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Diffusion equations for a mixture of an elastic fluid 
and an elastic solid 

E. C. AIFANTIS, W. W. GERBERICH, D. E. BESKOS (MINNEAPOLIS) 

A MECHANICAL theory is formulated for the diffusion of an elastic fluid through an isotropic 
elastic solid. It is assumed that each point of the mixture is occupied simultaneously by both 
constituents in given proportions. The motion of each constituent is governed by the usual 
equations of motion and continuity. The mechanical properties of each component are specified 
by means of constitutive equations for the stresses. Diffusion effects are accounted for by means 
of a body force acting on each constituent which depends upon the composition, the elasticity 
of the solid and the relative motion of the substances in the mixture. This approach makes it 
possible to derive coupled diffusion equations for both constituents. Uncoupling of the equations 
is accomplished within the framework of a linearized theory by adopting particular motions 
for the mixture. The result is compared with classical diffusion equations derived by intuitive 
modifications to the empirical Fick's law. 

Sformulowano teori~ mechaniczn~ dla dyfuzji cieczy spr~zystej przez izotropowe cialo stale. 
Przyj~to, :le w ka:idym punkcie mieszaniny wyst~puj'l jednoczesnie obydwa skladniki w odpo­
wiednich proporcjach. Ruch ka:idego skladnika rZ<!dzony jest zwyklymi r6wnaniami ruchu 
i ci'lglosci. Wlasnosci mechaniczne poszczeg6lnych skladnik6w wyspecyfikowane zostaly przy 
pomocy r6wnan konstytutywnych dla napr~:ien. Efekty dyfuzji uwzgl~dniono poprzez silft 
masow'l dzialaj'lC'l na ka:idy skladnik, kt6ra zalezy od kompozycji spr~zystosci ciala stalego 
i ruchu wzgl~dnego substancji w mieszaninie. Stosuj'lc to podejscie wyprowadzono sprz~:ione 
r6wnania dyfuzji dla obydwu skladnik6w. Rozprz~zenia r6wnan dokonano w ramach teorii 
zlinearyzowanej przez przypisanie poszczeg6lnych ruch6w mieszaninie. Wyniki por6wnano 
z klasycznymi r6wnaniami dyfuzji wyprowadzonymi drog'l intuicyjnych modyfikacji empirycz­
nego prawa Ficka. 

C<f>opMyJIHposaHa MexamNecKaH TeopHH .rtH<I>'PY3HH ynpyroii mHW<OCTH B H30TponuoM TBep­
~oM TeJie. IlpHHHMaeTCH, liTO B Ka>K~OH TOtiKe CMeCH BbiCTynalOT o6a KOMIIOHeHTa B COOTBeT­
CTBYIOI.I.tHX IlpOIIOPI..\HHX. .IJ;BH>KeHHe Ka>KAOro KOMIIOHeHTa OIIHCbiBaeTCH 06biKHOBeHHbiMH 
ypasHeHHHMH ABH>KeHHH H Hepa3pbiBHOCTH. MexaHHtieCKHe csoiicTsa OTAeJihHhiX KOMIIO­
HeHTOB CIIeQH<f>HI.{HpOBaHbl IlpH IIOMOI.I.tH OIIpeAeJIHIOI.I.tHX ypaBHeHHH AJIH HaiipH>KeHHH. 
3<f><f>eKTbl AH<f><f>y3HU yqTeHbl llepe3 Maccosyro CHJIY AeHCTBYIOI.I.tYIO Ha Ka>K~blH H3 KOMIIO­
HeiiTOB, I<OTOpaH 3aBHCHT OT OTHOIIIeHHH yiipyroCTH TBepAOrO TeJia H OTHOCHTeJihHOrO ABH­
>KeHHH cy6CTaHQHH B CMeCH. IlpHMeHHH 3TOT IIOAXOA BbiBe~eHbl COIIpH>KeHHbie ypaBHeHHH 
AH<f><f>y3HH AJIH o6omc KOMIIOHeHTOB. PaciipH>KeHHe ypasHeHHH IIpOH3BeAeHo B paMKax JIH­
HeapH30BaHHoii TeopHH qepe3 IIpHIIHcaHHe oT~eJihHbiX ABHmeHHH CMecH. Pe3yJihTaTbi cpas­
HeHbi c I<JiaccHtieCI<HMH ypasHeHHHMH AH<I><f>Y3HH BhiBeAeHHbiMH IIYTeM HH'J.'YHTHBHbiX MOAH­
<t>HKaQHii 3MIIHpWiecKoro 3aKoHa <l>HKa. 

