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On elastic-plastic wave propagation; transmission of elastic-plastic 
boundaries 

H. M. CEKIRGE (ISTANBUL) and C. ROGERS (LONDON, ONTARIO) 

THE PU'RPOSE of the present paper is two-fold. Thus, in the first instance, a general approach 
to the governing equations of one-dimensional elastic-plastic wave propagations (in the absence 
of strain rate and lateral inertia effects) is presented via the Bergman integral operation method. 
Termination of the Bergman series is shown to occur in a simple manner for certain multi­
parameter non-linear constitutive laws of significance. Secondly, there is a discussion of the 
important concept of "elastic-plastic boundary". In particular, the propagation of the elastic­
plastic! boundary for a semi-infinite medium subjected to a monotonically increasing and then 
monotonically decreasing load at its open end is investigated. 

Cel niniejszej pracy jest dwojaki; po pierwsze, przedstawia og6lne podejscie do r6wnan r~<Wt­
cych jednowymiarow(} propagacj(} fal spr~zysto-plastycznych (z pomini~ciem wplywu pr~dkosci 
odksztalcen i bezwladnosci poprzecznej) na podstawie metody operator6w calkowych Bergmana. 
Na przykladzie pewnych wieloparametrowych nieliniowych r6wnan konstytutywnych pokazano 
proces zakonczania szereg6w Bergmana. Po drugie, praca zawiera dyskusj~ wamego poj~cia 
"granicy spr~zysto-plastycznej". W szczeg6lnosci zbadano propagacj~ tej granicy dla osrodka 
p61nieskonczonego poddanego dzialaniu obci(}i:en, kt6re najpierw monotonicznie wzrastaj(}, 
a nast~pnie r6wniei: monotonicznie malej(}. 

HacroH~aH pa6oTa HMeeT ABOHHyro uenb. Bo-nepa&IX, npeACTaaneH o6~HH: nOW'OA K ypaaHe­
HHHM OllHCbiBaJOll.lHM OAHOMepHOe pacnpocrpaHeHHe ynpyro-nnaCT~NeCKHX BOJIH (c npeHe-
6pe>l<eHHeM BJIHHHHH CKOpOCTH Ae$opMaUHH H nonepetiHOH HHepUHH), OllHpaHCb Ha MeTOA 
HHTerpa.rn.HbiX onepaTopoa EeprMaHa. Ha npHMepe HeKoTop&rx MHoronapaMeTpHtJeCKHX He­
JIHHeHHbiX onpeAeJIHIOIUHX ypaaHeHHil noKa3aH npouecc OKOHtlaHHH pHAOB EeprMaHa. Bo­
BTop&Ix, pa6oTa coAep>i<HT o6cym):{eHHe aa>I<Horo noHHTHH ,ynpyro-nnaCT~Neci<HH npe):{en' 1

• 

B tJaCTHoCTH HCCJie):{oaaHo pacnpocrpaHeHHe 3Toro npe):{ena ):{JIH noJiy6ecKoHetiHoH: cpe):{bi, 
llO):{BeprHyTOH ):{eHCTBHIO Harpy30K, KOTOpbie CHatJana MOHOTOHHO B03p&CTaiOT, a 38TeM TO>I<e 
MOHOTOHHO y6biBaiOT. 

1. Introduction 

THE PHENOMEI\lON of plastic deformation arises naturally when materials are subjected 
to large dist.urbances such as those produced by the detonation of explosives. Its study 
is of importance, in particular, in connection with the construction of impact-resistant 
structures. The present paper is concerned with one-dimensional wave propagation in 
elastic-plastic materials; strain-rate and lateral inertia effects are neglected. A general 
discussion on the hodogr a ph system governing the plastic region is presented via the 
Bergman integral operator approach (BERGMAN [1]). It is shown that termination 
of the Bergman series after two terms occurs for precisely those non-linear stress-strain 
laws generated by RoGERS and CLEMENTS [2] via Baecklund transformations. For these 
multi-parameter constitutive laws, the hodograph equations are readily integrated. Such 
stress-strain laws and their application in non-linear elasticity have been discussed recently 
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126 H. M. CEKIRGE AND C. ROGERS 

