd)+cxdged, 

(2.4) ec V·occ Uc Uc = - occ Vp+F(Vd- Vc)+ V•tXc,Uc(VVc+ VVJ)+occgec, 

where ex denotes volume fraction, U is the velocity vector, p is pressure, e is density, ,u is 
viscosity and the subscripts c and d concern the continuous and dispersed phases, respect­
ively. 

The dispersed phase is treated as inviscid on account of the absence of any physical 
interpretation of the molecular viscosity of this phase in case of dilute suspensions. The 
set of equations (2.1 )-(2.4) is cotnmonly used for describing laminar flow of monodispersed 
mixtures [16]. Equation (2.4) points at the elliptic nature of motion of the continuous 
phase and Eq. (2.3) at the rather parabolic nature of motion of the dispersed phase. The 
modified interphase friction coefficient F is calculated from the formula 

(2.5) 
IS,uc r 

F = ocd (dp)2 JD 

by assuming Stokes' flow around a particle, f» is the empirical correction factor. 
It is further assumed that the set of equations (2.1 )-(2.4) describes correctly the laminar 

flow of a certain class of two-phase mixtures and the quantity f» has a constant value locally. 

2.2. Two-phase motion equations in the case of turbulent flow 

The instantaneous values of dependent variables consist of mean and fluctuating 
components: 
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Further considerations are limited to the situation when phase densities vary considerably 
(edlr!c "' 103) and the volume fraction of the dispersed phase is low (cxd < 10-2). The 
apparent density of gas ec = CXc(!c is then Within the interval 0.99 (!c ~ ec ~ (!c; in this 
connection the gaseous phase can be treated as macroscopically incompressible and the 
volume fraction fluctuation may be ignored. 

After performing the conventional Reynolds averaging and after approximating the 
Reynolds stress tensors, the mean flow equations for both phases can be written down 
in the form 

(2.6) . v.;x:d ud = o, 
(2. 7) V •OCc U c = 0, 

(2.8) edV·ocdudud = -ocdVjj+F(Uc-Ud)+ocdged+V·id,udr(VUd+VUI), 

(2.9) ec Y'·occ Vc Vc = - OCc Vp +F(Vd- Vc)+2/3ecic Vk+ CXcgec+ V·ic,Uef(VVc+ VUD. 

The turbulent stress tensor for the continuous phase is calculated on the basis of the Kolmo­
gorov-Prandtl hypothesis 

(2.10) 

where ,Uef = ,Uc + ftt and the turbulent viscosity ,Ur is calculated on the basis of the k- c 
turbulence model 

(2.11) 

The quantities k and c are computed by some additional transport equations obtained 
by the modification of the LAUNDER and SPALDING [15] turbulence model. 

It is assumed that the turbulent stress tensor for the dispersed phase is dependent 
on the turbulent viscosity ,Udt on the particle field 

(2.12) 

It can be noticed that the definition (2.12) is of an arbitrary character and it is assumed 
rather by analogy to Eq. (2.10) than on the basis of strict physical reasons. This results 
from the great difficulty to formulate constitutive equations for the dispersed systems as 
found by DOBRAN [17] and DREW and LAHEY [18]. 

According to the well-known PESKIN [19] formula, the quantity ,Udt for the particle 
field may be calculated by introducing the turbulent Schmidt number a P for the particles 

(2.1 3) ,Udtr!c = _1 = 1 _ 2_ ( LL )
2 

_k_' 
,Utr!d (Jp 2 A. Q+2 

where 

as a function of particle properties and the turbulence structure. Assuming the isotropic 
turbulence, the local Lagrangian time scale T L can be expressed by the equation 

(2.14) 
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The local Lagrangian length scale LL and the Eulerian microscale A are given by 

(2.15) LL= y~TL, 
(2.16) A = y10vck/e. 

As a result of time averaging and introducing the definition (2.12), the equation of motion 
for the dispersed phase (2.8) is elliptical which means that there occurs an eftchange of 
momentum between particles resulting from turbulent particle collisions. 

2.3. Equations of turbulence model 

The presence of the interphase momentum exchange function Fin the motion equation 
(2.4) results in the occurrence of new correlations in transport equations for the turbulence 
kinetic energy k and its dissipation rate e. The strict correlational form of transport equa­
tions fork and e are given by ELGHOBASHI and Asou-ARAB [12]. In the case of two-phase 
flow the exact equation for the turbulence kinetic energy consists of 38 terms and for the 
dissipation rate, of 67 terms. 