1. Introduction 

THE PROBLEM of diffusion of liquids and gases through stressed solids is an important 
one both in theory and practice. In a classical treatment [1-5] diffusion equations are 
derived by adding stress dependent terms to the first Fick's law of diffusion. More specifi­
cally, within a linear elastic theory, and no mechanical basis, it is proposed that in a 
gas-solid mixture at uniform total density, the following constitutive relation holds: 
(1.1) ev = -DVe+M*Va, 

10• 
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Where e is the density (concentration) of the gas, V is its diffusion velocity, (]is the trace 
of the stress tensor, and D, M* are phenomenological coefficients which may depend on 
the densities (concentrations) and the temperature. For particular examples in references 
[I -5], D is considered as a constant, M* is taken as a linear function of the density e, 
and temperature effects are assumed to be negligible. In that case, substitution of Eq. (1.1) 
into the equation of the conservation of mass of the gas and use of the well-known relation 
of linear elasticity 

(1.2) V 2G = 0, 

yield 

(1.3) 

One may note that Eq. (1.3) is in the form typically obtained for a hydrostatically­
stressed solid [1-4], but is different from that of SHEWMON [5] and others [6, 7] which 
use the elastic potential V in the place of G, thus retaining the V 2 V term, in order to explain 
the interaction between particles and defects with no hydrostatic components. For example, 
a screw dislocation can interact with the tetragonal distortion of a point defect which 
produces shear stresses [6]. However, this might not be necessary for other types of defect 
distortions since STEHLE and SEEGER [8] have determined that screw dislocations have 
volume expansion due to a disregistry at the dislocation core. Since it is difficult to generalize 
the specific effects of the non-hydrostatic cases [9], we retain the hydrostatic first order 
term only recognizing that second order effects are possible. 

In the present work we re-examine this problem by following the general theory of 
mixtures introduced by TRUESDELL and ToUPIN [10, Sects. 88, 158, 215, 295] and extended 
further by TitUESDELL [11, 12], ADKINS [13, 14] and GREEN and ADKINS (15]. The above 
authors reason that since the diffusion process involves the relative motion of the constit­
uents of the mixture, a transfer of momentum between components is involved. For each 
constituent we assume that kinematic and mechanical quantities such as velocity, accelera­
tion, density, stress and body force per unit mass may be assigned and that with the aid 
of these, equations of motion and of conservation of mass may be established. In the case 
of a mixture of two components, this procedure yields a system of four partial differential 
equations. Further, it is assumed that within the mixture, the properties of any given 
component are defined by means of constitutive equations relating the partial stress tensor, 
the deformation gradients, the density and the kinematic quantities, such as velocity 
gradients and acceleration gradients, for that component. To simplify the theory we assume 
here that, in particular, the stress components for the solid s1 depend upon the densities 
and the deformation gradient defined for s1 • The stress components for the fluid s2 depend 
on the densities and the elasticity of the solid through its deformation gradient. Of course 
the basic assumption for elastic fluids, i.e. that the fluid cannot support shearing stresses, 
is adopted here. 

To account for diffusion phenomena it is assumed that the body force acting on a given 
component, and expressed per unit mass of that component can be subdivided into an 
extraneous body force, identical in character with that of single component systems, and 
a diffusive force. This diffusive force depends upon the composition of the mixture at the 
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point under consideration, upon the density gradient, upon the elasticity of the solid and 
upon the relative velocities of each constituent. The forms for the partial stresses and the 
diffusive force are restricted to satisfy the necessary conditions for invariance of the prop­
erties of the mixture under rigid body translations. Finally, we should point out that 
thermal effects are neglected in the present investigation. 

2. Preliminaries 

We consider an elastic solid s1 which is undergoing a continuous deformation and 
suppose that the region occupied by this solid is also permeated by a fluid s2 which is in 
motion relative to s1 • We a;sume that each point within the mixture is occupied simul­
taneously by s1 and s2 • The motion is referred to a fixed system of rectangular Cartesian 
axes. The motion X of a typical particle of s1 is described by the invertible transformation 

(2.1) x = x(X, t), 

where x and X are the places of the particle in the present and the reference configuration, 
respectively, and t denotes time. Similarly, the motion y of a typical particle of s2 is described 
by the invertible transformation 

(2.2) y = y(Y, t), 
where y and Y are the places of the particle in the present and the reference configuration, 
respectively. Since the particles under consideration occupy the same place at time t, we 
have x = y. 

Velocity fields at the point x = y in s1 and s2 at time t are defined as 

D<l)x D< 2>y 
(2.3) u = -nf = {ui}, v = -rit = {vi}, 

where D<l)jDt denotes differentiation with respect tot holding X fixed in the solid s1 and 
D<2> I Dt denotes a similar operator for s2, holding Y fixed. The operators D<l) I Dt, D<2> I Dt 
are given by 

D<o a a D< 2 > a a 
(2.4)U> ----r5t = at +um axm' ----r5t = at +um aym . 

The deformation gradient F of the motion X of the solid s1 is a second-order tensor 
field defined as 

(2.5) F = Vx(X, t). 

We assume that at x = y and timet there exist partial stress tensors Sand T, extraneous 
body force vectors g1 and g2, and diffusive body force vectors rh/rh~ and-~ for the 
constituents of the mixture s1 and s2 , respectively. The body forces are per unit mass and 
et and e2 are the densities of s1 and s2 , respectively. Then the equations of motion for each 
constituent become 

. D<l)u . D<2>v 
(2.6) d•vS+e2~+e1g1 = e1-r51' d1VT-e2~+e2g2 = e.2-r51· 

In subsequent work we shall restrict attention to the case in which extraneous body 
forces are absent. Addition of the Eq. (2.6) eliminates the term e2 ~ and confirms the 

O) Summation convention is assumed over repeated indices. 
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fundamental fact that the diffusion forces arise from interactions between the solid and the 
fluid and that the mixture as a whole does not recognize their existence. 