by CEKIRGE and V ARLEY [3], KAZAKIA and V ARLEY [4], ERINGEN and SUHUBI (5] and 
ROGERS [6]. Thus, a similar reduction in analysis is available, in principle, for the analysis 
of elastic-plastic wave propagation problems (see CouRANT and FRIEDRICHS [7, p. 246]). 

An important concept associated with elastic-plastic wave propagation is that of the 
"elastic-plastic (E-P)" boundary, that is, the boundary of irreversible deformation sep­
arating the elastic region and the elastic-plastic region in which the deformations are 
beyond the elastic limit. The determination of the propagation of this boundary has been 
discussed by several authors, such as LEE [8], SKOBEEV [9], CLIFTON and BODNER [1 0] 
and BBVILACQUA [11]. The second part of this paper concerns the derivation of the E-P 
boundary for a semi-infinite medium modelled, in part, by a Bell law, when subjected to 
monotonically increasing and then decreasing loads. Numerical results are presented 
for .aluminium. 

2. The hodograph equations 

A Lagrangian formulation is adopted wherein both the material coordinate X and 
the spatial coordinate x are referred to the same fixed Cartesian system. Thus, 

x = x(X, t) 

denotes the position of a typical particle at time t so that 

x = X+u, 
where u is the particle displacement in the deformation. The strain and particle velocity 

at the point x at time tare 

whence, 

(2.1) 

ox 
e=--1 ox ' 

oe Ou 

OX 
u=-ot 

Tt = ox· 
The equation of motion in one-dimensional wave propagations is 

oT ou 
oX= float' (2.2) 

where T and eo are, respectively, the stress and density of the undeformed state. When 
the dynamic re·sponse of the medium is isotropic and homogeneous with respect to the 

undeformed state, 

(2.3) 

Eq. (2.2) can be written as 

(2.4) 

where 

(2.5) 

T = T(e), 

2 . oe ou 
a (e) oX= ifi' 

a2(e) = _1 dT. 
(!o de 
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ON ELASTIC-PLASTIC WAVE PROPAGATION 127 

Hence, the governing equations (2.1), (2.4) may be written in the convenient matrix from 

(2.6) 

The hodograph transformation is now introduced wherein the roles of the dependent 
and independent variables are interchanged. Thus, 

so that 

a I a r a I au a 1 a I aT a I au a I 
ax t = ax ar J, + ax au lr' Tt.x = Tt ar , + Tt au r' 

a ! _ [ ar a ar a ]/ 1 ou IT- TxTt- Tt ox ' 
a I [ au a au a J /1 

oT n = Tt ox - OX Tt ' 1 , 

oT ou oT au 
where 1 = TxTt- TtTx' Consequently, 

X.,= - Tr/1, Xr = Ur/1, 

t., = Tx/1, lr = '-Ux/1 

and the system (2.6) becomes 

(2.7) [; 1 = Gleo l/eo:2(T}J[; l 
Introduction of the new strain measure 

T e 

(2.8) I f 1 ~· 4> =- -dT = ade, 
eo 0 a . 0 

reduces (2.7) the canonical form 

(2.9) [ t J = [0 K(<p)-'][ t] 
X t~~ K(t/>) 0 X.,' 

where 

(2.10) K(t/>) = a(T). 
Hence, 

(2.11) iJ [ i!t J i!
2
t 

olj> K olf> = K ou2 

so that, if we set 

(2.12) t* = K!t, 

then (2.11) becomes 

(2.13) 
o2t* o2t* 
olj>2 - ou2 + Mt* = 0, 

where 

(2.14) ! ! M= -(K )t~~•fK . 
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3. The Bergman series approach 