On some additional assumptions, mentioned in Sect. 2.2, and after modelling the well­
known turbulent correlations, the transport equation for k has the form 

(2.17) 

where s; denotes the additional source term. This term has the form 

(2.18) S! = F(u~iu:li -2k) 

and only one new correlation has to be approximated. A similar form of the term s; was 
{)btained by DANON et a/. [11] and GENCHEV and KARPUZOV [20]. 

With the assumption u~i u:u = 2k in the case of very small particles, the term s; = 0 
and then the two-phase mixture can be considered as the homogeneous mixture. When 
particles are not subject to gas velo~ity fluctuations, that is u~i udi = 0, then S! = - 2Fk and 
the dispersed phase significantly reduces the kinetic energy of turbulence of the continu­
{)US phase. On the basis of the CHAo [21] solution of the motion equation of a spherical 
particle in a turbulent fluid, as shown by ELGHOBASHI and Asou-ARAB [12], it is possible 
to evaluate the value of the correlation u;iu~i and the term s; may be written down in the 
form 

(2.19) 

where E(w) is the Lagrangian frequency function. The function E(w) is, in general, 
.affected by the presence of particles. In the low frequency range (inertial subrange) the mo­
dulation of the Lagrangian frequency function of the continuous phase by the dispersed 
phase can be neglected as shown by Tsun et a/. [8]. Thus the following form of the 
function E(w) can be used: 
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(2.20) 

where w ranges from 1 to 104 and TL is calculated from Eq. (2.14) 
The functions !21 , !22 and QR are evaluated on the basis of the CHAO [21] solutions 

a,= (:f +¥6(:)"' +3(:)+¥6(:(+1, 
!)2 = p- 2 

(: r + ¥6 p-t (: r + 3 (:) + ¥6 (: r +,. 
DR = [(1- {J)wf(rl/1)] 2

, 

where 
ex= 12vJ'n/dff, fJ = 3ec/(2ed+ec). 

The quantity e4 in Eq. (2.19) represents the additional dissipation of the turbulence 
kinetic energy connected with turbulent interphase interactions. Since the value of the 
integral in Eq. (2.19) is within the interval ( -1, + 1), the value of the term S~ is limited 
to the interval 

(2.21) o ~ s~ ~ -2Fk. 

The transport equation for the dissipation rate e, developed on the basis of Eq. (2.2), 

has the form 

(2.22) 

where S~ is related to the presence of the function F in the motion equations. The strict 
form of the s; term for the considered class of the two-phase flow is given by the equation 

(2.23) se = 2F ( ou~i ou~i _ ) oF (2 , . ou~i _ ok ) 
P Vc 0 0 E +vc 0 Ud, 0 0 • xk xk xk xk xk 

The value of s; is within the interval 

(2.24) 

Considering that F ~ vc, the second term in Eq. (2.24) may be neglected and the value 
of S~ can be evaluated in the following way 

( 
~ , a , \ 

(2 2 ) e uUci Udi } e 
0 5 sp = 2F Vc oxk oxk - e = - k ctcecea, 

where Ea is determined by Eq. (2.19). The value of s~ is within the interval 0 ~ s; ~ -2Fe. 
Thus the maximum value of the term is different from the maximum value of the expression 
(2.23) only about a negligible low value of the expression vc VF· Vk. 

As a result of some additional assumptions, the proposed forms of the equations of 
motion and those of the turbulence model are considerably simpler than the ones given by 
ELGHOBASHI and ABou-ARAB [12]. Some new components have been introduced in a strict 
manner with no need to introduce any additional empirical constants. The evaluation 
carried out indicate that the quantities S~ and S~ display correct asymptotical behaviour 
with the change of a particle diameter. 
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3. Application of the model to two-dimensional recirculating flow 

3.1. The flow considered and equations 

The presented mathematical model is applied in the calculation of a two-phase flow 
through a pipe orifice. In the considered geometrical configuration, shown in Fig. 1, which 
may schematically represent the flow metering system, the sudden throat restriction gener-

r 

z 
- · - ·~ 

FIG. l. Flow system with an orifice-meter. 