In the absence of chemical reactions between s1 and s2_, we have the equations of conti­
nuity for each constituent 

(2.7) 
8th .· at +div(et u) = 0, 

We consider now motions of each constituent which differ from the motions defined by 
Eqs. (2.1), (2.2), (2.3) only by a superposed rigid-body rotation at timet. This is required 
in order to restrict the form of the constitutive relation by using the axiom of frame-indiffer­
ence and any conditions imposed by material symmetry. A change of frame is a time­
dependent mapping (x, t) to (x*, t*) such that 

(2.8) x* = c+Q(x-0), t* = t-t0 , 

where c is an arbitrary point function oft, Q is a time-dependent orthogonal linear transfor­
mation, 0 is a fixed point in the space and t0 is an arbitrary constant. Then it follows that 

(2.9) F* = QF, u*- v* = Q(u- v). 

If the partial stresses S*, T* and the diffusive force ~* a3sociated with the motion (2.8) 
differ from S, T and ~' respectively, only by orientation, then the principle of frame 
indifference [11] implies that 

(2.10) S* = QSQT, T* = QTQT, ~* = Q, ~' 
where the symbol T indicates transposition. 

3. Constitutive assumptions 

The system of Eqs. (2.6) and (2.7) is completed by the introduction of constitutive 
equations for the stresses S, T and the diffusive force ~· When s1 and s2 are separated 
they are specified by the constitutive equations 

(3.1) S = S(B), T = g(e2), 

where B = FFr is the left Cauchy-Green deformation tensor and g and S arbitrary tensor 
are functions. Relations (3.1) are deduced from a general functional relation for elastic 
materials by assuming that s1 is an elastic isotropic solid and s2 is an elastic isotropic fluid 
[16]. The axiom of frame indifference, as described by Eqs. (2.10), is applied to Eqs. (3.1) 
to give 

(3.2) 

which indicate that S is an isotropic function of its argument and g is a second-order 
isotropic tensor. In view of Eqs. (3.2), Eq. (3.1) can be written in the usual canonical 
forms [16]: 

(3.3) S = fJol+fJtB+{J2B2, T = -p(e2)1, 

where {J0 , {JIJ {J2 are functions of the three principal invariants Is, ITs, Ills, of the tensor 
B and are given by 

(3.4) Is = trB, 
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When s1 and s2 are flowing as a mixture we have to consider interaction terms occur­
ring in the expressions for the partial stressesa. Within the framework of a simplified theory 
we assume that the solid s2 will retain essentially the same character as defined by 
the constitutive Eq. (3.1) 1 with the modification that a dependence on the density of 
the fluid s2 is now allowable. The fluid s2 is assumed to retain its fundamental character 
of "not supporting shearing stresses" as in the constitutive Eq. (3.2)2; however, 
a dependence of the scalar-valued function p on the density of the solid and the elasticity 
of the solid through the left Cauchy-Green deformation tensor B does result. Thus the 
constitutive equations for the partial stresses become 

(3.5) 

Application of the principle of frame indifference and subsequent use of representation 
theorems for isotropic functions [16, 17], reduce Eqs. (3.5) to 

(3.6) S = -{J0 1-{J1 B-{J2 B2
, T = - pl , 

where {J0 , {1 1 , {12 , p are scalar-valued functions of e1 , (! 2 , 18 and IlB, i.e. the densities 
and the first two principal invariants of B. c2> 

The diffusive force ~ may be regarded as a retarding effect exerted upon the motion 
of the fluid s2 due to the presence of the elastic solid s1 • It is natural to assume that it 
depends upon the elasticity of the solid through the deformation gradient F, the densities 
and the density gradients, and the velocities of the constituents. Thus the constitutive 
equation for the diffusing force takes the formc 3 > 

(3.7) 

The occurence of e 1 u and (h v instead of u and v is more natural since on intuitive 
grounds, one could argue that "force depends on moments rather that velocities" or 
that interaction forces arise from momentum exchanges. 

Invariant considerations of isotropy and frame indifference allow one to assume the 
following special form for Eq. (3.7): 

(3.8) ~ = .(qJ1I+fP2B+qJ3 B2
) (e 1 u-ezv)+(qJ~I+qJ~B+qJ;B2)grade 1 

+ ('P~'I+ qJ~B+qJ~B2)grade2, 

where (/)r, (/);.and (/)~, er= 1' 2, 3), are scalar functions of the two principal invariants 
I 8 , liB and also depend on e1 and (! 2 • The representation (3.8) is appropriate for both 
isotropic (full isotropy under all orthogonal second order tensors, i.e. holohedral isotropy) 
and hemitropic (isotropy only under the proper orthogonal tensors: i.e. hemihedral isotropy) 
materials. Notice that the constitutive Eqs. (3.6) are also valid for isotropic and hemitropic 
materials. Thus, in the framework of the assumed constitutive equations, where the motions 
are also slow, the present theory is valid for both isotropic and hemitropic materials. 

