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On wave propagation in a coupled thermo-elastic-plastic medium
V. N. KUKUDJANOV (MOSCOW)

IN THIS paper the conditions for propagation of three-dimensional acceleration and strong
discontinuity (shock) waves and for the amplitude attenuation in thermo-elastic viscoplastic
materials are derived. The results shows that the velocities of propagation in these materials
are the same as in thermoelastic material. Moreover, for Fourier’s law only one longitudinal
wave propagates. On the front of this wave the entropy suffers discontinuity but not temperature.
The amplitude decaying depends on thermoconductivity but not on energy dissipation. For the
Cattaneo relation, however, two longitudinal waves exist and all dependent variables including
temperature are discontinuous on their fronts. The attenuation of the amplitude is stronger and
also depends on plastic energy dissipation.

W niniejszej pracy wyprowadzono warunki na propagacje trojwymiarowych fal przyspieszenia
i fal silnej nieciagtosci (uderzeniowych) oraz zmiane amplitudy w materiale sprezysto-plastycznym
i sprezysto-lepkoplastycznym. Wykazano, ze predkoséci propagacji fal w tych materiatach pokry-
waja si¢ z odpowiednimi predkosciami fal w materiale termosprezystym. Ponadto przy uzyciu
prawa Fouriera tylko jedna fala podtuZzna moze sig rozprzestrzeniaé, na ktorej czole entropia
doznaje nieciaglosci, a temperatura jest ciagla. Malenie amplitudy zalezy od przewodnictwa
cieplnego lecz nie od energii dysypacji. Natomiast w przypadku réwnania Cattaneo istnieja dwie
fale podluzne i na ich czolach wszystkie zmienne zalezne, lacznie z temperatura, doznaja sko-
kéw. Malenie amplitudy jest bardziej znaczne i zalezy réwniez od energii dysypacji.

B Hacrosue#t pafore BhIBEAEHLI YPABJIECHHA PACIPOCTPAHEHHA TPEXMEPHLIX BOJIH YCKODEHHSA
M BOJNH CHILHOTO pasphiBa (YHApHBIX) M M3MEHEHHA AMIUIHTYAL! B TEPMO-YIIPYTO-BA3KO-
~-IUIACTHYECKUX MaTepHanaxX. IloKasaHO, WYTO CKOPOCTH pAacpoCTPaHeHHA BOMH B 3THX
MaTepHayiaX COBMAJAIOT C COOTBETCTBYIOIMMH CKOPOCTAMH BOJIH B TCPMOYIIPYTOM MaTepHale.
Kpome aToro, mpH HCTIONB30OBAHHM 3aKoHa Pyphe, MOMKET PACTIPOCTPAHATHCA TOJNBKO OHA
NpOAOJIbHAA BOJHA, HAa (POHTE KOTOPOH SHTPONMA HCILITHLIBAET DPaspeiB, 4 TEMIEpaTypa
HENpepLIBHA. YOBIBAHME AMIUTHTYJBLI 3ABHCHT OT TEILUIONPOBOGHOCTH, HO HE OT 3JHEPIHH
Iuccunaumu, B cnyuae sxe ypasuenua Karraneo cyillecTByIOT JBe MpOJOJIBHBIE BOJHBEI M HA
HMX ()POHTAX BCE 3aBHCHMBIE IEpEMEHHEIC, BKIIOYAA TEMIEPATYPY, MCIBITHIBAIOT CKAuKH.
Y6uiBaHHe aMILTHTY LI GoJlee 3HAUUTENBHO H 3aBHCHT OT SHEPTHH AMCCHTIALMH.

Introduction

A PROPAGATION of three-dimensional strong discontinuities and acceleration waves of an
arbitrary geometry in an elastic-plastic medium with small deformations is investigated.
The model of a medium is based on general thermodynamic principles. For heat conduction
the Maxwell-Cattaneo equation [1] is obtained in the same manner as it was done in
[2, 3, 4] where one-dimensional waves were considered in materials with internal state
variables.

