Archi of Mechanics ® Archi Mechaniki St j @ 29, 2, pp. 213-221, Warszawa 1977

Nonlocal theory of interaction between jogs and kinks
A.A. GOLEBIEWSKA-LASOTA (WARSZAWA)

THE PAPER deals with the problem of interaction of kinks and jogs within the framework of
nonlocal continuum theory. The general formula in the integral form describing this interaction
is derived. Then the detailed analysis of the simple case of the abrupt nonextendedd efects in the
nondispersive medium is performed. The interaction is of the order r~3, where r denotes the
distance between defects. The neglected details of the structure of the defects and the material
would give account to the terms of the order r=* and lower. The obtained result shows that for
small distances, and particularly in the creation processes, this kink-jog interaction contributoni
is of the same order of magnitude as the nonlocal terms of kink-kink and jog-jog interaction.

Praca poswigcona jest problemowi oddzialywania przegie¢ z progami na podstawie nielokalnej
teorii kontinuum. Otrzymano ogélne wyrazenie w postaci catkowej opisujace to oddzialywanie,
a nastepnie przeprowadzono szczegdtowa analize prostego przypadku skokowych nierozmytych
defektow w odrodku bezdyspersyjnym. Oddzialywanie jest rzedu r~3, gdzie r oznacza odlegloéé
migdzy defektami, Pominigte szczegoly struktury defektow i oérodka dalyby wkiad do czlonu
rzedu r~3 i nizszych. Otrzymany wynik wskazuje, ze dla malych odleglosci a szczegélnie w pro-
cesach kreacji wkiad pochodzacy od oddzialywania prog-przegiecie jest wielkoécia tego samego
rzedu co i czlony nielokalne oddzialywan przegiecie-przegigcie i prog-prog.

Pabora noceAlleHa npobieme B3auMOIeHCTBHA MEPernboB ¢ MOPOraMu, ONMMPAACE HA HEJIOKAIE-
HYI0 TeopHio KoHTHHYYM. [TonyueHo obiuee BhipaykeHHe B MHTErPaJbHOM BHJE OMHChIBAlOIIEe
3TO B3aHMOMCHCTBHE M 3aTeM NMpPOBeJeH MOAPoOHEIH aHAIM3 NPOCTOro CJIy4Yas CKauKooOpasHbIX
HepasMbITeIX fAedexToB B OeamucrepcHoHHO# cpefe. BaaumopefictBue nopsamxa r?, rae r
oBo3Hauaer paccrosiHue Mexxay Aedexramu. Heyurennsle noapoGHOCTH CTPYKTYpEI AedeKToB
M cpeas: aanu 6b1 BKIIag B wieH nopAaxa r~° u B Gonee Huskue unensl. Ilomyyennslii peayis-
TaT MOKa3bIBAeT, UTO [JIf MAJBIX paccTosHMil, a2 0cODEHHO B MpoLIECCax POMKACHHA, BKIAI
NPOMCXONALLMIA OT B3aMMOJEHCTBHA MMOPOT - MeperHd ABJIAETCA BENMYHMHON TOTO YK€ CaMoro
MOPAMAKA, YTO M HEJIOKAIbHbIEe WieHb! B3aUMOACHCTEHA Nepernb-nepernd K nopor-nopor.

1. Introduction

THe PROBLEMS of energy of kinks and jogs separately were sindied in previous papers
[1, 2, 3]. The considerations were based on the pseudocontinuum model introduced by
RoGULA [4]; the details of the real crystal structure were taken into account and the in-
teractions were assumed to be nonlocal in the sense of KROENER [5] and KuUNIN [6].

We recall that the two straight-line segments of dislocations which are separated by
a jog extend in different — most probably neighbouring — slip planes, whereas in the
case of kinks the two segments extend in the same slip plane, along two different parallel
lines of atoms.

The results obtained for the kink-kink and jog-jog interaction exhibit some common
features: namely in the both cases the interaction energy can be written in the form of
the infinite series
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where r denotes the distance between defects. The values of the constants A4, B, C ...
depend on the case (kinks or jogs) and the details of the structure of the medium and
the defect itself. The first terms of the order 1/r are identical with those obtained from
the elasticity theory; the next ones take into account the shape of defects, their extent
and the dispersion of the medium. The calculations were restricted to the first two terms.
The next ones describe the finer structure of the properties mentioned above and would
involve more parameters of the medium and the defects as well.

