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Nonlocal theory of interaction between jogs and kinks 

A. A. GOL~BIEWSKA-LASOTA (WARSZAWA) 

THE PAPER deals with the problem of interaction of kinks and jogs within the framework of 
nonlocal continuum theory. The general formula in the integral form describing this interaction 
is derived. Then the detailed analysis of the simple case of the abrupt nonextendedd efects in the 
nondispersive medium is performed. The interaction is of the order ,- 3

, where r denotes the 
distance between defects. The neglected details of the structure of the defects and the material 
would give account to the terms of the order ,- 5 and lower. The obtained result shows that for 
small distances, and particularly in the creation processes, this kink-jog interaction contributoni 
is of the same order of magnitude as the nonlocal terms of kink-kink and jog-jog interaction. 

Praca poswi~cona jest problemowi oddzialywania przegi~c z progami na podstawie nielokalnej 
teorii kontinuum. Otrzymano ogolne wyrai:enie w postaci calkowej opisuj11ce to oddzialywanie, 
a nast~pnie przeprowadzono szczeg6low11 analiz~ prostego przypadku skokowych nierozmytych 
defektow w osrodku bezdyspersyjnym. Oddzialywanie jest rz~du ,- 3

, gdzie r oznacza odleglosc 
mi~dzy defektami. Pomini~te szczegoly struktury defektow i osrodka dalyby wklad do czlonu 
rz~du ,-si nii:szych. Otrzymany wynik wskazuje, i:e dla malych odleglosci a szczegolnie w pro­
cesach kreacji wklad pochodZl!CY od oddzialywania prog-przegi~cie jest wielkosci11 tego samego 
rz~du eo i czlo,y nielokalne oddzialywafl przegi~cie-przegi~cie i pr6g-pr6g. 

Pa6oTa noca.a~eHa npo6neMe B3aHMO!.{eHCTBIDI nepern6oa c noporaMH, oiiHpa.aCL Ha HeJioi<am.­
Hyro Teopmo I<OHTHHyyM. fiOJI~eHO o6~ee BbipameHHe B HHTerpaJibHOM B~e ODHCbiBaro~ee 
3To B3aHMo,u;eikTBHe H 3aTeM npoae,u;eH no,u;po6Hbr:H aHaJIH3 npocroro CJI~a.a CJ<atn<oo6pa3HbiX 
Hepa3MbiTbiX .u;e<Pei<TOB a 6e3p;HcnepcHoHHo:H cpe,u;e. B3aHMop;e:HCTBHe nop.a.ru<a r 3 , r,u;e r 
o6o3Hat:~aeT paccro.aHHe Memp;y .u;e<Pei<TaMH. Heyt:~TeHHhie no.u;po6HoCTH crpyi<Typbi .u;e<Pei<TOB 
H cpe,u;br p;anH 6bi BI<Jia,D; a t:fJieH nop.a,u;I<a ,-s Ha 6onee HH3Ime tiJieHbi. flon~eHHbiH pe3yJI&­
TaT noi<a3biBaeT, tiTO p;n.a MaJibiX paccro.aH.H:H, a oco6eHHO B npou;eccax pom,u;eH.H.a, BI<Jiap; 
DpOHCXO,D;R~HH OT B3a.HMO,D;eHCTBHR nopor - nept:rlf6 RBJIReTCR BeJI.Ht:f.HHOH TOro me CaMOrO 
nop.a,u;I<a, tiTo .H HeJIOI<aJILHbie tiJieHbi B3aHMo,u;e:Hcreq.a nepern6-neper.H6 .H nopor-nopor. 

1. Introduction 

THE PROBLEMS of enetgy of kinks and jogs separately were st•1died in previous paper~ 
[1, 2, 3]. The considerations were based on the pseudocontinuum model introduced by 
RoauLA [4]; the details of the real crystal structure were taken into account and the in­
teractions were assumed to be nonlocal in the sense of KROENER [5] and KuNIN [6]. 

We recall that the two straight-line segments of dislocations which are separated by 
a jog extend in diff\!rent - most probably neighbouring - slip planes, whereas in the 
case of kinks the two segments extend in the same slip plane, along two different parallel 
lines of atoms. 