I 
--+ 

ates substantial accelerations and transitional non-equilibrium between the two phases. 
Since the recirculation zone exists behind the orifice, the flow phenomenon is of an elliptical 
character. The axial symmetry is assumed, the gravitational force is neglected, and Eqs. 
(2.6)-(2.9), (2.17) and (2.22) are simplified to two-dimensional ones and they are written 
down in the cylindrical coordinates. With the above a<;sumptions the motion of the two­
phase mixture is described by a set of equations, which consists of the following equations 
of continuity 

(3.1) 

(3.2) 

equations of motion for the continuous phase 
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{ 
a 1 a 2 } ap 

(3.6) (!d --az(<XdUdVd)+--,-a,(r<XdVd) = -<XdTr 

2 a ( a vd ) a ( a vd ) +F(Vc- Vd)+r Tr rad/1-dt af + az <Xd/1-dt az 
a ( aud) vd + Tz lXd/1-dt a,- - 2<Xdftdt 7 ' 

where U and V are the mean velocities in the axial z and radial r directions, respectively. 
The interphase momentum exchange function F is calculated from Eq. (2.5) where the 
empirical correction factor fo is given by 

(3.7) fo = I +0.15 Rv~· 687 

and ReP denotes the particle Reynolds number based on the local interphase slip 

(3.8) ReP = _ Y (Uc- Ud)
2 + (Vc- Vd)

2
(!cdp . 

ftc 

The turbulent viscosity of the dispersed phase /1-dt is calculated from Eq. (2.13). It has been 
found, however, that the Peskin formula in the present calculations gives a negative Schmidt 
number in most of the flow domain. A similar conclusion was reached in [13] for a two­
phase turbulent jet expansion problem where the scale ratio LLIA. in Eq. (2.13) was replaced 
by I I R where R is a stream radius and I is the dissipation length scale calculated from 

(3.9) I = c;'4k 312 I e. 

Due to the absence of any better information, Eq. (3.9) was applied in a part of the presen­
ted computations. 

The turbulence model consists of the transport equations for the turbulence kinetic 
energy: 

and the dissipation ratio 

{ a 1 a } a ( P-t a c ) (3.11) (!c ---az(<XcUce)+rTr(racVce) = Tz <Xca;az 

1 a ( ftt a e ) E G ) se + rTr flXc~a, +<Xcy(Ctftt -C2(!cE + P' 

where the terms s; and s; are calculated from Eqs. (2.19) and (2.25). 
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The standard values of the k- e turbulence model constants were applied as given by 
LAUNDER and SPALDING (15] and RODI (22]. 

As a result, the set of eight nonlinear partial differential equations with eight unknowns 
Uc, Vo Ud, Vd, p, k, e and ad is obtained. The volume fraction rxc of the continuous phase 
can be calculated from the global balance equation 

tXc+ot:d = 1, 

3.2. Boundary conditions 

The computational area, considered in further calculations, is presented in Fig. 2. 
On account of the elliptical type of partial differential equations given in Sect. 3.1, 

it is necessary to assume appropriate boundary conditions for all the dependent variables 
on the area boundaries. 

-
' 
i --t-·· ll i 

j . 

11 ) 'I _! 
~ I ~ l _b F. 

i I r--= 3 

! ]I ! 
+-1- . -+-- 1-1- 1-t-· 1- . -1-- •• 1--? ..... -t-·-1 r- - . ~ 

.!if 
FIG. 2. The finite difference grid points location. 

Considering the aim of computations, relevant to the analysis of the transitional non­
equilibrium of the flow phenomenon, it is assumed, for simplicity, that there is some 
local equilibrium between both phases in the inlet boundary section y 1 • 

Thus the following boundary conditions are assumed in this section: 

Uc(r) = Uir) = U0 (r), ad(r) = IX0 , k(r) = k 0 (r), 

e(r) = e0 (r), Vc(r) = Vd(r) = 0 . 

The radial distributions of the velocity U0 (r), the turbulence energy k 0 (r) and the dissipation 
rate e0 (r) were calculated in the same manner as for fully-developed turbulent pipe flow, 
on the basis of the method presented by DoBROWOLSKI and KABZA [23]. 

On the axis of the pipe symmetry y 2 , the boundary conditions are deduced from the 
assumed axial symmelry of the flowing stream: 

V = V = }__Uc = aud = aad = ~ = ~ = O 
c d ar ar ar ar ar . 