<2> For convenience in the analysis, in Sect. 3 and 4, the dependence of the various functions which 
occur in the theory on Ills is expressed as a dependence on ~1 through the continuity equations of the solid 

~1 = eo yllla . 

<l> The case of small velocities and small density gradients is the one of interest in the subsequent 
analysis. 
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Further, we confine attention to the special case where~ depends on the deformation 
tensor B through its three principal invariants only. This is a generalization of the assump­

tion of the classi~al approach that only normal stresses are important to diffusion. Then, 

Eq. (3.8) becomes 

(3.9) 

where I 1 ' 12 and 13 are functions of IB' liB' e 1 and ez . 

4. Diffusion equations- Non-linear theory 

With the constitutive equations for the partial stresses and the diffusive force (3.6) 

and (3.10), we shall derive diffusion equations for the binary fluid-solid mixture using 

only the mechanical principles (2.6) and (2.7). We assume that the solid and the fluid are 

initially at rest (of course the solid could be under static deformation) with an equilibrium 

density e 1 for the solid independent of time and an equilibrium constant density e2 for 

the fluid. During diffusion we assume that the densities become e 1 +a1, e2+a2 and that 
a 1, a2 and the velocities u, v of ec:.ch component of the mixture and all their time and 

space derivatives are small quantities of the same order. Under these assumptions the 

field Eqs. (2.6) and (2.7) take the form 

(4.1) 00"1 d" ( ) fu + IV (!1 U = 0, 00"2 d" ( ) ----a/+ IV (!2V = 0, 

(4.2) . ·'· ou d1vS+e2't' = et-at• divT ::- t!2tY = (h ~; . 
In the constitutive eqs. (3.6) and (3.9) we make a Taylor's expansion around the 

equilibrium point (e1, e2) and we neglect terms of order higher than the first. Then the 

expressions for the partial stresses and the diffusive force take the form 

S = - [(,Bo + c1 0"1 +c12 O"z}l + G81 +et 0"1 + ctz a2)B+ (Pz +et* 0"1 + c1~)B2], 

(4.3) T = - [p+ C21 a 1 + C2 a2]l, 

-e2~ = l1 (e~u- e2v)+ l2 grade1 +(et a1 +c2 a2)grade1 + I2 grada1 +l3gradu2, 

where Po, Pt. P2, et. c12, cf, cf2, et*, c!r, p, c2 1 , c2, 11, l2, 13, Ct. and c2 are functions 
of the invariants 18 , II8 and also depend on the equilibrium densities e1 and (!2. Combining 
Eqs. (4.1), (4.2) and (4.3), we obtain 

(4.4) 

V2 (c1 a1 + c12 a2) + div {div[(c! o' 1 + c!2 a2)B]} +div {div [(c~,.. 0"1 + ctt O"z)B21} 

-I, ( a;,• - a;,, ) + 12 V2 a,+ 13 V2 a2 +div [(C, a,+ 1'2 a,)Ve1] + gradl, • (e, u-e 2v) 

020"1 
+gradi2 • grada1 +gradl3 • grada2 = ~· 

V 2(c21 a1 +c2 a2) +I,( a;,, - a;,2 )- I, V2 a 1 - I3 V'a, -div[(C, a,+ C, a,)Ve1] 

o2 (J' 

- gradi1. ({h u-ezv)-gradi2. gradal-gradi3. grada2 = o(l!.
2 

• 
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The coupled Eqs. (4.4) describe the diffusion process of an elastic fluid through the 
most general non-linear elastic isotropic or hemitropic solid, the mixture undergoing 
uniformly slow motions. If we further adopt a Helmholtz representation for the vector 
(!t u-e2v, then e1 u-e2v is eliminated from Eqs. (4.4) and we obtain 

(4.5)1 

V2( c1 u1 + c12 u2) +div {div[(cf CTt + cf2 u2)B]} + div {div[(cf*ut + cf'f C12)B2]} 

-I, ( ~;,· - a:,, ) +I, V2 "I+ I, V2 
"' + div[(C, "• + c, u,)Ve.J + gradi,. grad "• 

+gradl3 • gradu2 + 4~ grad {J J J + ! [u, (~, 7J, C)- u2 (~, 7J, C)]d~d7JdC} 
D 

()2 C1 
gradl1 +curla·gradl1 = 

012
1 

, 

V2 (c21 u1 + c2 u2 ) +I, ( a:,, - a:,,)- I2 V2 a,-13 V2 u2 -div[(C1 u1 + C2 u,)Ve,] 

(4.5), - gradi2 • gradu,- gradl, • gradu,- 4~ {J J J + ! [u,(~, 7J, Cl 
D 

- u,(~, 7J, C)Jd~d7JdC} • gradi, -curia -gradi, = a;~' , 
where r2 = (x- ~)2 + (y -17)2 + (z- C)2, a is an arbitrary vector and Q denotes the part of 
the space occupied by the mixture. 