The results obtained for the kink-kink and jog-jog interaction exhibit some common 
features: namely in the both cases the interaction energy can be written in the form of 
the infinite series 

(1.1) 
A B C 
-+3+-s ... , r r r 
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214 A. A. G<>L~BIEWSKA-LASOTA 

where r denotes the distance between defects. The values of the constants A, B, C ... 
depend on the case (kinks or jogs) and the details of the structure of the medium and 
the defect itself. The first terms of the order 1 /r are identical with those obtained from 
the elasticity theory; the next ones take into account the shape of defects, their extent 
and the dispersion of the medium. The calculations were restricted to the first two terms. 
The next ones describe the finer structure of the properties mentioned above and would 
involve more parameters of the medium and the defects as well. 

Within the framework of elastic continuum the jog-kink interaction equals zero be­
cause, roughly speaking, a kink and a jog are considered as two mutually perpendicular 
segments of dislocations. By means of the nonlocal theory it is possible to answer the 
question whether this interaction equals identically zero or not and, if not, what is the 
order of magnitude (in terms of the distance between defects) of the first nonvanishing. 
term. It seems to be rather important to know that: if the first term would be, e.g., of the 
order of r - 11 certainly we would not need to include this contribution to the energy of 
interacting defects; however if the first nonvanishing term is of the order r- 3 , it should 
be taken into account when energy problems are considered (of <;ourse for distances 
of the order of interatomic distances). 

2. The energy of the dislocation line with two defects 

In the paper [1] the general expression for the energy of a single dislocation of any 
shape in the framework of isotropic pseudocontinuum model was given: 

(2.1) 

where 

(2.2) 

(2.3) 'Pab = J e-lk·xdx"J eik·x'dx~, 
L L 

L denotes the dislocation line and x(k) describes the structure of the line. Gnr and CJjlcl 
are the Fourier components of the Green tensor function of the isotropic pseudocontinuum 
and the tensor function describing elastic properties of the pseudocontinuum, respectively 

(2.4) 1 1 ~i} k,k1 [ 1 1 ] l 
G,j(k) = ek2 \ d(k) + IZ2 cf(k) - d(k) ' 

(2.5) Ctjkl(k) = e{ [cf(k)- d(k)]~l}~kl + d(k) ( ~~lc~JI +~~~~}le)}, 

k = lkl, e is the mass density; c1 and c2 are the velocities of the longitudinal and trans­
versal waves, respectively. The integration extends over the first Brillouin zone. The deri­
vation of the formula (2.1) and all the details concerning the forms of the dislocation 
density tensor etc. are given in the papers [I] and [2]. 

http://rcin.org.pl



NONLOCAL THEORY OF INTERAcriON BETWEEN JOGS AND KINKS 215 

We choose the Cartesian coordinates system x = x 1 , y = x 2 , z = x 3 with origin 
at 0. To calculate the kink-jog interaction we consider the dislocation line to be extended 
along the OX axis, with a double defect "king-jog" sloped at some angle() to the slip plane. 
The Burgers vector b has only the single b2 component. The case () = 0 corresponds then 
to two kinks, while () = n/2 describes the two jogs situation. For the cases of our interest 
we could restrict ourselves to the following range of values of 0: 

0 < 0 < n/2. 

z 

X 

Fro. 1. 

The projection of the line onto OXY-plane describes the situation of two kinks on the 
edge dislocation, of the height c, length ). and separated by the distance 2a; we can call it 
the "kink component" of the defect; the similar projection onto OXZ-plane describes 
the dislocation line with two jogs of the height d and length A, separated by the same 
distance 2a; it co~reponds to the "jog component" of the defect. Speaking about the 
distance between defects we will always mean the distance measured along the OX axis, 
i.e. 2a. Assuming such a system of coordinates and the Burgers vector b = [0, b, 0], 
we can rewrite the formula (2.1) in the form 

(2.6) b2 f W= 16n 3 B d3 kAab22(k)1J1ab(k)x(k)x(-k). 

Further on we will omit the indices 22 in the expressions Aab22 • Function x(k) depends 
on k 2 and k 3 only, what is of considerable importance for the further considerations. 