At the outflow boundary y 3 the boundary conditions for a greater part of the variables 
are prescribed arbitrarily: 

Vc = Vd = a Ud = a ad = ~ = ~ = O. 
az az az az 
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For the axial component Uc of the velocity vector of the continuous phase, the following 
continuity condition is assumed: 

where Me denotes the mass flow ratio. 
The effect of the boundary conditions prescribed arbitrarily in the section y 3 on the 

flow field near the orifice may be reduced by a sufficiently long distance of the cross-section 
y3 from the orifice. 

On the solid walls y4 , the boundary conditions for the continuous phase equations 
are deduced from the applied version of the k- c turbulence model for the high Reynolds 
number flow as shown in the paper by LAUNDER and SPALDING [15] and Rom [22]. 

For the dispersed phase the following conditions are assumed: 

orxd an = vd = ud = 0, 

where n is the normal direction to the wall. 
In a part of the computations, when the dispersed phase was treated as an in viscid one, 

a different form of these conditions was applied: 

ort.d = o(Vd)r = (Ud) = O on on n ' 

where the subscripts t and n refer to tangential and normal-to-the wall components of the 
velocity vector for the dispersed phase, respectively. 

3.3. Numerical procedure 

The considered flow is difficult to solve, even in the case of a simple homogeneous 
fluid, when the flow phenomenon is described by the Navier-Stokes equations. This 
results from the sudden stream contraction in the section before the pipe orifice and recir­
culating flow behind the orifice. Both factors mentioned above are the reason of numerical 
difficulties connected, on the one hand, with the effect of the additional numerical diffusion, 
introduced by the upwind differencing schemes, applied for the sollution of elliptical 
flow problems, and on the other hand, with the necessity of applying fine grid spacing 
in the zone of stream contraction. The mentioned problems and methods of their solutions 
have been discussed at large by RAITHBY [24], SHYY and CORREA [25] and CASTRO [26]. 
To reduce the effect of the additional numerical diffusion the SUDS differencing scheme 
as proposed by RAITHBY [28] was applied in the paper by DOBROWOLSKI and KABZA 
[27]. In work by NIGRO et a!. [29], in order to obtain more accurate calculations in the 
zone of stream contraction, a specially designed semi-orthogonal grid was used. 

In some papers, e.g. by POPE [30] and SHYY eta!. [31], special computational methods, 
relevant to the use of general orthogonal and non-orthogonal finite-difference grids, 
were proposed in order to achieve more accurate computations in the prediction of recir­
culating flow. 

In two-phase flow it is necessary to solve the sets of equations for both phases, which 
makes new problems connected with the presence of interphase couplings. Appropriate 
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algorithms, characterized by a high degree of implicity, are presented in the papers by 
SPALDING [32] and LEE [33]. 

In the case of the flow considered in the present paper and on account of the assumed · 
small volume fraction ad of the dispersed phase, it is possible to apply a simplified calcula­
tion scheme. 

The solution of the set of equations given in Sect. 3.1 is based on the extension of algo­
rithms applied in the paper by DoBROWOLSKI and KABZA [23] for the calculation of a turbu­
lent flow through a pipe orifice. 

The computational area is discretized by the finite-difference grid as shown in Fig. 2. 
Computational cells and main grid points are given in Fig. 3. 

a 
I N(i,j+1) 

1 Ui.j+1 I vi.j+1 I 
I 

! w(i-1,j) P(i,j) ...._ __.. E(i 
! 

ui-1,j Uj,j 
--..-

I V·. 
ui+1.j 

V· I .,y. 1' 1- ,J I.J I 

b Ui,· 1 
N 

S(i,j-1) 

oUc,Ud Ui,j-1 
Vi,j-1 I ~ Vc,Vd ., 

l o P ,oc,k,f 
l r-

c d 
N 

Pi-t' p-1+1, 
w E 

vi+tj 
E L.. 

pi.-1 
s 

Zi 

FIG. 3. Th:! finite differen::e cells and notations; a) general finite-difference grid and variables location 
b) grid type U for axial vdocity components, c) grid type V for radial velocity components, d) grid 

type P for pressure. 