Solutions of (2.13) are sought in the form 

·(3.1) 

(3.2) 

where 

·(3.3) 

(3.4) 

]t is observed that 

(3.5) 

(3.6) 

00 

t*<1> = 2 h11 (cp)F11(U+cp), 
n=O 

00 

t*< 2
> = 2 g11(c/J)Gn(u-cp), 

n=O 

F~ = Fn-1, 

G~=G11 _ 1 , n=l,2, .... 

f= 1/2[cp-u], 

g = 1/2[c/J+u] 

H. M. CEKIRGE AND C. ROGERS 

are the Riemann invariants. They are constant respectively along any one a- or P-charac­
teristic which propagate from left to right and right to left, respectively, according to the 
respective equations 

(3.7) 

(3.8) 

dXdtl« = a( e), 

dX/dtlp = -a(e). 

The formal substitution of (3.1) into (2.13) shows that the latter admits such solutions 
if the recurrence relations 

(3.9 2hn+ 1 .cP +hrr.~cP + Mh11 = 0, n = 0, 1, 2, ... , h0 = constant 

.are obtained. If we take h0 = 1, it is seen that (3.9) provides the 'transport equations' 
for the h11 in the form 

cP 
(3.10) hn = - 1/2 f [hn-t,cPcP+Mhn-ddcp, n = 1, 2, ... 

cPn 

where the c/Ji are arbitrary constants of integration. Hence, the h11 may be generated once 
the T(e) constitutive law is specified. 

The recurrence relation (3.3) provides, on integration, 

{3.11) 
211 g 

Fn = -, f (g-gt)"F~(g)dgt 
n. o 

whence we obtain the formal solution 
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ON ELASTIC-PLASTIC WAVE PROPAGATION 129 

where the interchange of the process of summation and integration is valid in the region 
of uniform convergence of 

C(l 

(3.13) 2"h,.(</J) ( - )" 
I g gl . n. 

n=O 

In a similar manner, it is seen that (2.13) admits solutions of the form 

(3.14) 

I co 

t*'
2

' =I GMf) 2 [ (-I)'~; g,(,P)({-f,)}/, 
0 n=O 

valid in region of uniform convergence of 

(3.15) 

and where 

C(l 

2 2" 
(- 1)" -, g,.(</J ){[-!.)" 

n. 
n=O 

(3.16) 2gtt+t..P-Kn,q,q,-Mg,. = 0, n = 0, I, 2, ... , g0 = constant 

so that the 'transport equations' for the g,. are (with g0 = 1) 

"' 
(3.17) g, = 1

/ 2 J [g,.,q,q,+Mg,.]d</J, n = 1, 2, ... 

"'" 
where again, the </J; are arbitrary constants of integration. 

If there is termination in the Bergman series (3.1) so that 

KN+k = 0, K > 0' 
then 

(3.18) 

whence 

(3.19) 

where ex, {3 are arbitrary constants of integration. In particular, if N = 0 so that the Berg­
man series terminates after a single term, then 

(3.20) 

where {3, <5 are arbitrary constants of integration. The relation (3.20) leads to the three­
parameter (T, e)- constitutive laws (ROGERS and CLEMENTS [2]) 

(3.21) 

where A > 0 and v are arbitrary constants. Similarly, the Bergman series (3.2) terminates 
after a single term in this case. From (2.13) it is seen that 

(3.22) t* = [{3cf>+<5] = (</J-u)+G(</J+u) 

9 Arch. Mech. Stos. nr 1177 
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130 H. M. CEKIRGE AND C. ROGERS 

while (2.9) produces 

X., = lPt/1+ 6]2 tiP = - P {F(t/J -u)+ G(t/J +u) }+ (Pif> + 6) {F'(t/J -u)+ G'(t/J +u) }, 

whence 

(2.23) X= P {F*(t/J- u)- G*(t/> +u) }+ CPt/> + 6) { -F(t/J -u)+ G(if> +u)}, 

where F = F*', G = G* 1
. 

