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Two-dimensional drop in the presence of an electric field
M. EMIN ERDOGAN (ISTANBUL)

THiS PAPER is concerned with the behaviour of a two-dimensional drop immersed in a dielectric
fluid in the presence of a uniform electric field. Assuming that the influence of the electric stresses
on the fluid is included with no reciprocal effect of the motion on the fields, the equations of
electrohydrodynamics are solved under the Stokes approximation. The circulation of fluid
in and round a two-dimensional drop is compared with that of a spherical drop and the differences
between them are examined. The surface-force density required to retain the shape of a two-
dimensional drop is calculated and it is shown that the equilibrium geometry does not depend
on the ratio of the viscosities of fluids in and out of the drop.

Praca po$wigcona jest zagadnieniu zachowania si¢ dwuwymiarowej kropli zanurzonej w plynnym
dielektryku i poddanej dzialaniu jednorodnego pola elektrycznego. Uwzgledniajac wplyw napigé
elektrycznych na plyn, lecz pomijajac oddziatywania odwrotne ruchu na pole, rozwigzuje si¢
réwnania elektrohydrodynamiki w przyblizeniu Stokesa. Cyrkulacje plynu wewnatrz i wokot
dwuwymlarowe] kropli porbwnuje si¢ z odpowiednimi wynikami dotyczacymi kropli sferycznej,
zwracajac uwage na pojawiajgce si¢ tu réznice. Obliczono gesto$é sil powierzchniowych po-
trzebnych do utrzymania ksztaltu kropli dwuwymiarowej; wykazano, Ze geometria stanu réwno-
wagi nie zalezy od stosunku lepkosci plynéw wewnatrz kropli i w o$rodku otaczajacym.

Pabora mocBsAlleHa 3aga9y MOBECHHSA ABYXMEDHOH KalUmM, IOTPY)KEHHONH B YKAIKOM IH-
JJIEKTPHKE, M TIOABEPrHYTOH MAEHCTBHIO OQHOPOSHOTO 3JIEKTPHYECKONO MONA. YUHTHIBaA
BIIHAHHE EKTPHYECHHX HATAXKEHHIE Ha YKUOKOCTh, HO mpeHeOperasa oOpaTHLIM BO3NeilCTBHEM
J[BIDKEHHUSA Ha MOJie, PElIaloTCs YPABHEHHA JeKTPOrHAPOIHUHAMHKY B MpHbmKenun Crokca.
UMpKynAUMKM JHHAKOCTH BHYTPH M BOKPYT OBYXMEDHOH KAIUTH CPaBHHBAIOTCA C COOTBET-
CTBYIOIIMMH PE3YJILTAaTAMH, KAcCaIOLIHMHCA chepH4YecKoH Karum, ofpaliasd BHHMaHHE HAa HO-
SABNAIOLIKECA 37€Ch PAa3HMIbI. BhIuMCcIAeTca IUIOTHOCTh MOBEPXHOCTHBLIX CHII HEOOXOMMMBIX
A ynepyxanus opMBI IBYXMEPHO# Karlli; OKa3aHo, YTO MeOMETPHA COCTOAHHA PaBHOBECHA
HE 33BHCHT OT OTHOLUEHHA BA3KOCTH MHUAKOCTEH BHYTPH Kalld H B OKpYyMaiolieil cpefe.

1. Introduction

THE sTUDY of a flow system in which the electric field and the velocity field affect each
other has been termed electrohydrodynamics. The applications of electrohydrodynamics
are numerous: cryogenic fluid management in the zero-gravity environment of space,
formation and coelesence of solid and liquid particles, electrogasdynamic high voltage
and power generation, insulation research, physicochemical hydrodynamics, heat, mass
and momentum transfer fluid mechanics, electrofluid dynamics of biological systems,
and atmospheric and cloud physics [1]. In some applications explicit knowledge of the
flow due to a single drop is required. Experimentally and theoretically it has been shown
[2] that a circulation can occur in the drop and its surroundings in the presence of a uniform
electric field. The equilibrium geometry of the drop was examined and the force required
to retain the spherical shape was calculated. The equilibrium geometry varies between
oblate and prolate ellipsoids, depending on the ratios of viscosities, dielectrics and con-
ductivities of fluids in and out of the drop. In the limiting case in which the drop is highly
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conducting compared to the surrounding fluid, the electric field acts as normal with regard
to the interface and hence the viscosity ratio does not play any particular role [3].

The behaviour of a two-dimensional drop immersed in fluid has been examined ([4, 5])
and it has been found that the two-dimensional solutions obtained have many features in
common with the observed behaviour of three-dimensional drops. In this paper, the
behaviour of a two-dimensional dielectric fluid drop immersed in another dielectric fluid
in the presence of a uniform electric field is considered. The general view of the circulation
of fluid in and round the drop is similar to that of a three-dimensional drop. A remarkable
difference between the two-dimensional case and the three-dimensional one is that the
equilibrium geometry of a two-dimensional drop does not depend on the viscosities of fluids
in and out of the drop. However, when a drop is highly conducting as compared to the
surrounding fluid, the viscosity ratio does not play any role because th= electric field acts as
normal with regard to the interface. The two-dimensional case and three-dimensional
one may show a similar situation. Thus, considering the two-dimensional case it is
possible to obtain some results about the three-dimensional case.