The axial components Uc and UJ and radial components Vc and Vd of the velocity 
vectors of both phases as well as the variables p, k, e and ad are defined in various grid 
points. Consequently this leads to making use of three displaced grid types U (Fig. 3b), 
V (Fig. 3c) and P (Fig. 3d). 
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On account of the similarity of form of the equations of motion and the turbulence 
model equations, these are discretized in a similar manner. In consequence, for each 
internal grid point, the following form of general algebraic equation was obtained: 

(3.12) (ai + Sp,cp)$p = a~$E+afv$w +a~(/>N +a~(/>s + Su. cp, 

where (/> denotes a general dependent variable and the subscripts P, N, E, S and W concern 
points of difference grid Fig. 3b-3d, appropriate for a given variable. The components acp in 
Eq. (3.12) are calculated on the basis of the finite-differential approximation of convective 
and diffusive terms of differential equations. The appropriate computational algorithms 
are given in the paper by GOSMAN and PUN [34], KOLNIAK eta/. [35] and by PATANKAR [36]. 
The additional source terms refer to the use of the rest of the equation components not 
included in the coefficients acp. Thus, for example, for Eq. (3.3) ($ = Uc) these ·components 
have the form 

(3.13) 

(3.14) 

where 

Sp, Uc = Fp VU, 

Su!uc = DU(p..,-p,.)+ (Fp(Ud)p+Svis)VU, 

VU = r~(z~ -z~)(r~ -r~), 

r~ +r~ u u 
DU = (ac)w - - 2 - (rn -rs); 

the notation used is given in Fig. 3b. 
In order to improve ~he convergence, the component F(Ud- Uc) is approximated 

in a semi-implicit manner. 
The presence of new components in the standard form of transport equations for k 

and e requires the modification of a computational scheme for homogeneous fluids. 
The components SP,k and Sv,k of Eq. (3.10) are calculated as follows 

(3.15) Sp,. ~(a: c,::k +F)VP, 

( 
lfO,OOO Ql -QR ) 

Su,k = IXci.J.rG+Fk Q E(w)dw VP, 
1 2 

(3.16). 

where VP denotes the control volume of the grid type "P" shown in Fig. 3d. The integral 
term in Eq. (3.16) is calculated on the basis of the second order accuracy method and the 
interval of integration is divided into 150 nonuniform parts. 

The presence of the integral term in the finite difference equations for the turbulence 
model increases the computer time considerably since the component must be calculated 
in every grid point at each iteration level. 

The equation of continuity (3.2) was used for the evaluation of the pressure correction 
p' on the basis of the SIMPLE [36] method. 

The distribution of the volume fraction a4 of the dispersed phase in the two-phase 
stream was computed from Eq. (3.1). The discretization of this equation on the grid type P 
(Fig. 3d) leads to the difference equation 

(3.17) A:w(ad Ud)e- A~w(ad Ud)w+A~s(ad Vd)n- A~s{IXd Vd)s = 0. 
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The values of the expressions in brackets are calculated on the basis of the upwind differen­
cing scheme, e.g. for the point e we obtain 

(3.18) 
1 

(ccdUd)e = -2{[ccd]E(Ue-JUeJ)+[ccd],(Ue+!UeJ)}. 

After substitution of the equations of the type (3.18) for the points s, n and w of the differ­
ence grid to Eq. (3.17), the Poisson equation is obtained for the computation of the 
distribution ccd. 

Considering the nonlinearity of the sets of difference equations and interphase couplings, 
it was necessary to apply some relaxation techniques. 

Equation (3.12) may be written down in the modified form 

.J: afr/Ji+Sv,q,+Ir!Jn 
;;;,n+l _ N,S,E, W 
o/p - ~-----------

2: af+SP, q,+I 
(3.19) 

N,S,E,W 

where n means successive iteration number. In order to improve the stability, a fictitious 
source term I(r!Jn+l_rpn) was introduced. Equation (3.19) shows that if I is very large, 
only a small change can occur in the value of r/J. This plays an important role in the initial 
phase of the iterative process. The relaxation parameter I~ 0 was selected on the basis 
of the mass balance in each elementary cell of the difference grid. 