If N = 1, so that the Bergman series terminates after at most two terms, then (3.19) 

2[a(Kl)(Kf)IP+,B(JJ-)1PK! f K- 1dl/J] = (Kl)~P~P· 

In particular, if lJ = 0, then 

(3.24) 

where b is an arbitrary constant of integration. The Riccati equation (3.24) generates 
precisely the stress-strain laws treated by CEKIRGE and V ARLEY in [3] and associated 
with the Baecklund transformation method by RoGERS [6]. 

It may be noted that the solution (3.22), (3.23) of the hodograph equations for the 
stress-strain law (3.21) is appropriate for the solutHon of the initial value problem 

(3.25) 

(3.26) 

t/J(X,O) = 1, 

u(X, 0) = V*(X). 

In the hodograph plane these conditions become 

(3.27) 

(3.28) 

t(V, 1) = 0, 

X(V, 1) = X*(V), 

where X* and V* are inverse functions. 
Application of (3.22) and the initial condition (3.27) shows that G(~) = -F(2-~), 

whence, 

(3.29) 
1 

t =. [Pt/>+ 6] [F(t/J-u)-F(2- {t/>+u})], 

(3.30) X= P{j[F(2- {tf>+u})-F(t/J-u)]du}- [Pt/>+ 6] [F(t/J-u)+F(2- {if>+u})]. 

Combination of (3.30) and the initial condition (3.28) shows that 

(3.31) Xt=o = X*(V) = -2[P+ 6]F(l- V). 

Thus, the solution of the initial value problem is given by 

(3.32) t = 2CP4> + ~)(p + 6) {X*( -1 +t/1 + u)- X* (I - Q> + u)}, 

(3.33) X = 2(p~ 6) f [X*(l-t/J + u)-X*(- 1 +4> + u)] du 

+ (pif> + 6) [X*(l-t/J+u)+X*( -1 +4> +u]. 

A further class of solutions of the hodograph equations may be readily generated. 
Thus, if we set if>* = 24>, then (3.16) becomes 

(3.34) 4g,.,~~J•~P•+Mg:-4g,.+ 1 .~P• = 0, n = 0, 1, 2, ... , g0 = const. 
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ON ELA,STIC-PLASTIC WAVE PROPAGATION 131 

If M is specialised to be of the form 

(3.35) 

then (3.34) becomes 

(3.36) Kn+t.~• = gn,c/J*~*+c(b-l/J*)- 2g,, n = 0, 1,2, ... , g0 = const. 

It is assumed, for convenience, that g0 = 1. 
The solution of the recurrence relations (3.36) is sought in the form 

n 

(3.37) g = ) a.u. n!(b-,1,.*)-n+j n ~ ;r;,n 'Y 
j=O 

where the ai, j = 0, 1 , 2, ... , n, are arbitrary constants. Hence, on substitution, it is 
seen that constants flJn obey the recurrence relations 

[(n+l)(n+l-j)]Jli.n+t = [(n-j)(n-j+1)+c]Jlj11 , j= 0, 1,2, ... ,n, 

J 0, j > n, 
(3.38) fljn = l 1, j = n = 0. 

Thus, 

J Cl) 00 " 

(3.39) t•<ll = J G~(f) .L,' [ 2 a;!';.(b-.P*)i]( -1)'2{{=~'• J d/1 

0 n=O ;=0 

valid in the region of uniform convergence of 

(3.40) 

In particular, if j = 0, the flo,n obey the same recurrence relations as the Jlo.v in the 
hypergeometric series 

(3.41) 

where 

(3.42) 

(3.43) 

Thus, if 

(3.44) 

then the particular solution 

(3.45) 

9* 

00 

2H1 ((X*, {3*; 1; x) = }; Jlo,vX", 
v=O 

a* = 1 I 2- e I 4- c)t, 

f3* = 1 I 2 + e I 4- c)t. 