The wave propagation speeds coincide with the respective speeds in a thermoelastic
medium. Differential equations for determining the intensities of shock and acceleration
waves were derived. Cases of Fourier’s law and the Maxwell-Cattaneo relation are in-
vestigated.
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There is only one longitudinal wave, in the case of Fourier’s law, at the front of which
entropy is discontinuous and temperature remains continuous. The attenuation of the
intensity is dependent on thermoconduction but is independent of a dissipation of the
energy. In the case when a speed of propagation of thermal signals is finite, we have two
fronts of longitudinal waves at which all variables including temperature are discontinuous.
In the last case the attenuation is stronger than in the case of Fourier’s law, and it also
depends on plastic dissipation energy.

An isothermal case of wave propagation in an elasto-viscoplastic medium was con-
sidered in [5, 6].

1. The constitutive equations for the thermo-elastic-viscoplastic medium

In order to build the model of a thermo-elastic-visco-plastic material we shall make
use of thermodynamical principles.

We assume that the following variables determine the local state of a heat conducting
elastic-plastic body: the stress tensor g, the elastic and plastic strain tensors &° and ¢?, the
specific free energy F, the specific entropy s, the absolute temperature 7, the tempera-
ture gradient g, the heat flux vector g, the mass density o and internal structural para-
meters y.

Assume that there exist two groups of the internal state parameters y, namely, the
mechanical parameters y, and the thermal parameters y7. The last group is connected
with a temperature gradient history [2, 3].

Let us assume the set of independent” variables &, &, T, y, g in terms of which
all the remaining variables may be expressed, e.g.:

(1.1) F=F@, e T, 08, s=s08,..,8)...

The second law of thermodynamics is here expressed by the Claisius-Duhem inequality
[7, 8]

q8
T

(1.2) "‘P-“i‘eiausu—sf'— = 0,
0

gy is the total strain rate tensor, g, is the initial density. Taking into account Egs. (1.1),
we hav:

oy 6F) (6F ) . OF . [ay aF) oF ., qT,;
1.3 [=L- 4~ | =+ 8| T~—=—— g+ L - fm = >0
13 (90 defj w=\or™* o & ‘Qo defy Y

So far as the underlined terms in inequality (1.3) are independent of &f;, T and g; the
following restrictions are imposed on the constitutive equations (1.1) [9]:

oF oF oF
(1.4) 0ij = Qu‘g, 5= =5 ¥=

™ It is possible to include €7 in internal state variables and consider a total strain tensor ¢ instead of &*
and &%,
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and also the inequality of the general dissipation must be satisfied

1 OF o OF ., qT,;

(1.5 — 10— IM— -
) 20 I T oxe *T 7 TgoT

=0,

oF
where 1;; = 0y—0¢ 5 2ef, is an active stress tensor.

Following [2, 3], We a.ssumz the form of evolution equations for

(1.6) ir = grad T+ g,(e, T, ).
Introducing Eq. (1.6) into inequality (1.5), we obtain
oF q oF . oF 1
(D (53:' * eo})r"_ o ok tut 55 7t > 0.

The underlined terms in (1.7) are independent of g since yxr is independent of g [3],
and we obtain

oF o 1_, OF , OF .
. —_— = = — e e = 0.
(18) rr ity P L ok

In our following considerations we shall use the approach based on introducing the dis-
sipation function D and on Onsager’s general principle. Instead of Onsager’s principle
we can postulate the equivalent but physically more evident Zigler’s principle [10] of the
maximum dissipation rate in a real process which requires
daF . daF
ax 0= quﬁ 3 Xi-
It means that the dissipation reaches a maximmn value in the process with the real &f;
and j;, and &f} y; are variables in an arbitrary process.
This implies the following relations:
oD oD
1.9 - ;_ F =
( ) Ty {] ax‘
If the function D and F are given, then Egs. (1.4), (1.6), (1.8), (1.9) are the constitutive
equations for an elastic-plastic medium.
Assume that the dissipation function D is represented by the expression

1
D= ‘E‘ Tu&‘ﬂ

k ...
(L.10) D= D(eb,xu)+Dz(xr)—(l+ Lk (T, xm) +¥(7, )]+§Efx?,x?-,
and the free energy F consists of two terms
(L.11) F = F(e, T)+Fy(", T, 3).