Within the framework of elastic continuum the jog-kink interaction equals zero be-
cause, roughly speaking, a kink and a jog are considered as two mutually perpendicular
segments of dislocations. By means of the nonlocal theory it is possible to answer the
question whether this interaction equals identically zero or not and, if not, what is the
order of magnitude (in terms of the distance between defects) of the first nonvanishing.
term. It seems to be rather important to know that: if the first term would be, e.g., of the
order of r~!! certainly we would not need to include this contribution to the energy of
interacting defects; however if the first nonvanishing term is of the order r~3, it should
be taken into account when energy problems are considered (of course for distances
of the order of interatomic distances).

2. The energy of the dislocation line with two defects

In the paper [1] the general expression for the energy of a single dislocation of any
shape in the framework of isotropic pseudocontinuum model was given:

1
@1) W = o | @*kAa@bibiz@z(~Wya ),
B
where
kyk,
(22) Aabll = cnk!m(k)crwip(k)cnr(k)epka€amb_k_z"_)
(2.3) Vep = f e~Mexgy, f elkxdy!
L L

L denotes the dislocation line and y(k) describes the structure of the line. G, and ¢
are the Fourier components of the Green tensor function of the isotropic pseudocontinuum
and the tensor function describing elastic properties of the pseudocontinuum, respectively

_ 1 l 4, kik 1 1
@4 Gk = e 1 e [ci‘(k) =) ]}
2.5 cyu(k) = eflci(k)—e3(K)18y0u+ c3(k) (Sudu+ udp)},

k = |k|, p is the mass density; ¢, and ¢, are the velocities of the longitudinal and trans-
versal waves, respectively. The integration extends over the first Brillouin zone. The deri-
vation of the formula (2.1) and all the details concerning the forms of the dislocation
density tensor etc. are given in the papers [1] and [2].
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We choose the Cartesian coordinates system X = Xy, y = X, z = X3 with origin
at 0. To calculate the kink-jog interaction we consider the dislocation line to be extended
along the OX axis, with a double defect “king-jog” sloped at some angle 6 to the slip plane.
The Burgers vector b has only the single b, component. The case 6 = 0 corresponds then
to two kinks, while 6 = 7/2 describes the two jogs situation. For the cases of our interest
we could restrict ourselves to the following range of values of 0:

0<0 < a2,
z|
d
A |
— 2a Al
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The projection of the line onto OXY-plane describes the situation of two kinks on the
edge dislocation, of the height ¢, length 1 and separated by the distance 2a; we can call it
the “kink component” of the defect; the similar projection onto OXZ-plane describes
the dislocation line with two jogs of the height 4 and length 4, separated by the same
distance 2a; it correponds to the “jog component” of the defect. Speaking about the
distance between defects we will always mean the distance measured along the OX axis,
i.e. 2a. Assuming such a system of coordinates and the Burgers vector b = [0, b, 0],
we can rewrite the formula (2.1) in the form
2
26 W = o [ AWy 20 2(~0).

B

Further on we will omit the indices 22 in the expressions A,,,. Function y(k) depends
on k, and k; only, what is of considerable importance for the further considerations.

Fic. 1.

3. The energy of the two kink-jog defects

The defect described in the preceding section, possessing the kink and jog components,
will be called the kink-jog defect. We assume that the dislocation line with a double kink-
jog can be described in a parametric way

(301) Xy =x, X3= y(x)s X3 = Z(X),

and the functions y(x) and z(x) are differentiable for any x € R. Then we can rewrite y,,
in the form

(32) Yar = f;_f; ’
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where
g fexp[i:‘(k,x+k3 y+kaz)ldx

L
= 2m0(ky)+2 [ cosk x{exp[+i(k,y+ks2)]—1}dx,
0
(3.3) .
f¥= fexplif(k;X+kzy+kaz)]dy = i2iJ sink, x* y'(x)exp[i(k,y+k;2)]dx,
L 0

: = _‘-exp[ii(klx+kﬂ+kaz)]dz = +2i f sink, x* z'(x)exp[ ti(k,y+k;2)]dx.
I 0

The energy of the two defects is defined as the difference of the expressions (1.1) for the
dislocation line with the defects and the straight line dislocation, when the distance be-
tween defects tends to infinity, what in our description corresponds to the displacements

of the functions y(x) and z(x) by a— /2 (see Fig. 2). The displaced functior.s are denoted
¥o(x) and z,(x). Then the behaviour of the energy expression for @ — o is studied. From
the formulas (3.3), for a = o we obtain

ft= 2Ats“1k‘(;7_m)+zf cosk, X, (xX)dx,
1 0 !
3.4) f# = +2i [ sink, X9, (x)dx,
(1}
[ = +2i [ sink, Xn,(x)dx,
0
where the following notations were introduced:
(3.5) A, = exp[+i(ksc+ksd)] -1,
(3.:6) @.(x) = exp[ (ko y+k;2)]—1,
(3.7 P, (x) = y'(x)exp[Li(k;y+k;2)],
(-8 1:(x) = 2’ (x)exp[ +i(k,y+k32)),