On account of the fact that for the convergent solution 

lim I(r!Jn+l- rpn) = 0, 
n-+oo 

the introduced relaxation parameter does not affect the solution. 
The sets of difference equations (3.12) for particular variables were solved by the block 

"line by line" iteration method. In the internal iterative cycles the following under-relaxation 
was applied: 

rpn+l = pqy.+l + (1- {J)r/Jn, 

where {J denotes the relaxation parameter. 
The values of {J were selected separately for each variable. The solution for a homo­

geneous fluid was assumed as an initial distribution for the two-phase flow. 
The presented calculation scheme is characterized by good convergence for the low 

values of ccd (typicaJ value of cc4 = 0.005 or less). In case of higher values of cc4, the con­
ver gence becomes slow and it is then necessary to use a more complex algorithm, 
e.g. IPSA proposed by SPALDING [32]. 

3.4. Results of calculations 

A series of numerical calculations for an orifice with the area ratio m = (d/ D)2 = 0.4, 
installed in a pipe of the diameter D = 0.081 m, has been carried out. In all the presented 
computational examples there is assumed the constant value of the Rynolds number 
Re = U0 Declftc = 9 · 104 where U0 = 18.6 m/s is the mean gas velocity in the cross­
section before the orifice. The density ratio f!dlf!c = 1000 is assumed. The uniform volume 
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fraction distribution cxd = 0.001 corresponding to the loading ratio Y = Md/Mc = 1 
is assumed in the inlet section. 

All the computations presented below were performed with a grid of 14 points in the r 
direction and 31 points in the z direction, because of the limited speed and storage of the 
used computer (ODRA 1305). 

A comparison of turbulence models, the purpose of which is to estimate the influence 
of the microstructure of a two-phase stream upon the time-mean flow fields of both phases, 
is presented below. Three versions of a turbulence model are used: the first one excluding 

a 40 

Re=9·104 

m=0.4 
y :1 

30 St =7.66 
k_ 
ko 

20 

10 

0 
-2 0 2 z 4 6 8 

0 

b 
Re=9·104 

3 m=0.4 
y =·1 

St = 7.66 

2.5 

_u__ 
Uo 

2 

1~----~----~------~----~----~ 
2 0 2 .z_ 6 8 

0 
FIG. 4. a) Axial distributions of normalised turbulence energy. b) Axial distributions of both normalised 
phases axial veloci~y components; 1 -homogeneous flow, 2- nonequilibrium flow with basic k- e 
model, 3- nonequilibrium flow with maximum source terms in k- e model, 4- nonequilibrium flow 

with proposed version of turbulence model. 
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the influence of particles (s;, s; = 0), the second one including the maximum influence 
of particles on the turbulence kinetic energy (s: = 2Fk, s; = - 2Fe) and the third one 

based on the Chao solution (s; = - (Xc(!cEa, s; = - ~ rxcecea, where Ea is calculated from 

Eq. (2.19). 
The results of calculations for particles of the diameter dP = 100 (J.m are presented in 

Figs. 4a and 4b, and they are compared with the appropriate solutions for homogeneous 
flow. In homogeneous fluid flow (curve 1) it is possible to observe a big increase in the initial 
turbulence intensity behind the orifice, brought about by the action of shear stresses ocurring 
on the boundary of the recirculating zone. The presence of particles in the stream suppresses 
the turbulence velocity fluctuations to a great extent. 

In the case of the zero values of the additional source terms in the turbulence model 
equations (curve 2), only the influence of changes of time-mean variables upon the turbu­
lence energy is included. 

Whe!eas, in the case of the nonzero values of the s; and s; terms, some considerably 
additional dissipation of the turbulence energy is noticed, especially in the expansion 
section of the flowing stream. 

The attenuated influence of particles on the turbulence energy is also connected with 
the increase in the volume fraction of the dispersed phase in the symmetry axis behind the 
orifice. 

The microstructure of the stream considerably influences the velocity distributions 
along the symmetry axis in the expansion section of the stream (Fig. 4b). 

In order to analyse more widely the transitional nonequilibrium of flow and the inter­
phase coupling effect, a series of numerical calculations were carried out for particles 
of the diameters dp = 10-:-200 (J.m. 

With the values of the rest of the parameters considered in the calculations, the Stokes 
number 

(3.20) 

is contained within the interval: St = 0.076-30.6. 
While considering the weak dependence of the time-mean variables of both phases 

upon the turbulence in the section of a stream contraction, s; = s; = ftdt = 0 is assumed 
This allows to lessen the costs of computations connected with the analysis of the 

two-phase flow phenomenon in the immediate vicinity of the orifice. The radial distrib­
utions of the axial velocity vector components Uc and U4 of both phases in the selected 
cross-section of the flow system are presented in Fig. 5. These results correspond to the 
loading ratio Y = 1 and various values of the Stokes number. The great dependence 
of velocity distributions of the dispersed phase upon the value of the Stokes number 
can be noticed. Wi-th St ~ 0 the velocity differences of both phases are small and they 
occur only near the orifice region. As the values of St rise, the degree of the non-equilibrium 
flow phenomenon increases and with value of St = 30.6 the dispersed phase undergoes 
only some slight acceleration. The axial distributions of the velocity of both phases 
along the duet axis are presented in Fig. 6. 