Performing some of the differential operations in Eqs. (4.5) and rearranging terms, 
we deduce the final form of the coupled diffusion equations for a binary system of a non­
linear elastic solid and an elastic fluid which reads 

(4.6) 

Y, V' ... + Y, V' o'z + Y, "I+ Y.u, + "'• • gradu, +w,. grad a,+ I,( a:,, - a:,, ) 

+div{div[(cj' u1 +cf2 u2 )Bl} +div{di~[(ct*a1 +cft"a2)B2l} + 4~ grad {J J J + ! 
D 

X [a I(~' 7J' Cl- o' 2 (~' 7J' C)] d~d7JdC} • gradl I+ curl a • grad I, = a;t~· ' 
Y,. V' a1 + Y2 • V2 u2 + Y,.a, + Y4 ,u2 + w 1 , • grad u1 +w2 • • gradu2 +I,( a:,, - a:,,) 

- 4~ grad {J J J + ! [a,(~, 7J, C)- u,(~, 7J, C)]dCd71dC} • grad 11 

D 

()2 C1 
-curl a ·gradl1 = 

012
2 

, 

where Y r.r; {F, F'} = 1 , 2, 3, 4 and wr.r; { r, F'} = 1 , 2 are correspondingly scalar 
and vector functions of 18 , 118 , e1 and (;' 2 , and they are given by the relations Yt,t' = 
= c1, 21 ±l2; Y2 , 2 • = c12,2 ±13 ; Y3, 3 • = V2c1,21 ±Cct/12)V2p±gradp • grad(ct/I2); Y4,4' = 
= V2c12,2 ±(c2/12)V 2p±gradp • grad(c2/l2); wt,t' = grad(2ct,2t ±l2) ± (ctfl2)gradp; 

w2,2' = grad(2ct2,2 ±13) ±c2/l2. 
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To simplify further the theory, we omit the last two terms of the left hand side of both 
Eqs. (4.6)1 , 2 by arguing either that we adopt very slow motions with velocities that 
may differ considerably from roint to point in the space, or that we assume special cases 
where the function 11 is constant. 

Example 

To illustrate the theory we study in detail the steady-state absorption of liquids in 
solids. This kind of problem arises, for example, in the swelling of rubber and plastics 
by solvents. We assume that the solid is a Mooney-material (for example natural rubber) 
for which the constitutive equation is given by [16] 

(4.7) s = -PI+p(}+r)B-pg -r)B-', 
where the scalar p is an indeterminate pressure function of the spatial coordinates, and p, 

and y, which satisfy the inequalities p, > 0 and - ~ ~ y ~ ~ , depend on the density (! 2 • 

Because such a type of material is incompressible ( det B = 1), the density of the solid 
remains constant during any process of deformation or diffusion. In this example we 
confine attention to the case where only small quantities of fluid are absorbed by the solid, 
in which case the coefficients p, and y are constants and do not depend on the density 
of the fluid. 

For simplicity we consider a homogeneous deformation field, namely a pure extension, 
with principal directions parallel to the coordinates {Xi}. Thus, the deformation is described 
by 

(4.8) x 1 = A1X1 , x2. = AzX2 , x 3 = A3 X3 , 

where A1 , A2 , A3 are constants satisfying the incompressibility condition 

(4.9) 

The tensors Band s- 1 are found as 

(4.10) lAI 0 0 ] 
B = 0 A~ 0 , 

0 0 A~ 
B-1. = r1~0Af 1/0~i ~ ] ' 

1/A~ 

and the principal invariants of B are constants given by 

(4.11) IB = Ai+Ai+AL nB = AiA~+A~A~+AiAL nrB = AiAiA~ = 1. 

Thus, under the above assumptions the coefficients cl, c12' et' cf2' et*, err, C2t '12 and ~1 
become zero and c2 , 11 and 13 become constants dependent on the numbers (!t and (!11.. 

The equilibrium equations indicate that the pressures p and p are also constants. It the:n 
follows that Eq. (4.6)1 is trivial in an assumed steady-state situation, while Eq. (4.6)h 
takes the form 

(4.12) 

which is recognized as the steady-state diffusion equation of Fick. 
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In the previous example, if the solid is a general compressible non-linear elastic material, 
its constitutive equation is given by Eq. (3.3)1 with the coefficients f3r; r = 0, 1, -1 
dependent on e1 , e2 , 18 and 118 • In this case A1 , A2 and A3 in Eqs. (4.8) depend on the 
motion which is not easily specified. The deformation tensor B is therefore difficult to 
determine. However, in cases of engineering interest Eqs. (4.10) may be used in Eqs. (4.6) 
as a first approximation. Then the coefficients in Eqs. (4.3) and the equilibrium densities 
become constants and the diffusion Eqs. ( 4.6) for a steady state become 

