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Singular solutions in microcontinuum fluid mechanics
H. RAMKISSOON (BARBADOS)

THe METHOD of associated matrices is applied to obtain Galerkin-type representations for the
equations of motion of two basic linear theories in microcontinuum fluid mechanics. The represen-
tations are then utilized in constructing singular solutions for these theories. The results, wherever
possible, are compared and are found to be in agreement with those of previous investigators.

Zastosowano metod¢ macierzy stowarzyszonych do wyprowadzenia reprezentacji typu Galer-
kina dla réwnan ruchu dwoch podstawowych teorii liniowych mikrokontynualnej mechaniki
cieczy. Reprezentacje te wykorzystano nastepnie do skonstruowania rozwiazan osobliwych
dla tych teorii. Wyniki zostaly, w miare moznosci, porébwnane z wynikami uzyskanymi przez
innych badaczy.

IIpumenen MeTol HPMCOEAWHEHHBIX MATDML[ 1A BhIBOMAa NpeAcTaBieHuMi THna [anepkuna
JUIS yPABHEHH JBMKEHUA JBYX OCHOBHBIX JIMHEHHBIX TEOPHIl MHKPOKOHTHHYAJIBHOH MeXaHHKH
YKHIKOCTEH . DTH NpeCcTaB/ieHHA HCIIONIB30BAHbI 3aTEM [IIA MOCTPOEHUA OCOOBIX pellieHuit JuA
3THX Teophii. PesysbTaThl cCpaBHEHBI, N0 Mepe BO3MOXKHOCTH, C PE3YJIbTATAMH IOJYUeHHLIMH
APYTHMHM HCCIIeOBATE/IAMH.

Notations

Laplace operator,
body force,
constant body force,
unit matrix,
body couple,
constant body couple,
dynamic pressure field,
position vector of an arbitrary point x with respect to an origin at y,
distance of x from origin y,
velocity vector,

X,Y,Z matrices (2*1),

d0(x—y) Dirac delta function,
(7, p,m,2,0, ) material constants,

Blw o am i --..lh-.'iﬂ'-.l“s'l

22 2yp ,
0y—m
2 -2y
) (o —
(n+7+0)

2 “inherent” angular velocity,
V gradient operator,
V2 Laplace operator.
Subscripts
k integer running over values 0, 1, 2, 3,
i, j, m, n integers running over values 1, 2, 3.
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1. Introduction

THE CONSIDERATION of couple-stress in addition to the classical Cauchy stress, has led
to the recent development of theories of fluid microcontinua. This new branch of fluid
mechanics has attracted a growing interest during recent years mainly because it possesses
the mechanism to describe such rheologically complex fluids as liquid crystals, polymeric
suspensions and animal blood.

The many and diverse applications of microcontinuum mechanics to flow problems
are well documented in a review article by ARIMAN et al. [1]. KLINE and ALLEN [2] studied
blood flow based on a microcontinuum formulation by investigating the concentration
effects in oscillatory blood flow. More recently with an improved microcontinuum model
of blood, ARIMAN et al. [3] presented an encouraging comparison of the theoretical velocity
and cell-rotational velocity profiles with the experimental data of BUGLIARELLO and
SeviLLA [4].

In view of these findings it seems logical that further research work, both theoretical
and experimental, will be undertaken in this area. With this in mind, the following work
is presented as foundation material for possible use in future studies.

This paper is concerned with finding the singular solutions for the slow steady field
equations of two apparently different specialized theories of microcontinuum fluids —
Stokes’ couple stress theory [5] which contains first and second order velocity gradients
and the theory of asymmetric hydromechanics developed by AERO et al. [6] in which a new
independent kinematic variable, the gyration tensor, is introduced. The method of associa-
ted matrices which has been used by several authors [7, 8] in the study of elasticity and
linear elastic dielectrics, is employed to construct Galerkin-type representations. With
the aid of these representations, the required singular solutions are obtained.

2. Basic results
Let
1 0 0 "Xl
=01 o}, 5 g booY
00 1 X
@.1) - i
0 =X X X3 X% XX,
Y=| x5 0 -xXx, Lt ¥ XX
=X, X, 0 | X3X, X3X, X3

be matrices with elements as real numbers. If d2 = X7+ X2 +X3 and the superscript “t”
over a matrix denotes its transpose, then the following relations are easy to verify:

XX=d? XY=0, X'Z = d*xt,
YX = 0, Y? = —d*I+Z, YZ=0,
(2.2)
ZX =d*X, ZY =0, Z? = d°Z,

Xx'=Z.
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é .
Working in Cartesian coordinates (x;, X, x3), let o X; (i = 1, 2, 3); it then follows
i

that
2=g? VxV=YV, VV-V=2V,
where ¥V is a vector represented by the column matrix [V, V,, V5]