9 Arch. Mech. Stos. nr 5-6/8' 
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The presented results point out the fact that the cross-sections "vena contracta", 

in which the maximum velocities of both phases occur, are displaced in relation to one 

another. Up to the present the factor has not been taken into consideration in the formula­
tion of one-dimensional models. 
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FIG. 6. The axial distributions of normalized axial velocity components of both phases. a) dp = 200 fliD, 

b) dp = 100 [LID, C) dp = 50 [LID, d) dp = 25 (liD, e) dp = 10 [LID. 

The transitional nonequilibrium of th~ flow phenomenon causes the nonuniform 
distribution of the volume fraction cxd of the dispersed phase. 

The radial distributions of the void fraction cxd of the dispersed phase are presented 
in Fig. 7. They point out the great dependence of the volume fraction distribution upon 

9* 
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FIG. 7. The radial distributions of the void fraction IX4 of the dispersed phase. 

the value of the Stokes number. In the case of large particles a considerable increase in the 
local volume fraction near the axis of symmetry behind the orifice can be observed. To 
explain this effect, the particle trajectories were calculated by the method given in the 
paper by DOBROWOLSKI [37]. The paths of particles leaving the inlet section with the veloc-
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ity equal to the local velocity of gas were calculated from the integration of the single 
particle motion equation in the velocity field of the gaseous phase. The results of calcula­
tions are presented in Fig. 8. They correspond to the assumption that particle collisions 
with the pipe orifice surface are of a perfectly elastic character. 

3 1., 
I I 

1., 5 

I 

-1 d 2 3 5 
I I 

e 0 2 3 L. 5 5 

l: 
I 

FIG. 8. The particles trajectories in the case of perfectly elastic collision with the surface of the pipe orifice; 
a) d, = 200 {liD, b) d, = 100 (liD, c) d, = 50 (LID, d) d, = 25 (liD, e) d, = 10 !l~· 

The dependence of particle trajectories upon their diameters, closely connected with 
the non-equilibrium of flow, is noticed. The paths of particles of the diameter dp = 10 (Lm 
are close to those of fluid elements. With the increase in the diameter dP of particles, their 
trajectories differ considerably from the stream-lines of the continuous phase, and with 
dP = 200 !J.m very complex trajectories are observed. Large particles glance off the orifice 
wall and cross the symmetry axis. 

As a result of trajectory concentration near the axis of symmetry and the decrease 
in the velocity of the dispersive phase, as shown in Fig. 5, there occurs the local increase 
in the volume fraction in the area behind the pipe orifice. 

The influence of the Stokes number upon the pressure distributions at the pipe wall 
for the constant loading ratio Y is presented in Fig. 9. Pressure distributions and, at the 
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FIG. 9. The pressure distributions at the pipe wall as a function of the Stokes number. 

same time, the differential pressure Llp are generally affected by the presence of particles 
and especially by the particle size diameter dp. 

The essential influence upon the increase in the differential pressure Llp,P in a two-phase 
flow is exerted by the particles of small diameters. A similar conclusion was reached by 
DoBROWOLSKI eta/. [38] for laminar flow through a pipe orifice and by DI GIACINTO eta/. 
[39] for laminar flow through a duct with a sudden rest.riction. The dependence of the 
differential pressure on the loading ratio Y and the Stokes number is shown in Fig. 10. The 
differential pressure L1p1P varies linearly with the loading ratio Y, thus it can be written 
down as 

(3.21) Llptp = 1 + f(St) Y, 
Llpc 

3~----------,------------.------------,---------~~ 

• St= 0 
x St = 0,076 
• St= 0.48 

APtp • St = 1.92 
& St= 7.66 

flPc • St= 30.6 

as 

Re=9 ·104 
m=0.4 

y 1.5 

FGI. 10. The differential pressure L1p,, as a function of loading ratio Y. 