V2 2 *( ,2 020'1 ,2 o2a1 ,2 o2a1 ) * ( ,2 02(]2 
y1 (J'1+Y2V a2+c1 IL1 ox2 +IL2 oy2 +IL3~ +c12 IL1 ox2 

(4.13) 
A2 o

2
a2 A2 o

2
0'2 ) **( 1 o2

0'1 1 o2
0'1 1 o2

0'1 ) 
+ 2 oy2 + 3Tz2 +et 1I ox2 +-AT~+ A~ Tz2 

** ( 1 o
2

a2 1 0
2

0'2 1 0
2

0'2 ) 
+c12 1I ox2 + 1I oy2 + 1"f Tz2 = o, 

Yt' V20'1 + Y2' V2a2 = 0, 

where Y1 , 2, t' , 2, and ct;t! are constants dependent on Q2 and At, 2, 3 • The system 
(4.13) is not difficult to solve. In the special case in which A1 = A2 = A3 , Eqs. (4.13) yield 

(4.14) V20'H = 0, 

which is the classical result of Pick's law for a steady-state situation. The same relation 
for the same problem was derived by a different approach by ADKINS [14]. 

5. Diffusion equations - Linear theory 

In the present section we derive a simplified diffusion law by linearizing the constitutive 
equations for the partial stresses and the diffusive force. The theory concerns the flow 
of a fluid through a solid which, when separated, follow an elastic and a linear elastic 
isotropic behavior, correspondingly. 

Within the framework of a linear theory, the constitutive equations (3.6) and (3.10) 
for the partial stresses and the diffusive force take the form 

S = -e<(e2)1-A(Q2)trel-p(e2)e, 

(5.1) T = -f3(e2)1-p(e2)trel, 

-e2~ = lt(!?t u-e2. v)+l2 Ver+I3 Ve2, 

where -Ir = yr(e2)+ ~r(e2)tre, r = 1, 2, 3 and e is the small deformation tensor. 
We again assume that the solid and the fluid are initiaJJy at rest with equilibrium densities 

!?t and e2. During diffusion the densities become e1 +at and e2+a2. We further assume 
that O't, 0'2 , the velocities u, v and all their time and space derivatives, are small quantities 
of the same order and that in the fundamental equations terms of order higher than the 
first are negligible. Thus the field equations are given again by Eqs. (4.1) and (4.2). 

We want to expand the constitutive Eqs. (5.1) around the equilibrium point. The method 
followed here is based on physical grounds, but results in identical forms for the di:ffusion 
equations as the perturbation technique which is discussed elsewhere [19]. Thus, in the 
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constitutive Eqs. (5.1), we allow an arbitrary dependence of the response coefficients on 
G1, i.e. the deviation from the equilibrium density of the solid, and we subject them to 
a Taylor's expansion around the equilibrium point (e1, e2), keeping the infinitesimal 
strain tensor e fixed at its equilibrium value. The arbitrary dependence of the response 
coefficients on 0'1 takes also care of the changes of tre, through the continuity equation 
of the solid. This is sufficient for a diffusion theory in consistency with previous assump­
tions that only normal stresses are significant in a diffusion process. Thus we obtain 

(5.2) 

S = - [cx(e2)+c1 0'1 +c12a2]I- [ACe2)+ct0'1 +ef2a2]trel- [,u(e2)+et*t11 +et!a2]e, 

T = - [,8(e~) + c21 a 1 + c2 a2]I- [p(e2) + e!1 t1 1 + e! 0'2]tr el, 

-e2~ = 11 (e1 u- fJ2 v) +(I] +e3 0'1 + e4a2)Ve1 + 12 V0'1 + 13 Va2' 

where ex, A, p,, ,8, p, 11, l2, 13 and e1, e12 , et, ef2, et*, et:, e21 , e2, e!~> e~, e3, e4 are con­
stants dependent on the number e2. 

We next insert Eqs. (5.2) into Eqs. (4.2). To the resultant equations we apply the div 
operator and we also use the mass balance {4.1) and the well-known relation of linear 
elasticity 
(5.3) V2tre = 0, 

which it can be easily shown to hold here. Thus we obtain 

e1 V2a1 +e12 V2a2 +2ctVtre • Va1 +cttreV 2a 1 +2et2Vtre • Vt12 +ct2treV 2a2 

+V· {V· [(ct*a 1 +eft a,) el)- (y1 + 01 tre) ( a:r, - a:r,) + 01 Vtre • (e1 o- e" v) 

- c3 eo Vtre • Va1- ce0 Vtre • Vt12 +<52 Vtre • Vt11 + (y2 + b2 tre)V 22 t11 

+<53 Vtre • Vt12 + {y3 +<53 tre)V 2a2 = 
0
;

1
%1

, 

(5.4) e41 V20'1 +c2 V 2
a2 +2c~1Vtre • Va1 +c!1 treV 2 0'1 +2c!Vtre • Vt12 +c!treV2a2 

. ( oa1 ot12) + (Yt + ~1 tre) ift- at - b1 Vtre • Cet u-e2 v)+e3eo Vtre • Vla1 

+c4 eo Vtre • Va2 - <52 Vtre • VG1- (y2 +<52 tre)V 2 0'1 - <53 Vtre • V7a2 

( 
~ )V2 ()2(]]2 

- Y3+u3tre a2 = ot'2. 