3. The energy of the two kink-jog defects 

The defect described in the preceding section, possessing the kink and jog components, 
will be called the kink-jog defect. We assume that the dislocation line with a double kink­
jog can be describ~d in a parametric way 

(3.1) X1 = x, X2 = y(x), x 3 = z(x), 

and the functions y(x) and z(x) are differentiable for any x e R. Then we can rewrite V' ab 
in the form 

(3.2) 
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where 

(3.3) 

fl = J exp[±i(k1 x+k2 y+k3 z)]dx 
L 

00 

A. A. Gm.~BIEWSKA-LA.SOTA 

= 2n!5(k1)+2 J cosk1 x{exp[±i(k2 y+k3 z)]-l}dx, 
0 

00 

ff = J exp[±i(k1 x+k2y+k3 z)]dy = ±2i J sink1 x· y'(x)exp[±i(k2y+k3 z)]dx, 
L 0 

00 

fl = J exp[±i(k1 x+k2y+k3 z)]dz = ±2i J sink1 x· z'(x)exp[±i(k2y+k3 z)]dx. 
L 0 

The energy of the two defects is defined as the difference of the expressions (1.1) for the 
dislocation line with the defects and the straight line dislocation, when the distance be­
tween defects tends to infinity, what in our description corresponds to the displacements 

z 

---.;{x,-------..,,\l._a(x) x==x'+a-)./2 

x'' x: "-

IJ 

FIG. 2. 

of the functions y(x) and z(x) by a- A/2 (see Fig. 2). The displaced functior.s are denoted 
Y11(x) and z11(x). Then the behaviour of the energy expression for a--+ oo is studied. From 
the formulas (3.3), for a --+ oo we obtain 

(3.4) 

± sink1 (a- A/2) Joo /1 = 2A± k +2 cosk 1 XfP.±(x)dx, 
1 0 I 

00 

fl = ±2i J sink1 XD±(x)dx, 
0 

00 

fl = ±2i J sink1 X1J±(x)dx, 
0 

where the following notations were introduced: 

(3.5) A± = exp[±i(k2 c+k3 d)]-1, 

(3.6) <J>±(x) = exp[±(k2 y+k3 z)]-1, 

(3.7) D±(x) = y'(x)exp[±i(k2y+k3 z)], 

(3.8) 1J±(x) = z'(x)exp[±i(k2y+k3 z)], 

(3.9) X= x+a- A/2, X'= x' +a- A/2. 
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NONLOCAL THEORY OF INTERACTION BETWEEN JOGS AND KINKS 217 

To obtain the appropriate expressions "Pab for double defect we have to multiply the func­
tions fa+ and subtract the corresponding expressions for the straight line dislocation (the 
functions Aab depend on the properties of the medium only). The latter procedure will 
change the form of V'u only, so this term will be treated seperately. The terms "1'22 , 1p23 , 

1p32 and "J'33 can be written down directly from the formulae (3.4), without any additional 
operations. As far as the remaining terms (except 1p11) are concerned, first we can notice 
that the following terms can be disregarded: 

2nd(k1)2i J O±(x)sink1Xdx, 

2n~(k 1)2i J 'YJ±(x)sink1Xdx, 

since after integration they yield zero contributions. The second parts of the functions.. 
1p12, 'tjJ21 , 1p13 , 1p31 can be integrated by parts and finally we obtain 

(3.10) 1p12 =- :
1 
J J sink1Xsink1X'[k2 0+(x)O_(x')+k3 'Y)_(x)D+(x')]dxdx', 

(3.11) "1'21 = - :
1 
J J sink1Xsink1X'[k 2 D+(x)O_(x')+k3 'YJ+(x)D_(x')]dxdx', 

(3.12) "P13 = - :
1 
J J sink1Xsink1X'[k 3 'YJ+(X)'YJ_(x')+k 2 0_(x)'YJ+(x')]dxdx', 

(3.13) "P31 = - :
1 
J J sink1Xsink1X'[k 3 'YJ+(x)'Y}_(x')+k2 0+(X)'YJ_(x')]dxdx', 

(3.14) 1p22 = 4 J J sink1Xsink1X'O+(x)O_(x')dxdx', 

(3.15) 1p23 = 4 J J sink1Xsink1X'D_(x)'YJ+(x')dxdx', 

(3.16) 1p3 2 = 4 J J sink1Xsink1X'O+(x)'YJ_(x')dxdx', 

(3.17) 1p3 3 = 4 J J sink1Xsink1X''YJ+(X)'YJ_(x')dxdx'. 