The assumption (1.11) means that plastic deformations do not give an influence on the

elastic properties of the material.
In the Eq. (1.10) 1, = (¢fjef)"/* —is the second invariant of the plastic strain
1}

tensor, yu = W, = [ ¢l dt is the plastic deformation work of the active stresses, the
o

relation k, = k,(yu, T) is dependence one can determines from one dimensional static
loading, the function ¥(J,) is characterising the strain rate influence on constitutive equa-
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tions and one can determine it from dynamic experiments [11]. If ¥(J,) = 0 we have
equations for the strain rate independent plasticity.
Relatively function F, we assume that it is a square power function of his arguments
a

1,1
(1.12) F, = % efjeli+ o Mt 3Tz, AT

From the assumption (1.10) follows that the inequality (1.8) can be represented, as two
independent inequalities

1 oF .
= — — = = —_—
Dl 9 Tu£h+ axm‘ xM = 0, D?

Taking into account that y, = 7;ef; and using Egs. (1.9), (1.12), one can obtain from
the first inequality

aD aD D
(113) {l +-Zk-u— Ty = A aﬁ—l*, S = (Tufij)lﬂ = ,lv—a—IL = —]L
] P P
That leads to
ky(xm, T)+¥(,
(1L14) ;= oy—ael, = *.(1”_!2_—(1)-55, S = k(. T)+¥(1,).
P

Thus the made assumptions lead us to the particular form of the constitutive equations
for the visco-plastic medium with the isotropic and kinematic hardening.

It is necessary to remark that from (1.13)-(1.14) it is clear, that the kinematic hardening
always is connected with a dry friction mechanism and depends only on €}, x, T but not
on &f;. At the same time isotropic hardening can depend both on the viscosity and on the
dry friction mechanism.

Let us now find z,

(1.15) e =——1r

To
and, using Egs. (1.6), (1.8), (1.12), we obtain
(1.16) 70§ = kgradT—gq,

where 7, is the thermal relaxation time and k, the coefficient of thermal conductivity.

This equation is the Maxwell-Cattaneo equation. A survey of the works where this
equation is investigated can be found in [3, 12].

It is clear from Eq. (1.16) that the heat flux g can be considered as an internal state
variable [3, 4].

Let us determine now the elastic part of the free energy F;; then, the constitutive
equations of the model considered will be determined completely.

Since we assume small strains and small temperature increments we can take, in the

expansion of F,, only quadratic terms
2 p 34+2u ce ( i )
1.17 F.=—FE+—E, —— " —To)E; — T—T)>+0le} —1,
(1.17) 1 2 1+ 0 2 p a(T—To) E, BT, ( 0) il T3
where E, = ef;, E, = €;ef; are the first and second invariants of the elastic strain tensor
€%, A and yu are the elastic constants of the material, a is the coefficient of thermal expansion

and cg is the specific heat at constant deformations.
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Relations (1.4) and (1.7) give the following expressions:

(1.18) 0y = Aefy Oy5+ 2pef;— (324 2u) o(T— To) by,
(1.19) s = i aefx+Cp It .
4 T,

Determining ef; through the total strains e;; and assuming &f; = 0, we obtain the final
form of the constitutive equations

2u D(S—ky) :

Gy = A Oy+2uéy— (3A+2u) aTd;— % 5 hp
1.20
( ) {6 {(D(Z), zz= 0) ® p-1
=1 0 <0 2@=¥0,
Sy = Ty— 5. 3 di;, T is a constant characterizing the material viscosity dimensions [sek].