2 
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where iJpc corresponds to the pressure drop of the continuous phase alone and the function 
f(St) is strongly dependent on the Stokes number. 

The linear dependence of the differential pressure t1p,P as the function of the loading 
ratio is also found in the' above-quoted papers by DOBROWOLSKI et al. [38], DI GIACINTO 

eta/. [39] as well as by SHARMA and CROWE [40], LEE and CROWE [41] and Doss [42], for 
a two-phase flow through a Venturi tube, but up to now no attempt has been made to 
establish any forms and arguments of the function f. 

Since the differential pressure in a two-phase flow is contained within the interval 
iJpc ~ !Jp,P ~ iJp8, where the value of iJp8 corresponds to a homogeneous mixture flo~ 
and t1pc is related to a pure gas flow, the functionf(St) has to satisfy the following asympto-
tic conditions: 

lim f(St) = 1, lim f(St) = 0. 
~~o ~~oo 

On the grounds of a number of numerical calculations from laminar [38] and turbulent 
flows, the following form of the non-equilibrium correction f(St) is proposed: 

(3.22) f(St) = {1 + exp [A (ln(18 Sty' m)- B)Jr
1

, 

where for the pipe orifice flow the constants A and . Bare equal to 0.9 and 1.2, respectively. 
The graph of the function j(St) and numerical data are presented in Fig. 11. 

~ 
~'.. 

·~
2

=0472} . ~2 ' w•th no turbulence model 
• =0,342 

0,8 

0,6 

f(St) 

0,4 

0,2 

0 
-2 

' 
& ~~0.400 with standard k-E model 

A ~ ~2=0,400 with modified k-E model 

I 

""" I 

" ~ 
f (St )={1+exp[0.9 (<I> -1.2)lf ~ ......... 

<I>= ln(18Stv'ffi) r-t-... 
-1 0 2 3 4 5 

¢ 
Fro. 11. The graph of the function /(St). 

1-

6 

The proposed function (3.22) approximates the numerical data and, moreover, it 
satisfies the asymptotic conditions. 

The term St can be defined by 

1 (!d ( dp )
2 

(3.23) St =IS ec D Rec. 

The definitions (3.23) differ from the Stokes number (3.20) only by introducing the non­
dimensional similarity groups. 

Thus, the proposed form of the function f conditions the pressure drop in a non-equi­
librium two-phase flow on the values of four nondimensional similarity groups: the density 
ratio (!4/ec , the scale ratio dp/ D, the Reynolds number for the continuous phase Rec and 
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FIG. 12. Comparison between experimental data and the result of calculations. 

the area ratio m. Figure 12 presents a comparison between the theoretical results based 
on Eqs. (3.21) and (3.22) and the experimental data of KESOVA eta/. [43] for the pressure 
drop versus the loading ratio for an orifice with area ratio m = 0.4. The calculations 
were performed for the equivalent mean diameter dp = 38 fJ.m based on the discrete 
particle size. distribution function. A good agreement exists between the predictions and 
the experim~nt. 

As shown in the recent paper by DoBROWOLSKI and KABZA [44], the function f(St), 
after some slight modification of the constants A and B, can be used for the prediction 
of the pressure drop in a Venturi tube and it allows to obtain good results of calculations 
with regard to the experimental data. 

4. Conclusion 

The presented computational model permits to include the non-equilibrium of the 
flow phenomenon and the influence of particles upon the microstructure of a turbulent 
two-phase stream. Some additional source terms in the transport equations for the kinetic 
turbulence energy and the dissipation rate have been introduced in a theoretical manner 
and the evaluations carried out point out their correct asymptotic behaviour. The conducted 
numerical investigations of transitional non-equilibrium recirculating flow, based on the 
proposed computational scheme show that the additional source terms s; and s; may be 
neglected in the stream-contraction problems but they have to be included into the 
considerations in the case of stream-expansion problems. 
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As a result of the numerical study, the interphase coupling effects of the velocity, 
volume, fraction and pressure fields have been analysed. It has been found that the basic 
parameters for turbulent dilute suspension flow are the Stokes number and the loading 
ratio. 

A simple form of the non-equilibrium correction function, based on four nondimensional 
similarity groups, has been proposed for the calculation of the pressure drop in the case 
of transitionally non-equilibrium dispersed two-phase flow. 
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