J 1' 
aJ = l 0; 

j = 0, 

j > 0, 
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is obtained, whence 

(3.46) 

The validity of the associated solution 

I 

t*<2> = J G'(f) H (ex* R* · 1· [({1 
-/)]) d~" 

0 2 1 ' p ' ' b - 2f/J !/1 
0 

(3.47) 

is assured in the region 

(3.48) 

Similar results hold for the solutions t*U> involving the Riemann invariant g. 

In view of (3.35), 

so that 

(3.49) 

where ex*, {3* are defined by (3.42), (3.43) and y1 , y2 are arbitrary constants of integration. 
The specialisation ex* = 0, {3* = 1 generates the case (3.20) leading to the stress-strain 
law (3.21). 

This completes the general discussion. The subsequent work is concerned with the 
propagation of elastic-plastic boundaries in connection with a semi-infinite medium 
subjected to increasing and then decreasing loading at the open section. 

4. Propagation of elastic-plastic boundaries 

When a semi-infinite medium is subjected to a loading at the open section, the pulse 
propagates as a simple wave, namely g = 0. The Riemann invariant at the boundary 
is assigned as 

(4.1) f = F(ex), 

where ex is the time measure at the boundary, whilst, through the relations (3.5), (3.6), 

(4.2) cf> = F(ex) and u = -F(ex). 

Equation (3. 7) then provides 

(4.3) t = ex+Xfa(ex), 

where a(ex) is defined by the relations (2.5), (2.8) and (4.2). 
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ON ELASTIC-PLASTIC WAVE PROPAGATION 133 

The theory of wave propagation is the same for elastic and elastic-plastic materials 
for a loading in which the stress at the boundary of a semi-infinite medium increases 
continuously. When the stress at the boundary begins to decrease, the wave propa­
gation differs in elastic-plastic materials. A unique state equation governs both loading 
and unloading processes in elastic materials. In elastic-plastic materials loading and un­
loading occur according to different relations, and hysteresis effects cannot be neglected. 
Fig. 1 shows the dynamical stress-~train relation of polycrystalline metals such as alumin­
ium, zinc, silver etc .. The material is loaded along OABE and plastic deformations start 
at the elastic limit A. The OA portion of the curve is a straight line and unloading from 
any point on ABE occurs along a line parallel to OA. CD is the magnitude of strain re­
leased during the unloading and OC is the irreversible strain that depends upon the level 
of stress at which the unloading starts. The reloading from the zero stress level C occurs 
along CBE. 

., 
I 

T 

tan rx ... £0 

OA1= Elastic limit 
OC= Irreversible strain 
CD= Reversible strain 

e 

FIG. 1. Stress-strain relation for a polycrystalline material. 

ex, t 
E- P(unloadt'ng)region 

Undisturbed region 

X 

FIG. 2. Loading and unloading regions in the characteristic field. 

When the stress, which is beyond the elastic limit, starts to decrease at the boundary, 
the medium shows an elastic-plastic response. At this stage, the unloading state equation 
must account for the wave motion. The state equations Te = Te(e) and Tp = Tp(e) consti­
tute, respectively, elastic and elastic-plastic regions, see Fig. 2. In the elastic region E, 
the medium is loaded and 

(4.4) iJTe/iJt > 0, oejot > 0; 
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134 H. M. CEKIRGE AND C. ROGERS 

in the elastic-plastic region E-P, the medium is unloaded with 

(4.5) oT,/ot < 0, oe/ot < 0. 