3

Equations (1.20) are a modification of the well-known equations for a thermo-elastic-
plastic medium [11, 13]. In order to obtain a closed system of equations describing the
medium considered, the equation of motion

(1.21) U(j.j—gi.?[ =0
and the equation of heat flux in the form
(1.22) 9T§+divq = TUEB

should be added to Eqgs. (1.16) and (1.20).

2. The propagation of strong discontinuity waves

The total system of equations can be represented as the first order of differential equa-
tions with respect to the velocity vector o, the stress tensor , the temperature T, the heat
flux 7 and the plastic strain tensor ef;.

Using Egs. (1.14), (1.16), (1.19)-(1.22) and Cauchy relations between &; and the
velocity vector v, we obtain the following system:

GUJ"‘Q‘EJ[ =0
; 2u D(S—k
Oij = Aﬂk'télj+#(v“j+wj't)_(3&+2#)ar6]j_ ?‘u —(S—S)Su,

(2.1 ; 1
Bi+2p) Tyovg p+ocsT = —qi i+ ?¢(S—k.)S,

B(S-k,)
___TS S‘j.

This system of equations constitutes a quasi-linear hyperbolic first order system with
the principal linear part. The right-hand sides of Egs. (2.1) are continuous functions
of their arguments. For the purpose of investigating the strong discontinuity surfaces
of the system considered, a general theory developed for equations of a divergent form
[14) may be used.

Toq+q; = —kT,, &=
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By a generalized solution of the system of Egs. (2.1) which may be written in the matrix

form
L(U) = (4'0),+(4'0).i+B(U) = 0,
we mean a piece-wise continuous vector function U having piece-wise continuous deriva-

tives in a region G and for which the relation

@3) | 4e -+ A'E ) U= B(U) ] dtdx, = 0
R

holds for arbitrary test functions ¢ for all subdomains R = G. Then, in smooth regions
of the solution, Eq. (2.2) results from Eq. (2.3) and on the discontinuous surface @(x;, t) =
= 0 should be satisfied

2.4) (—cA'+A%) [U] = 0.

Here A' and A are matrices, the vector [U] = U*— U~ denotes a jump of solution U
across the surface @ = 0, ¢ is the speed of propagation of the surface and » is a normal
of the surface.

In the case of the system of Eqs. (2.1), the relations (2.4) yield the following system
of equations to be satisfied by the “jumps”:

[oylv;+eclv] = 0,
2.5) —cloy] = Ao 0+ pu([vdy;+ [vdv) + GA+2p) ac[T] dy;,
(BA+2u) Toa[vdv—eccelT] = —[gdv,  Toclgl = k[T]y,.

We can find the expressions for [T] and [g;]»; from the two last equations

-1
@6 11= 2222 g fese 2| o,
2.7 lgdv: = _3&4;2;; Toak (Czc" gft )_ [wa]ve

Substituting them into Eq. (2.5), we have
~cloy] = ¥ [vi]n 5u+#({”_a]"j + [v]v),

238) * =4 E“i;z_ﬂﬁ

k -1
2 o
a®Toc (cgc g ) i

(A*+pednri+@—ec?)[v] = 0.

It follows from Eqgs. (2.8) that for the medium considered two types of waves, longitudinal
and transverse, exist.
For transverse waves we have

2.9) 2 =pe™', [udn=0, —cloy]=pu(lwly+vlr)
and for longitudinal ones we obtain

@10) =420, [l = Wa,  —cloyl = (8, +2umn) W.
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The speeds of the longitudinal waves ¢ are determined from the equations
c*—(ci+cd)c*+ciez =0,
(2.11) . (3A+2u) k

c: = " a2T,, c¢§=(A+2u)o”', c}= :
A 0%ce 0 o= ( we T 20 %a

The roots of the biquadratic equation (2.11) are

" ¢z, 1 c;z- 1 ( c2e? 12
y T, L S - B ) -— .
2.12) da=—gt=gt+g)t| 1+ 2

Let us obtain the expansion of c¢72 and ¢3 in a series for the small 7,

2
2 =%+(1-~— +0©), =" —ep1-p+0E),
@2.13) t
=C_A= CAQCE T ﬁ=2
G~k :

It is clear from Eqgs. (2.13) that there exist two longitudinal waves: T'— wave with the
speed ¢; and M — wave with the speed c,.