In order to construct the three-dimensional singular solutions in subsequent sections,
we note that if

(2.3)  [V3, V4 V2 +ad, (V2 +a]) (Vi+ad), (V2 +a}) (V2 +a3) (Vi +ad)lg
- _a(x_y)[l’ l! ]’ l’ l}’

then the corresponding solutions are given by

1 1 r eiaor wlr m;r 2 1ajr
o) 8 ‘H[?”E’T @) Ll ]

where d(x—y) is the Dirac delta function, a, (k = 0, 1, 2, 3) are arbitrary real constants,

X = (%1, %2,%3),r2 = Y (x;—y)* and E; = [(@}—az) (@ —a)] ™", j#m#n,j,mn=
i=1

= 1,2,3.

The matrix inversion technique shall now be illustrated by applying it to the Navier-
Stokes equations and moreover we need the results for future reference. In the case of slow
steady incompressible flow, an assumption that will be made throughout this work, the
equations take the form

uVu—-Vp = ~f,
V-u=0.

This system (2.5) is equivalent to the matrix equation

£-[%

where the matrix A is given by

pd?I —
@7 o= [X, f)].

The solution of (2.6) is of the form

- HEE

and so the problem reduces to that of finding the inverse matrix 4=* of (2.7). This is found
to be

2.5)

d}l-z X
- F
29) ar=| ",
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Substitution of (2.9) into (2.8) produces the following Galerkin-type representations
for u, p:

(2.10) o
p=—uvViv-¢,

where ¢, y satisfy the equations

Vép = —f,
@.11) # f

Viy =
Hence
(2.12) Vip =V-f.

To determine %, p we need ¢_, y; hence we must solve the system (2.11) assuming that the
body force £ is known. In the case of an arbitrary constant concentrated point force f =
= Fd(x—y) applied at the point y(y,, y;,»s), the solution of (2.11) is given by

2.13 ¢ = Fr, =0.
(2.13) # p

Substituting this into (2.10), we obtain

(2.14)

where the gradient is evaluated at the point y. LAMB [9] gives similar expressions for a point
force in the creeping motion approximation using an alternative approach.

3. Stokes’ couple stress theory

Developed by STOKES [5] in 1966, this theory represents the simplest generalization
of the classical theory which allows for polar effects such as the presence of couple stresses
and body couples. But unlike ERINGEN’s micropolar fluid theory [10] and the asymmetric
hydromechanics of AErO et al. [6], this couple stress theory of fluids defines the rotation
field in terms of the velocity field. In fact, the rotation vector is equal to one-half the curl
of the velocity vector as is the case in Newtonian fluids. Second order gradient of the
velocity vector, rather than the kinematically independent rotation vector of asymmetric
hydromechanics, is introduced into the stress constitutive equations and consequently
the theory yields only one vector equation to describe the velocity field. In the case of
incompressible creeping flow, the field equations are [5]:

227 L rl e i
3.1 uViu—aV u“Vp b,
Vu=0,

where b = f+1/,Vx L.
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To obtain the singular solutions, we once again write (3.1) in the matrix form (2.6), i.e

-1

where
(nd*—ad*)l1 —
A= ¥t ol

The inverse matrix A~! is found to be

I 2 X
. | P T Pl e @
' Xt
-7 p—od?

Substitution of (3.3) into (3.2) leads to the following Galerkin-type representations:
%= —(VxVxg¢)+Vy,
p=—(UV>—aV)V ¢+ V3 (u—aV?)y,

where ¢, y satisfy the equations

V2(uV2—aV4) ¢ = —b,
Vip = 0.

If we take b = Fo(x—y) where F is once more an arbitrary constant vector, then the
solution of (3.5) is given by

(3.4)
(3.5

F_ =0 —eVEp

- 8mu dnur
(3.6)
y =0,
Using (3.6) and (3.4), the singular solution of (3.1) is finally given by
. 5oy L ‘V‘":_‘
u= ! [£+(F3r)r]+ GZVxVxF—-—-—l A r,
8au | r r dmu r
3.7 -
1 F-r
P

We now make the following observations: .
(a) The pressure field is identical to that of the classical theory given by (2.14),.
(b) The velocity vector % is decomposed in the form

u = U +u,,

where u, is the classical solution (2.14), and %, is the contribution due to the couple stresses.
As o — 0, # — u, as expected.