It would be very convenient to reduce 1p11 to the form similar to the others "''ab· Integration· 
by parts yields 

(3.18) "P11 = 4ni~(k 1 ) J ~i_E-:11 X [k2 (0_(x)-O+(x))+k 3 ('YJ_(x)-'YJ+(x))]dx 

+ ; 2 J J sink1Xsink 1X'[k2 0+(x)+k3 'YJ+(x)][k2 0_(x')+k3 'Y}_(x')]dxdx'. 
1 

To get rid off the term proportional to a, which appears in "P 11 , after integration over k 1 ,. 

we have to add and subtract the second part ofVJ11 multiplied by A?1(A 1? = A11 (k1 = 0)) .. 
Then for large values of a: 

ajc ~ 1, afd ~ 1, a/A ~ 1 
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and after integration over k1 the first term in 'Jl11 is cancelled by the .second one (multiplied 
by A~1), so that the energy can be written in the form 

(3.19) W = 1::3 J [Aab(k)V'ab(k)-:-A~1(k)'Pu(k)]x(k)x( -k)d3 k. 

Here 'Puis redefined and given by 

(3.20) 'Pu = :f J J sink1Xsink1X'[k2D+(x)+k31J+(x)][k20_(x')+k31J_(x')]dxdx'. 

4. The general formula for the kink-jog interaction energy 

Expression (3.19) describes the whole energy of two kink-jogs. We would like to isolate 
the part corresponding to the kink-jog interaction. For this purpose we will rewrite the 
formula (3.19) in a more explicit form 

(4.1) W = :;.: J d' kx(k)x( -k) J J sink,Xsink,X' {o.(x)D_(x') [ A22 

- Z: (A 12 + A2,) + z: (A 11-A~,)]+ 7J + (x)7J- (x') [ A33 - Z: (A"+ A,.) 

+ Zi (A .. -A~,)] +D.(x)7J_(x')[ A32 - Z: A31 - Z: A12 + k~~· (A 11 -A~1)] 

+D_(X)7J.(X') [A.,- Z: A.,- 4: A2, + k~~· (A .. - A~,>]}dxdx'. 
From the formulae (2.2), (2.4) and (2.5) we can calculate now the values of functions Aab 

(4.2) 

[ 
2k~ k~k~] Au = 2erx 7 - + ~ , 

A 2 kf+k~ 2 kHk~+k~) 
22 = c2e~- rxe--p;--, 

[ 
2kf k~ki] 

A33 = 2erx k4 + ~ , 

A 2 ktk2 k2 k2] 
12 = - erx~[ - 2 ' 

A21 = -ed k~:2 [k2 -2Pk~], 

A 2 ktk3 k2 k2] 
13 = - erx~[2 - 2' 
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where 

(4.3) a.(k) = d(k) {J(k) = d(k) cr<k]r(~~(k) . 
If we insert the expressions (4.2) into (4.1) and take into account the symmetry of the 
isotropic Brillouin zone, we can easily find out that the first two terms in the expression 
( 4.1 ), proportional to {} + {} _ and 'YJ + 'YJ _ , describe the energy of the kink and jog component 
seperately; we will not obtain terms proportional to the products c" dm but only to c" 
and dm. The kink-jog ineraction can be included in the last two terms only. The careful 
analysis of the symmetries of the corresponding expressions appearing there shows that 
those two terms do not contain the self-energy contributions, independent on a, and the 
kink-jog interaction energy is given by 

h
2e J (4.4) w}-k =- 4n3 d3ka.(k)xk2k3xx(k)x(-k) 

x [ :. - k•(k~~kj) - P(kt!kj)2] x J J [O.(x)7J-(x')+D-(x}7J+(x')] 

x [cos2k1 a • cosk1(x+x'- J.)-sin2k1 a· sink1(x+x'- J.)]dxdx'. 