If the medium in uncoupled, then « — 0, and one obtains from Eq. (2.12) that ¢ — ¢}
for the thermal wave and ¢ — ¢2 for the mechanical wave.

The T — wave speed, ¢; and the M — wave speed, ¢, satisfy the inequalities

ci>cl>cl> k.

For Fourier’s law we have 7, = 0 and ¢} — ¢}, ¢} — o0; thus there remains only one
M — wave and the jump of temperature on the wave front vanishes.

Let us consider now the change of wave intensities during propagation in space.

The system of Egs. (2.1) may be rewritten in terms of the jumps

[aaj.j_e[‘i-’ll =0
(6] = Ad4[veua+ (o )+ [0, — (BA+2u) ad, (11— 2p[ef)],

(2.14) (4420 Tyalonal + sl ] = ~lgrd + - [BES—k)S],

volql+[g] = —k[T], [efj] = __[3(;5' Sk.)Su ]

Using the kinematic conditions of the compatibility of the first order [15], we obtain

of 6[/] of o[f] ox
[_37] ’ [3] B gﬂ@h@i’

(2.15)
F= [ af :]‘.I’k.

3xk

Here we use the following notation:
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£* is the contravariant metric tensor of wave surface, y,, ¥ are curvilinear coordinates
on the surface, o, § = 1,2. Substituting relations (2.15) into Egs. (2.14), we obtain

dloy) o 5wl
B oy g =0

Ziyi+g®

3 a{au] ( v 3xg) c‘,,( o] ax;
CEI = AV, 1+g“5 }' a}'a 6{,‘4‘,“ Virj+Vjv;+g ay“ Eyg

4 20 0% ]+(3&+2,u)a(cﬁ o171 )au [——__@(S k) sﬁ],

6 Ve S
(3A+2p)roa(V,r,+g'ﬁ aa[;;:] g—: +cgo ( 0+ am)
- O g "”gj*] g;* + - [85],
ro( ~c@t ) 4 g1 = —k g G125,

Multiplying the last equation by »; and performing the convolution, one determines

k 1 d[givi] qiv
2.17) - = 17 Ak
( Qi ToC g+ c Ot ¥ ToC

Using the third equation in Egs. (2.16), we find

(2.18) 6= (cgcg— —c%)_ {(31+2p)Toa(V;‘vk+g"" Oled) 6xk)+905 $i1]

0y Oyp ot
1 dlgm] | lqilv p Ol 0x 1 4 }
— R I Lyt - — — [DS];.
& c Ot * ToC i 0y. 0yp [&5]

By means of Eqgs. (2.6)-(2.7) and (2.18) we can exclude [T], [¢;] and 6 from the second
equation (2.16)

8[9,‘] é‘xg
0ya

8[v;] ox; oW ca ,,B(Wv,‘) O, @ o i } .
(219) +‘—‘—ay‘ E)]ﬁ':ﬂ—arﬁ-—z—g‘ 6y, -éy—p-l'mw b[¢S] 6;1 2#[35]:

-2 =1
2kT°“ (3A+2u)? (cgc o ) o G200 (csc S ) ;
Tg0C et 0CTy
Multiplying Eqs. (2.19) by #; and excluding Zj; from the first Eq. (2.16), we obtain three
equations, respectively V;

(220)  (A*+p)Vingyi+ (u—oc®)V; = cg*?