(c) BLeusTEIN and GREEN [11] presented a theory of dipolar fluids with similar field
equations in the linearized case. Hence the solutions obtained here will also be valid for
such fluids.
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4. Asymmetric hydromechanics

By introducing the velocity field %, an “inherent” angular velocity field £ and a dissipa-
tion function, AERO et al. [6] constructed the equations of a fluid characterized by asym-
metric hydromechanics with the aid of the rheological laws. The key point to note in the
development of this theory is the introduction of two basic and independent kinematical
vector fields — the vector field representing the velocities of the fluid particles and that
representing the angular velocities of the fluid particles. The basic field equations are

(u=y)V2a-29yVxQ-Vp+f=0,
4.1) (+1+0)VV - Q—0VxVxQ42yQ—yVxu+I =0,
V-u=0.

The coefficient y links together the velocity and the angular velocity fields and may be
termed by the coupling constant since its vanishing uncouples the differential equations
and produces the classical Navier-Stokes equation. The matrix form of the system of

equations (4.1) is
=[
L
r 0

E|

2l

4.2) A

where the matrix A is given by

L =2pY =X
(4.3) A=|-yY LiI+(n+vZ 0},
Xt 0 0

and where L, = (u—y)d?, L, = (0d*+2y).
After some working, the inverse matrix 4~! is obtained in the form

" L,d*I-L,Z 2yY X
| 2Y Li L+ 29> —(n+ )Ly } Z
4.9 A== L. L.L. 0
-Xxt
dz 0 (z—7)
so that with the aid of (4.2) we obtain
hi_ _'dezf—LzZ sz 1 £ —_-f_‘--
Ladz La dz
— ?Y Ll L4I+ {2?2—(??+T)L1}Z =
4. = e —
(4.5) (8] I 7 0 I,
-X'
p == 0 (u—7) 0

where Ly = Ly L,+2yd*and Ly = L+ (n+1)d>.
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The representations for Z, 2 and p are now given by
% = (V2 +2)) V2, — (V2 +2p)VV + b, + 27 [(+ 1 +0) V2 +29]V x $, + VP,

46) 2= 9yVA(Vxd)+(u—y)V[(1+7+6)V>+2y]4;

+22 =+ D) (=) VIV V- ¢,

p==V@E-yV:+2uy1V ¢,
where t; 44 6 2, Y statisfy the equations
VA[O(u—y) V2 +2yul ¢y = —1,
@7) VA (+T+0) V2 + 2] 0(u— )V + 27 b3 = —1,
V2 = 0.

Again, as in the classical case (2.12), V2p = V * f. The theory of asymmetric hydromechanic
gives rise to two independent fundamental singular solutions of the field equations; namely
the velocity and rotational fields in an unbounded medium due to a concentrated body

force as well as a concentrated body couple.
(a) Concentrated force

Let f = Fo(x—y), [ = 0.
Using (2.3), the solution of (4.7) is found to be

‘5 _ F [ r _(I*e—h)]
YT 8wA | O(y—p) uyr i

4.8 _
s ¢,=0, ¥=0,
where
2 2yu
6(y—w)

2 Fe7 - (1 pmr
= ——-———1 I:%§+% e r)F— (2?“322) :VxVxF(———l : )}],

4nA*(y — p) rd
— RO (e |
@9) 0= Fxvize”
8nu r
_ 1 F-r
P=Zx

Except for minor changes in viscosity coefficients, the results (4.9) agree with those given
in [12] for micropolar fluids whose field equations are similar for creeping flow. It is of”
interest to note that comparison with (3.7) shows that the velocity and pressure fields are
identical in form to those in Stokes’ theory.

(b) Concentrated couple
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Here we take /= 0, [ = Lé(x—y).
In this case the solution of the system (4.7) is given by

‘61 - 0!
- L 1 e e
(4.10 =
(440) 2 dnf(n+7+0)(u—7) [a’lzr+ a*(6?—AH)r ¥ lz(lz—ozjr:]’
¥ =0,
where ¢? = —-«_—g-L
n+t+0

Substituting (4.10) into (4.6), we obtain the following singular solutions for a con-
centrated couple:

ST, e |
B W
8mp r

& Ee“"+ VV.L 2 22+ R+ -y) e

(4.11) 4nbr =~ Anb(u—y)(m+7+0) | 02 2%r A2(A2—0?) r
22+’ (p+1)(u—y) e
* 02(0?—A2) r |’

p=0.

5. Conclusions

Fundamental singular solutions of two basic and apparently different linear theories
of microcontinuum fluid mechanics are obtained with the aid of a matrix inversion tech-
nique. Except for minor changes in material constants, the velocity and pressure fields
.are found to be similar in both theories in the case of a concentrated body force acting
in an unbounded medium. Moreover, this pressure is identical to that obtained in the
classical Navier-Stokes theory; hence the presence of couple stresses does not affect the
pressure field.
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