More precisely, the expression sink 1 X· sink 1 X' is equivalent to 

~ [cosk1(x-x')-cos2k1 a • cosk1(x+x'- J.)+sin2k1 a· sink1(x+x'- J.)]. 

The term proportional to cosk1(x-x') which being independent of a would correspond 
to the self-energy contribution does not appear in the formula ( 4.4) because of the symme­
tries of the Brillouin zone. The functions A11 contained in the brackets in the last two terms 
of the expression (4.1) are odd functions of k2 and k3 , therefore the integral is equal to 
zero. 

5. Explicit formula for interaction between abrupt nonextended jogs and kinks in nondispe­
rsive medium 

The formula (4.4) is a general one and involves all the parameters describing the defects 
and the properties of the medium. To find the kink-jog interaction in an explicit form we 
have to determine the functions ci(k) and x(k) and to choose the shape of the defects. 
We consider the simple case of a nondispersive medium, or, in other words, the case when 
velocities of waves do not depend on the wave vector k: 

(5.1) ci(k) = c1(0), i = 1, 2, a.(k) = a.(O). 

The defects are supposed to be nonextended what corresponds to the fact that function 
x(k) is constant: 

(5.2) x(k) = 1. 

We assume the linear models of defects: 

(5.3) 
y(x) = c(l-xfJ.), 

z(x) = d(l-xfJ.), 
X E (0, A]. 
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With those assumptions we can now perform the integrations over x and x'. Recall that 

.A ..l 

J J sink1(x+x'- J.) [D+(X)1J_(x')+D_(x)1J+(x')]dxdx' = 0 
0 0 

therefore in the case of linear defects there are no terms proportional to sin2k 1 a. The same 
fact appeared also in the discussion of kinks and jogs [2, 3]. 

We are interested in the case of abrupt defects, when J. = 0. So after integration we 
will find an approximate expression for c/ J. ~ I and d/ J. ~ I. The energy expression 
depends on a and is of the form of a one-dimensional Fourier transform but the Cartesian 
coordinate system is not suitable for further calculations. We change variables to the 
spherical ones: 

(5.4) 

k 1 = kcosO, 

k 2 = ksinOcosq;, 

k 3 = ksinOsinq;. 

After the integration over the angles () and q;, the energy is given in the form 

wj-k(a) = J [fl(k)sin2ka+ f2(k)cos2ka]dk 

and the only singularity of the functions / 1 and / 2 is at k = 0; m order to find the values 
of Uj_k(a) for lal -+ oo we have to expand the functions at k = 0 and to find the corre­
sponding Fourier transforms. Finally 

b2c2d2p, 
(5.5) wj-k = 96n(l-v) ,3 ' r = 2a. 

6. Conclusions and remarks 

The expression obtained (5.5) indicates t)1at the kink-jog interaction is not identically 
zero. It could be written in the form of an infinite series 

In the simplest case of abrupt nonextended defects in the nondispersive medium this series 
is reduced to the first term. The higher order terms would appear if we took into account 
details of the structure of the medium and more sophisticated models of the defect. It 
does not seem to be well-advised, however, because if we study the problem of interaction 
of kinks and jogs we must remember that jog-jog contributions and kink-kink ones as well 
start from the terms of the order 1/r, and the terms l/r 3 are the additional nonlocal ones. 
For the distances at which those additional terms in jog-jog and kink-kink interactions 
are important, the term given by the formula (5.5) must not be neglected: it is of the same 
order as the term Ifr 3 in the jog-jog interaction (putting c = d) for the abrupt nonextended 
jog, when the medium is nondispersive [3]. The additional result of the paper is that the 
self-energy of the kink-jog defect does not contain interfering terms: it is the sum of self-
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energies of the kink and jog components. The nonlocality of interactions does not change 
this important property of the energy. The result is valid for any dislocation line, not 
only for the defects of the line, because in the paper no restrictions on the height of the 
defects were imposed and very high jogs or kinks become the segments of the straight line 
dislocations, edge and screw dislocations, respectively. 
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