3.9 X =x+a-42, X' =x'+a-A/2.
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To obtain the appropriate expressions y,, for double defect we have to multiply the func-
tions f,;} and subtract the corresponding expressions for the straight line dislocation (the
functions 4,, depend on the properties of the medium only). The latter procedure will
change the form of y,, only, so this term will be treated seperately. The terms y,,, ¥;3,
Y32 and 933 can be written down directly from the formulae (3.4), without any additional
operations. As far as the remaining terms (except y,,) are concerned, first we can notice
that the following terms can be disregarded:

278(ky)2i [ 8, (x)sink, Xdx,

2mb(k,)2i [, (x)sink, Xdx,

since after integration they yield zero contributions. The second parts of the functions
Y12, Y21, Y13, Y31 can be integrated by parts and finally we obtain

(G.10) = — T:T [ [ sink, Xsink, X[k 8, ()9_ (%) + ksn_(x) &, (x))dxdx’,
G1l) oy = — kil [ [ sink, Xsink, X[k 8, () 8_(x') + k3, (x)_(x")]dxdx’,
G.12) ps = — Ti_ [ [ sink Xsink, X[y 4 (x)71- (') +hea B_ (x) 7 ()] dxd,
(.13) s, = -fl_ [ [ sink, Xsink, X' [kyn, (5)7_ (x') +h; 8, (x)n_ (x)]dxdx’,

B.14) oy =4 [ [ sink, Xsink, X'8, (x)9_(x') dxdx,
(.15)  yay = 4 [ [ sink, Xsink, X'9_(x)n, (x')dxdx’,
(3.16) sz = 4 [ [ sink, Xsink, X9, (x)n_ () dxdx’,
GI7) a3 = 4 [ [ sink, Xsink, X'y, (x)n_ (') dxdx’.

It would be very convenient to reduce y,, to the form similar to the others 5. Integration
by parts yields

(3.18) , = 4ﬂi5(k1)f_8in’vitx [kz (‘9—-(-")_"9+ (x))"'ks (7?—(»")"7?+(x))]dx

+sz— [ [ sink, Xsink, X' [k &, (x)+ k3., () [kz D— (x) + ks (<)]dxdx’.
1

To get rid off the term proportional to a, which appears in v, , after integration over k.
we have to add and subtract the second part of y,, multiplied by 49,(4,? = 4,,(k; = 0)).
Then for large values of a:

afe>1, ald>»1, afi>1
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and after integration over k, the first term in g, is cancelled by the second one (multiplied
by AY,), so that the energy can be written in the form

bz
(3.19) W= —— [ [Aa®)pald— 430y 01200 (-0 k.
Here y,, is redefined and given by
4 . . ' ’ ’
(320)  pux = gz | [ sink, Xsink, X lea 8., 9+ ks . ()] ThaP_(x)+ks-(< .

4. The general formula for the kink-jog interaction energy

Expression (3.19) describes the whole energy of two kink-jogs. We would like to isolate
the part corresponding to the kink-jog interaction. For this purpose we will rewrite the
formula (3.19) in a more explicit form

4.1 :th(x)??“ ) [An

k k2 , k
—k—:(A12+A21)+ T;—(Au—A?l)]+n+(x)n#(x)|:/l33———3-(A13+A31)
k3 , k k k k
+k—;(du--A?l)]-!-ﬂ.,(x)’!}"(x)[A32 f“l‘ial“‘k—:’Au‘F 252 (Au"Au)]
k k kyk
+‘9—(x)'?+(x')|:‘423_'E:—Ala_}%flu"f' i3 (11— 11)]}‘31"1-"'

From the formulae (2.2), (2.4) and (2.5) we can calculate now the values of functions A

2k3  Kk2k3
A.ll =29 [k‘ + kﬁ ]s

2412 20124 12
Ay = 2o ;;k’ —2ap kza‘;; 218

2k k%k3
A3z = 29a[k—; + —E‘ai]:

kkz

Ay = —2pa [k*— 2,
“2) yy = o3 FL2 "k"’ k2~ 2843,

Ays = =20a0—22 ks k3 [2k*—k3],

dyy = —2ga 5152 3 Kk pre-ig,

Lk k
Ay3 = —oc3 ,’( 2 [k2—2p%k3],

A3z = =200 kzks

(k*—K3l,
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where

2 2
@3) k) = 3B = ey SO

ci(k)