2. Governing equations

The magnetic induction in the fluid in and out of the drop is negligible because of
dynamic currents is small enough. It is assumed that the influence of the electrical stresses
on the fluid is included in the model, but there is no reciprocal effect of the motion on the
fields. Therefore, the appropriate laws of electrodynamics are essentially those of electro-
statics. Under the conditions considered here the governing equations of electrohydro-
dynamics are [3]

@.1) VxE =0,
(2.2 V'E=0,
(2.3) I=JE,
2.9 Vp = pV3u,
2.5) Veu=0,

where E is the electric field intensity, I the electric current density, o the electric conductiv-
ity, u the velocity, p the pressure, u the viscosity; throughout the paper MKS units are
used.

The boundary conditions to be applied at the interface of a drop in an electric field
are [3]

(2.6) nx{E} =0,
Q.7 n-{cE} =0,
(2.8) n-{u} =0,
2.9 nx{u}=0,
(2.10) nx {Z+t} =0,

@11) 0B+ +7(p+ ) =0,
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where Z is the viscous stress which is given by

2.12) Z = —pn+uVu+(Vu)]*n,
and t is the electric stress which is given by
2.13) t=— %sE *En+zE(E* n)

and {4} denotes the jump of A across the interface. T'is the surface tension, and R, and R,
are the radii of curvature of the surface; these radii are reckoned as positive when the
corresponding centre of curvature lies on the side of the interface to which n points.

Under the conditions considered here, the electric field E and the velocity field u can
be determined independently by Egs. (2.1)-(2.5) and then, they can be related by the
boundary conditions (2.6)-(2.11).

3. Electric field
We consider a drop or bubble, assuming that its shape is cylindrical with radius a.

Electrodes lie at a distance of many radii from the drop and then the electric field is uniform
far from the drop. Appropriate cylindrical polar coordinates are defined as originating

¢

F1G. 1. The two-dimensional drop of radius a is immersed in a liquid in the presence of a uniform electric
field of magnitude E, far from the drop.

at the centre of the drop; the x-axis is in the opposite direction of the applied electric
field and the y-axis is normal to it (see Fig. 1). There are four boundary conditions for the
electric field intensity: (i) E is finite inside the drop; (ii) the tangential component of the
electric field is continuous across the surface of the drop; (iii) there is no surface current;
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and (iv) E tends to E, as |x| tends to infinity. Subject to these boundary conditions, Eqgs.
(2.1)«2.3), (2.6) and (2.7) give that outside the drop

2

3.1 E = H—a[Eo—_(l—“)(Eo' n)n],
and inside the drop

- 2
3.2) E= H_an.

The expression in Eq. (3.2) shows that the electric field inside the drop is uniform.

The circulation in and round the drop is responsible for electric force density which
is related to the Maxwell stress tensor. We need the expressions of t over the surface of the
drop. The tangential and normal component differences of t across the surface of the drop
are

63 nx{t) = o (@- D@ E) (1 xEo),

) 0-{t) = <oy (- P)Bo" Eo+ (Ba* +4-2) (B0 ),

where f = ¢/z is the ratio of the permittivities.

4. Velocity field

The flow considered in this paper is governed by Egs. (2.4) and (2.5). The boundary
conditions for the velocity are: (i) u is finite inside the drop and tends to zero as |x| tends
to infinity; (i) u*n =0 and @' n = 0 at the interface; (iii) the tangential component
of the velocity across the drop is continuous; (iv) tangential electric stress and tangential
viscous stress are in balance at the interface.

Following the general arguments given in [6] and [7] we write the pressure and the
velocity in the fluid outside the drop

P—Px _ 4|by Zb,,x,x,)
(4‘1) .“ e A( r; f‘ y
4.2) uy = byyx, f(r)+byx;g(r)+byyxix;xh(r),
where

by = EqEoj, by = by, by = E3,

and 4 is a constant. Using the same reasoning as for outside the drop, we write the pressure
and the velocity in the fluid inside the drop

(4-3) % = C(bux;xi—Zbuxng),

(4.4) = byx, f(r)+byx;8(r) + beyxex;x:h(r),

where C is a constant.
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Inserting Egs. (4.1)-(4.4) into Eqgs. (2.4) and (2.5) and then using the boundary condi-
tions, we obtain, after some lengthy calculation,

_ 2a _ 6 _ _ &Eja(ap-1)
d=ggl, Cwaml. Vs~ g
fu €& __2a 20 (2° o
T aEZ\r? ) &= aE?% r*’ T @ER\ s )
= U (r? _ 2U 2r? = 2U
f-rza(:ﬁ“)' 3'&3‘(“?)’ "=

where U is a velocity (its meaning will be given in the next section) and y = u/g.