olw) 2%
5y¢ ay#

= A* (Vﬂ’g"‘gﬂﬂ )6” +H[V|‘Pj+ Vjv;+g"5(

6[0’,11 6x, _ 6[‘!)[] . 6[0’5}]3’1
yc 6yp ec ot ot
a[v,] ax.‘ ((’[U,I ax;  dlvy] ox; { oW
*0f __. B —_
~4 g- L g. ('J‘y, ayﬁ a}" a}"g K Jt
Wy Oxy 4 aW
0y Ova 2719

. 525 o ~b1dS1) 7+ 2ulet .
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Now we can exclude the jump [oy] from Egs. (2.20) taking into account Egs. (2.8)

a[Ut]Vt ax; 3[1),] 3xk

* T = —(1* af g

(221) @ +p)Vinvi+(p—oc®HV; (A +p)|: 3, +g° %, ayﬂ

d[v)] { oW
+2uf2[v,}—2pc —— ot ¢~ 2 b[(DS] vi+2u(ef]y;.
Here we used the following relations from differential geometry [15]:
v 6‘x dx; dx;! ov; Ox
222 j oa j L] , ‘bn 4 j 29’ ﬂ——J—J = —Z-Q:
B gy FE LR T 8 .

b, are coefficients of the second quadratic form of the surface, Q2 is the mean curvature.
Multiplying Eq. (2.21) by »; we obtain the equation for determining the intensity of strong
discontinuity longitudinal waves

oW a0 W by .3 b,
ot QW - 27o(1 +ao) * 1+a, [25]+ pc(l +a,) [efilvers,
(2.23)
22 . Ral
7 20’ °T 2c

For Fourier’s law 7, vanishes and we obtain

W (BA+2u)a
2.29) g Cof2W — 20k
Comparing these two equations we can find that the attenuation in Fourier’s case is inde-
pendent of plastic energy dissipation since the third term in Egs. (2.23) vanishes when

7o — 0 and the second term, which characterizes the thermal attenuation, increases. Indeed

2T b
> W+ ocy Ll

1 ¢
a _ ci—ck l+7—c_¥: +0(3) > (BA+2u)*e*T,
274(1+a,) 2c7, 1+ ci—c3 %o 20k ’
c}
¢ > 2(ci—c}).
202
where %Ti is a coefficient of the thermal attenuation for Fourier’s law. As it

has already been remarked, with 7, = 0 the temperature is continuous on the M-wave,
and its derivatives and the heat flux are discontinuous; the jumps can then be determined
from the following relations:

[T.]= (34+2u) ]’":a Wy, gl = —(BA+2p) Too Wy,

Let us now consider transverse waves. Taking into account that ¢? = pp~! and [v4]m =
= 0, we obtain from Eq. (2.21)

o _g[ﬁ ]
~5 2u[v,)2 o R

+b{®S]y; = 0.

(229 B+ Vanont2ee Sl 4 o4 g
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Multiplying Eq. (2.25) by »; and performing the convolution we find

-

2ul @ a[v;] ox A
@2  (*+v vx—T“[?swj]+u+p)g~ﬁ—a%iig;§ +b[S] =

After multiplying Eq. (2.26) by », and subtracting the result from Eq. (2.25), we obtain
the equation for determining the intensity of jump for the transverse wave:

GMI

(2.27) (Q[ |]+ [S (Sjj'l'}'—s.,ji’kﬂ 3’!)]).

It is clear that attenuation of intensity of the jump depends on the geometry of the
wave surface and. on the visco-plasticity of the material, but is independent of the thermal
effect and of the dissipation. Temperature and heat flux are continuous on transverse
waves.

3. Acceleration waves

Turning to the acceleration or weak discontinuity wave, we define it as a surface
@(x;, ) = 0 on which the solution U is continuous and its derivatives are discontinuous,
i.e.