If we insert the expressions (4.2) into (4.1) and take into account the symmetry of the
isotropic Brillouin zone, we can easily find out that the first two terms in the expression
(4.1), proportional to #,#_ and 7, 7_, describe the energy of the kink and jog component
seperately; we will not obtain terms proportional to the products ¢*d™ but only to ¢”
and 4™, The kink-jog ineraction can be included in the last two terms only. The careful
analysis of the symmetries of the corresponding expressions appearing there shows that
those two terms do not contain the self-energy contributions, independent on g, and the
kink-jog interaction energy is given by

b0 3
44) W= — 2% [ dka(k)xkaks x 200 2(~K)

o) [LU. S S WS I RS
S (2 FN e R T (LT +(n-(6)+9- ().
x [cos2k,a* cosk,(x+x'— A)—sin2k, a* sink;(x+x'— A)]dxdx’.

More precisely, the expression sink, X *sink, X"’ is equivalent to
-;— [cosk,(x—x')—cos2k,a" cosk,(x+x'— A)+sin2k, a sink,(x+x"— A)].

The term proportional to cosk,(x—x") which being independent of a would correspond
to the self-energy contribution does not appear in the formula (4.4) because of the symme-
tries of the Brillouin zone. The functions 4;; contained in the brackets in the last two terms
of the expression (4.1) are odd functions of k, and kj, therefore the integral is equal to
Zero.

5. Explicit formula for interaction between abrupt nonextended jogs and kinks in nondispe-
rsive medium

The formula (4.4) is a general one and involves all the parameters describing the defects
and the properties of the medium. To find the kink-jog interaction in an explicit form we
have to determine the functions ¢;(k) and y(k) and to choose the shape of the defects.
We consider the simple case of a nondispersive medium, or, in other words, the case when
velocities of waves do not depend on the wave vector k:

(5.1) ci(k) =ci(0), i=1,2, a(k)=a).
The defects are supposed to be nonextended what corresponds to the fact that function
x(k) is constant:
(2 2(k) = 1.
We assume the linear models of defects:
y(x) = c(1-x/2),

(53) z(x) . d(l—x/j')s

x €0, 4.
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With those assumptions we can now perform the integrations over x and x’. Recall that

A A

[ [ sinky (et x' = 2) [94()m- &) +9_ (1), ()]dxdx’ = 0
00

therefore in the case of linear defects there are no terms proportional to sin2k, d. The same
fact appeared also in the discussion of kinks and jogs [2, 3].

We are interested in the case of abrupt defects, when 4 = (. So after integration we
will find an approximate expression for ¢/A » 1 and d/A » 1. The energy expression
depends on a and is of the form of a one-dimensional Fourier transform but the Cartesian
coordinate system is not suitable for further calculations. We change variables to the
spherical ones:

k, = kcosf,
(5.4) k, = ksinficosg,
ki = ksinfsing.

After the integration over the angles 6 and ¢, the energy is given in the form
W;_4(@) = [ fi(k)sin2ka+ f,(k)cos 2ka] dk

and the only singularity of the functions f; and f; is at k¥ = 0; m order to find the values
of W,_.(a) for Ja] - co we have to expand the functions at k = 0 and to find the corre-
sponding Fourier transforms. Finally

b%c¥d*u 1

il e e

(5.5) W

6. Conclusions and remarks

The expression obtained (5.5) indicates that the kink-jog interaction is not identically
zero. It could be written in the form of an infinite series

oo

1 A,
: | r2ll+.'l
n=1

In the simplest case of abrupt nonextended defects in the nondispersive medium this series
is reduced to the first term. The higher order terms would appear if we took into account
details of the structure of the medium and more sophisticated models of the defect. It
does not seem to be well-advised, however, because if we study the problem of interaction
of kinks and jogs we must remember that jog-jog contributions and kink-kink ones as well
start from the terms of the order 1/r, and the terms 1/r® are the additional nonlocal ones.
For the distances at which those additional terms in jog-jog and kink-kink interactions
are important, the term given by the formula (5.5) must not be neglected: it is of the same
order as the term 1/r3 in the jog-jog interaction (putting ¢ = d) for the abrupt nonextended
jog, when the medium is nondispersive [3]. The additional result of the paper is that the
self-energy of the kink-jog defect does not contain interfering terms: it is the sum of self-
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energies of the kink and jog components. The nonlocality of interactions does not change
this important property of the energy. The result is valid for any dislocation line, not
only for the defects of the line, because in the paper no restrictions on the height of the
defects were imposed and very high jogs or kinks become the segments of the straight line
dislocations, edge and screw dislocations, respectively.
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