For a later use it is convenient to give the expression of the normal component of Z
across the interface. It can be written as

& e(af—1

) 0{Z) = Fo—par— 53 (o Eo=2(Eo " 0]
It is a remarkable fact that the normal stress difference does not depend on the viscosities
in and out of the drop. This situation may occur when the electric field acts as normal
with regard to the interface [3].

We use the appropriate cylindrical polar coordinates defined in Fig. 1. Qutside the
drop, using x = rnin Eq. (4.2), we have

u = [Eq " Eorf+(Eo* 0)*r*hln+ (Eqo * m)rgE,.
Considering that
Eo*n= —Eycosl, E;-e; = Eysinf,

where n = e, and e, are the unit vectors in cylindrical polar coordinates, we obtain the
u, and u, components of the velocity in the form

3
Uy = —U(ﬂ—%)cosza,
r r
3
Uy = U“f? sin20,

and similarly inside the drop we have

— > ¥
u, = —U(a—a—E)COSZG,

3
Ty U(g——z%{}sinze.

It is possible to define a stream function which is related to the , and u, components of the
velocity by the relation

_ 1oy __ oy
“=70 T T ar
An integration gives out the drop

2
E I l#:—z)sinﬂi,
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and in the drop

B ( r_r

U= " 3\7—7 sin20.
It is very interesting to note that the stream lines are exactly of the same form in the present
case and in the case of a bubble in a pure straining motion in the absence of an electric
field.

There are nine stagnation points, four of them at the surface of the drop which are
It
2
V2 :z) ()/f- 3n\ [y2 5=\ (V2 1= .

dl.'Op and located at (‘—2 a, T ’ —2—0, —4—' y —2 a, T 4 "2—0, T . The location
of the stagnation points in the drop is symmetrical. For a spherical drop the stagnation

points in the drop are located at (]/%a, 54"), (l/%a, 126°), (l/%a, -126“),

(]/-E;-a, - 54°). The stagnation points in the cylindrical drop are closer to the centre of

located at (a, 0), (a, %), (a, ), (a, 3 ), one at the centre of the drop, four inside the

]

/

FIG. 2. Streamlines, drawn in a one fourth plane alone, in the present case and Ref. [2] by G. L. Taylor;

, the present case; (0):0.02, @:0.05, ®:—0.05, ():—0.2; the numbers are values of y/Ua.

— — — —, Taylor’s case: (®:0.02, @:0.05, ®:—0.05, ®:—0.2; the numbers are values of y/Ua®
® and O show the stagnation points in the present case and Taylor’s case, respectively.
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the drop than to that of the spherical drop. As illustrated in Fig. 2, the ratio of the
location of the stagnation points in the cylindrical drop to that of a spherical drop
having the same radius as the cylindrical drop is 0.71/0.77 = 0.92. Figure 2 gives
a comparison between the two-dimensional case and three-dimensional one. It shows
that there is a fairly good agreement between streamlines in both cases.

Although the two-dimensional drops considered might be thought to be of little rele-
vance to the three-dimensional drops encountered in practice, the solutions derived show
remarkable similarities with the observed behaviour of the latter. As the discussion points
out it is possible to have some ideas about the three-dimensional case when the two-
dimensional one is examined.

Now we consider the velocity at the surface of the drop, and then we write

ug= Usin20 at r=a.

This shows that
|(u8)rnu| =U for 6= ii and 6= +3—;
4 4
thus, U is the maximum velocity. If the drop is insulating as compared to the surrounding
fluid, B is less than unity and then U becomes greater than zero. When U > 0,if0 <6 < —';— "

uy becomes positive, and if 0 < 6 < n, u, becomes negative.

5. The equilibrium geometry of the drop

The balance of the normal stresses on the interface of the drop is given by Eq. (2.11).
Since we assume that the interface of the drop is to be cylindrical and of circular cross-
section we replace the last term in Eq. (2.11) by — T/a. Equations (2.11), (3.4) and (4.5)
give

_ iE T
(.1) Po—Po = Wp—ﬁ(z'ﬂﬂ]——a—s
52) %[ﬁ(a’+a+2)—3} = 0,

where p.,—p, gives the relative hydrostatic pressure.

When Eq. (5.2) is satisfied the drop has a circular shape. In order to find out whether
the drop will become oblate or prolate under conditions where Eq. (2.11) is not quite

(EO'“)Z)

E§
applied normally to the surface of the drop is necessary to keep it circular, If we replace T'
in the modified form of Eq. (2.11) by T+ Fycos?0 and equate the coefficients of cos?8
we find

satisfied, we employ Taylor’s technique [2] and assume that a stress F, cos? (= F,

2¢E}

(5.3) Fy = Trar ¥
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where
D = B(a*+a+1)-3.

The equilibrium geometry depends on @, namely the functional relation which is given
by « and B. It is very remarkable that the equilibrium geometry does not depend on ¥,
namely the ratio of the viscosities. This may be so due to the electric field which acts as
normal with regard to the interface. If @ = 0, the drop is in steady-state equilibrium and
if @ < 0, in the absence of Fy, the shape of the drop will decrease its extent in the direction
of the applied electric field. If @ > 0, similar reasoning indicates that the drop would
elongate in the direction of the applied electric field.
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