If we consider only the cases where either the gradients of the velocities are large in 
comparison with the velocities or the coefficient <51 (e2) is zero, then we can omit the tetrm 
bt Vtre ·(et u-e2 v). Then by collecting terms appropriately in Eqs. (5.4) we h~ve 

V2 (clal +c12a2)+Vtre· V(ctal +ct2a2)+treV2 (ct*at +c~!a2) 

{V [ ** ** ) ]} ( ~ )( ot11 ot12) o
2
01t +V. . (cl 0'1 +c12 0'2 e - Yt +Ut tre at-at = ot•2 ' 

(5.5) 
V 2 (C21 O't + c2 a2) + Vtr e · V(ct1 a 1 +c~a2) +tr eV2 (c~f0'1 +c!*t12) 

( 
OO't oa2) o2

cn2 + (Yt + bt tre) -at-at = ot~2 ' 
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where 

c1.21 = c1.21 ±Yz' C12,2 = c12,2 ±y3' ctn = 2ct21 + (!oC3 ± dz' 
c:2,2 = 2c:z.z+eoc4±c53, ct~l = cf.zt±dz and cft.z = cfz.z±d3. 

The system of the coupled partial differential Eqs. (5.5) describes, in a general linear 
theory of very slow motions, the diffusion of a perfect fluid through an elastic solid. It is 
remarkable that besides the presence of deformation dependent terms, inertia terms appear 
on the right hand side of Eqs. (5.5). Thus, Eqs. (5.5) have the form of the telegrapher's 
equations rather than those associated with the classical Fick's law [18]. 

In an effort to uncouple Eqs. (5.5), in order to give a simple usable diffusion law, we 
neglect the inertia terms [18]. We confine attention to the special case in which 

(5.6) V· [(cf*<T1+cff<T2)e] = Vxw, 

where w is an arbitrary vector. The situation where cf* = cff = 0 is described in Eq. (5.6) 
by letting w be a constant. Physically, Eq. (5.6) means that we allow influence of the 
deformation on the diffusion process only through the principal invariants of the strain 
tensor. This is also the basic assumption of the classical theories [1-9]. 

It then follows that for some motions 

(5.7) Cc1 +c21)<T1 +(cz+cl2)<Tz = (cf+c~1)<Tt +(c~+c~t)<Tz 
= (cf*+c~t)a1 +(c~*+cff)<i2 = o. 

If, in particular, 

(5.8) c1 = Kef, c12 = Kcfz, cz = Kc~, c21 = Kc~1, cf* = K*ct, 
c~t = K*crz, c~* = Kc~, c~t = Kctf, 

where K and K* are constants, then Eqs. (5.5) give 

(5.9) [ K(C~C~ -Ct2C~1)V2 + (CtC~-Ct2C~1)Vtre ·V +K*(C~C~ -Ct2C~1)treV2 

- { (y 1 + d 1 tr e) (c~ + c~ +et 2 + c~ 1)} -:-r· = 0. 
ut a2 

Introducing a series expansion for 1/y1 + d1 tre we obtain 

(5.10) a - - -- -KV 2 -LVtre ·V -FtreV2]a• = 0 ot a2 ' 

where K, i and i are constants dependent on e2 and related in an obvious way with K, K*, 
Y1' d1' cf' c~' ctz and c~1· This is the diffusion law for both constituents under the asSUIDJ>"' 
tions of the proposed simplified theory. 

Using a relation between the first invariants of the stress and strain tensor deduced 
from Eq. (5.1)1 , i.e. 

(5.11) tre = -3rxj3A+J.t-trSj3).+J.t = -3rxj3A+J.t-<Tj3).+J.t, 

(5.10) yields 

(5.12) ae at= DV2e-MV<T· Ve+N<TV 2e, 

where the constants D, M, N are given by 

D = k-3rxF/3A+J.t, M= Lj3A+J.t, N = -Fj3).+p,, 

11 Arch. Mech. Stos. J:Jr 2n1 
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and u is the trace of the stress for the solid and e represents the density of either the fluid or 
the solid. We require the constant D to be positive and we allow at the present time any 
sign for the constants M and N depending on the deformation state and the relative size of 
the atomic radius of the constituents. 

Formula (5.12) is the most simple expression for a diffusion Jaw within the framework 
of the proposed theory. A direct comparison with the semi-empirical formula (1.3) indicates 
the presence of the additional term NuV 2e. Equation (5.12) may be rewritten as 

(5.13) ~; = D*V 2e-MVu· Ve, D* = D+Nu. 

Thus Eq. (5.13) has the form of Eq. (1.3) with the diffusivity coefficient replaced now 
by an "effective diffusion coefficient" linearly dependent on the trace of the stress tensor. 