G.1) [U]=o, [gy]aeo [ ]aeo

The kinematical conditions of the compatibility of the first order can be obtained from
Eqs. (2.15), taking into account conditions (3.1). Substituting them into Egs. (2.16),
we find

ZiivitocV; =0,
(3.2) —cZy = AW O+ u(Vivj+ Vi) + (34+2u) achdy;,
(BA+2u) ToaVivi—ocecd = —Qv;,  TocQ; = kby,.
After excluding 6 from Egs. (3.2), we obtain the equations'
A+ Vive+ (u—oc?) Vi =
(3.3 ¢ = pp~t, - ik =0, —cZiy= u(Vivi+Vi»),
2= (42007, Vi=Wy, —cZiy= MVoy+2uhny;,

which coincide with the same equations for the strong discontinuity waves (2.8)-(2.10).
Thus there are two types of acceleration waves, longitudinal and transverse, which have
the same speeds as respective strong waves.
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For the purpose of determining the intensities of these waves we shall use the following
kinematic conditions of compatibility of the second order [15]:

aizij = Myvn+g* E:‘ ( " ijf;' Y g:—;) 288 bus 3}" g;l
(3.4 “% ‘"‘9"1":"'8” o (": 3xj J—g';;— —Bgﬂﬂgmbm%% g;: ;
[;::3‘: = (éj;” —M;jc)v,—cg"%% %, [a;;”] Mc*—2c 6?]
[ ai?: | (6;? "“) aa:‘ g;; [f?r?] Lie 2"_‘
[t = (Gt G [ 5| = 00205
[%‘%] = 9-200.

In order to make further calculations simpler we shall restrict our considerations to Fourier’s
law. The way of calculating the Maxwell-Cattaneo equation is the same.
From Egs. (2.14) and (3.4), we fir.d
(3.5) (3A+2p) To afvy, o] — cce0b = k(9—2020)+ [7;,f].
Since for 7, — 0 on the acceleration surface 6 = 0, we obtain
(.6) 8 = Gi+20) T TI:*

Since the last term in Eq. (3.5) vanishes, it is clear that the dissipation of the plastic energy
has no influence on the intensities of the acceleration waves in Fourier’s case. But it should
be remarked that the dissipation has influence on the second and higher terms of the expan-
sions of the solution near the wave front.

The following dynamic conditions of the compatibility of the second order may be
obtained from Egs. (2.1):

i azﬂ'j} T = |- azﬂk 529; 631)_,
| 0tox, | 7| Oxu0x, Sutp 0x;0x; ¥ dx;0x,
2

--(32.+2p)a[ ;az

1
[0y | _ [ 20 [ o%, 0% ])
|2 | T . | Ox; 0t ]‘5‘1“‘([ 0x; 0t ]*[ x, 0t

T [ 0ef) |
—(31+2p)a[~a-?i—] 5{;"' 2u -T:J'_ >

(3.8) oy ] [ %0 0%y az,,‘
5xj 3x¢ atax; 5xJ at at? |

Y

-as?-
]60_2# _a,;‘f' ]

G.n
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Substituting the expressions for jumps from Egs. (3.4), into Egs. (3.7), we find

52” ) 62,1 .‘3x, = an ( ax; ox,
——L _M, af - B &
(3.9 ( i Cl|Vi—8 ¢ — e 5yp Lyvv+g° ('J‘y +yl___ayﬂ
dxy @
~ Vg8 bes aXI . }50"'(314'2#)2“2 :0 Wnidy+p iL; viv+ Liviw,
i1 4 ox dx oV, [ ox 0x Ox
+g* ‘( - ‘)+" ‘( L+ ') b(V J
g' ay¢ ayﬂ Yi- ayﬂ g¢ ay' ayﬁ J g¢ gm aa|¥i 3 3}’5
oxi)\ ol pn @ ‘D(S ks) . 2w é(S—k,)
& "3ys] oy, t s 5 Sl St — 5 il

d¢] J] _ " ey
oxi] clal
where the following relations were used:

[i{s] - [Eﬁ] =0, [3:;] = —C(}:u— —;—Eu au)»

Thus it is possible to obtain from Egs. (3.7) twenty four equations, respectively M;; and L;.
But only the following six equations are independent:

¥V,
(3.10) iz‘ll-M;;c = z(L,v.+g'ﬁ 2 k0%

ot
oV 0x; | OV oxy )] u o DS-K) .
5 Tyl lt s s T 5 Sy

)&U+(3ﬂ.+2p)’a‘ :o V,,vkéu

+,u [LI'PJ'{‘ Ljv;+g' (

2w b S
+ e PS-K) (5]
zc
Indeed, if we multiply Eq. (3.10) by », and subtract the result from Eq. (3.9),then we find

l

y+Vpm)l = 0

This condition is satisfied identically since Eq. (3.3) is true. For other equations it could
be proved in the same way. Let us obtain three additional independent equations from
twelve equations of motion (3.8). Substituting the jump expressions from Eqgs. (3.4) into
Eqgs. (3.8), we obtain

6xj ax; 62,,

dx; dx,
Mm;vﬁg""(vvg;g-&- Vg ay ug"’g‘"b, bt B,

’ ayﬂ a}’:

¥ 9%
0Ya a.Vﬁ

@3.11) + (L,gc—g 6;?)7;4- g%oc
a):u) 8 62u 3x, 6 1 9
(M.‘jc i g‘ ay'-é;;—2 a +QC L;—O
Three independent equations could be obtained after multiplying the first Eq. (3.11) by »

(3.12) M1)1’1+96Li+g¢——-——9— = 0.
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After excluding M;; from Egs. (3.10) by means of Eq. (3.12), one finds the following
system of three equations, respectively:

DX 80Xy ox 14
G139 —gtutlec-PLiteg? Zh o —ee gt = (+u) Ly
Vi ox 6V ox (BGA+2u)*a?Tyc
ap Ul k oWk : ad B i i o
+ g o 6y + ug® By + —x Vv
3 O(S-K, 2w H(S-K) ..
+ ci.“S Sii%i 35 —-—-( 3 ) Shmliml + 22 ‘LS——*I- [54712.
Using the expressions (3.2) for Z; through ¥; we obtain
oV, ox Vv, Ox
= ; - p k 9%k REE: SN
G) (et Lonnt =)L = (g | ZEZhot T ay,,)
i ox; ox; 14 3A42u)?a?Toc
—ﬂV, gﬂﬁgmbﬁt 6})1 'ay—', +‘2 (sti + A(————%)—o— Vk]’k‘pl
3 B(S-K) 2 H(S— K,
+ ::S Sivipe _£S— SmlS kln]+ 2 ”(—Sl[-s'u]%

where [si] = 2u (v‘vj— —;—6,1) V.

Multiplying Eqgs. (3.14) by »; and taking into account Egs. (2.22) and (3.3), we obtain
for the longitudinal wave, the following equation for determining the intensity V:

2,2 b gﬁ
(3.15) -is—ri c2V— Gd+2ureils I o {s;g;'v; aas (d) )Skm[slm]+ [Sej]"i*’,;}

ot 2ko " otc?
Comparing Eq. (3.15) with Eqs. (2.23) for the strong discontinuity, it is evident that the
thermal attenuation for both waves is the same and the difference is connected with the
terms characterizing the visco-plastic attenuation. The same conclusion is true for the
Maxwell-Cattaneo case.
Assuming ¢* = pup~! and ¥;» = 0 in Eq. (3.14) and multiplying the result by »;, one
finds, for transverse waves, the relation

Vi Ox (BA+2u)aToc
_ af k k - 0
(3.16) (A+p) (Lﬂ’g +g . T ) %

.E_ Sijv"v)!_a_é(s_k,)
e\ 2§ oS S

After multiplying Eqs. (3.16) by »; and subtracting the result from Eq. (3.14), we obtain
the equation for. determining the intensity of the transverse wave

Vivk

Sumlienl + 2 il v,)

AT T e
ey Liocor-L1 [%gx_' () sttt + -t~ zsk,lvmvo].

This equation coincides with the same one for isothermal transverse acceleration waves
in the elasto-visco-plastic medium considered in [6].
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