Here, we should point out that our theory differs from the usual fluid-solid mixture 
theories (e.q. [20-22]) because of the special constitutive structure we introduced. This 
simplified structure, with the aid of some approximations and specializations, allows one 
to obtain practical and easy-to-use results which, in addition, turn out to be generalizations 
of previous Fick type theories [1-5]. Also, linear mixture theories usually neglect the cross 
effect of stress-diffusion and thus, terms such as the MVu • Ve of Eq. (5.13) do not appear 
in those theories [20-22]. 

6. Ramifications to classical diffusion interpretations 

The normal way to explain stress effects on diffusion is to invoke an additional exponen­
tial term or terms associated with vacancies. For self-diffusion or substitutional diffusion, 
D:r is normally given as (5] 

(6.1) D:r = a~vexp[-(Etv+Emv)/RT)exp(-PL1v/RT), 

·where a0 is the lattice parameter, v is the Debye frequency, E1v, Emu refer to formation 
and migration energies of vacancies, P is the hydrostatic pressure and L1v the activation 
volume. In these vacancy-controlled mechanisms, it is easy to envision L1v as associated 
with a relaxation of the surrounding atoms into the vacancy. Physically, this would reflect 
that as the hydrostatic pressure increases, the vacancy concentration decreases to relieve 
the pressure hence, a decrease in diffusivity results. 

For interstitial diffusidn, it is much more difficult to rationalize effects of stress (pressure) 
by such mechanisms since vacancies are not normally thought to be involved. In order to 
explain such effects as well as other anomalous diffusion data, the concept of migration 
by interstitial-vacancy pairs has been invoked [23]. It is assumed that the binding energy 
between an interstitial and a vacancy is sufficient to make interstitial-vacancy pairs contribute 
to the mechanism of diffusion at high temperature. The interstitial diffusivity, D1, is given 
as 

(6.2) D, = Doexp( -EmtfRT)+6(v1 /v2)D0 pexp[(B-E,v-Emp)/RT], 

where Do, D0 p are the pre-exponential terms for the interstitial and the pair; v1 and V.z 

are the vibrational frequencies of the two configurations; Em1 and Emp are migration energies 
of the interstitial and the pair; B is the binding energy and E1v is the formation energy 
of the vacancy. 
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It is possible to compare the present theory and the above classical interpretations to 
experimental data by reducing Eq. (5.13). Equation (5.13) gives 

(6.3) D* /D-I = NafD. 

Having in mind the values of Nand D from Eq. (5.12) and assuming that~, appropriately 
normalized, is small compared to the other constants, which is physically well justified, 
we obtain 

(6.4) 

where K* is a new constant. We further approximate the values of the functions A and f-t 

at equilibrium, with the Lame constants of the elastic solid (-A is equal to the first Lame 
constant and - p, is equal to twice the second Lame constant). Finally, Lame constants 
may be reduced to Young's modulus, E, and Poisson's ratio, v, so that Eqs. (6.3) and (6.4) 
may give 

(6.5) D* _ I "' _!!_ (I - 2v ) 
D -K* E. 

This very interesting result implies that stress-affected diffusivity only varies from system 

to system by a constant, K*, except for a small temperature dependency of v, E. It is now 
possible to compare Eq. (6.5) to Eqs. (6,,1) and (6.2) with experimental data taken as a 
function of stress and temperature. 

+0.2 

HYDROSTATIC { 0- C in Fe, 623- 1000 o K 

PRESSURE e- Cu in Cu, 973- 1173 °K (SCALE CHANGED) 

UNIAXIAL 

TENSION 

-6 

{ 
0 - H in Fe, 300 ° K 

•- H in Ni, 515 °K 

O'"(I-2V/E) X 103 

-5 -4 -3 -2 

FIG. 1. 

+0.1 

-0.4 

~o.G 

-0.8 

+0.1 +0.2 

(SCALE CHANGED) 

(0*/0)-1 

A considerable body of diffusion data has been reduced in Fig. I for both interstitials 
in tension and hydrostatic stress fields, as well as the pressure effect on self-diffusion. 
If one first examines the self-diffusion data of Cu in Cu, one is struck by the remarkable 
straight lines when a(l-2v)/E is plotted versus (D*/D)- I. Of course, Eq. (6.5) is lacking 

11* 
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in that the constant K* must be a function of temperature. This simply reflects that the 
effect of pressure on the vacancy concentration, as indicated in Eq. (6.1), undoubtedly is 
involved and exhibits the well-known temperature dependency. In this respect, the present 
theory would not make interpretation of substitutional or self-diffusion any simpler but 
would add an additional dimension. 

On the other hand, if one examines the interstitial diffusion data of H and C in Fe 
and Ni, one sees little temperature dependence in Fig. 1. It should be pointed out that the 
scatter was inherent at any particular temperature. Thus, over an even larger temperature 
range than the self-diffusion case, the data for both interstitials indicate a temperature-

independent constant, K*, in Eq. (6.5). This would imply that the arguments leading to 
Eq. (6.2) are either invalid or of secondary importance. It further suggests a much simpler 
interpretation of stress effects on interstitial diffusion via Eq. (6.5). 
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