The regions E and E = P are separated by the E- P boundary t, = 1p(X,), which is not 
known 'a priori'. It is this boundary that is sought. In the region E, the pulse propagates 
as a simple wave according to the relation (4.3), so that the information at the boundary 
is carried along the a-characteristics. The E- P boundary starts to propagate when the 
stress begins to decrease at the boundary at oc = r (see Fig. 2). At a point X,, the strain 
increases continuously until t, = 1p(X,) when the E- P boundary is reached. Then, the 
elastic component of the strain reverses and the same point is then included in the E- P 
region. The behaviour of the function t, = 1p(X,) depends strongly on the boundary 
conditions assingned at X = 0. 

Let us proceed to obtain the solution of the equations of motion in the E- P region. 
The state equation in the E-P region may be written as 

(4.6) 

where Tb(X,) and eb(X,) are, respectively, the values of the stress and strain at the time 
t, = 1p(X,) at which the E-P boundary reaches the point X,; E0 is the linear elasticity 
modulus of the material. Through the equations (2.1) and (2.2) the particle velocity and 
the stress are given as 

(4.7) 

(4.8) 

u = g(t+X/a0 )+f(t-X/a0 ), 

T = (E0 /ao) [g(t+X/ao)-f(t-X/ao)L 

for the region governed by the relation (4.6), where a0 = y' E0 /eo, and/and g are unknown 
functions. 

With the parameter a being a natural time measure at X = 0, the stress at the boundary 
is assigned as 

(4.9) 
r T,(a), 0 ~IX~ T, 

T- · 
- \ Tu(l), T < IX < 00, 

where T1 and Tu are, respectiviely, monotonically increasing and decreasing functions. 
Namely, at first, when 0 ~ a~ r, the medium is loaded and then it is unloaded. At 
time IX = T the E- p boundary is formed at the boundary and the initial condition of 
the E- P boundary is 

(4.10) X,(ac = r) = 0. 

In this paper, we are concerned with the E- P boundaries across which stress and 
particle velocity are continuous, but their derivatives are discontinuous [8]. Hence at 
the E- P boundary 

(4.11) T1 = T, and U1 = U,, 

where T1 and U1 are, respectively, the stress and particle velocity at the elastic side of 
the E- P boundary and T, and u, are, respectively, the stress and particle velocity at 
the elastic-plastic side of the E- P boundary. 
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It should be noted that the pulse propagates as a simple wave in the elastic region E. 
Equations (2.3), (2.8) and (4.2) give that 

(4.12) Ut = U1(a.). 

The evaluation of the function U1(a.) for a centred simple wave will be given in the second 
example of Sect. 5. Then, Eqs. (4.7)-(4.9), (4.11) and (4.12) yield 

(4.13) U1(a.) = g(tp+Xp)/a0 )+f(tp-Xp/a0 ), 

(4.14) T,(a.) = (E0 /ao) [g(tp+Xfao)-f(tp-Xp/ao)], 

and also 

(4.15) 

At the boundary X= 0, the equations (4.8), and (4.9) produce 

(4.16) Tu(a.) = (Eo/ao) [g(a.)-/(a.)]. 

By insertion of equations (4.15) and (4.16) into equations (4.13) and (4.14), the unknown 
function g is eliminated, and hence 

(4.17) ao ( XP Xp) ( Xp Xp) t( Xp Xp) U,(a.)--Tu a.+--+- =fa.+--+-+ a.+----' 
E0 a(a.) a0 a(a.) ao a(a.) ao 

(4.18) a0 [ ( ) ( XP XP)] !( Xp Xp) !( Xp Xp) - T, a. -Tu a.+--+- = .a.+--+-- a.+----· 
E0 a(a.) a0 a(a.) ao a(a.) ao 

Combination of these equations leads to 

(4.19) 

(4.20) 

where 

(4.21) lp1 (cr) = 'f2{u1(cr)+ ;: [1J(ex)-2T.(ex+ ~~) + X::ex))Jl. 

(4.22) lp2 ( er) = 1 I 2 [u,( ex)- ;: T1( ex)]. 

and J- 1 is the inverse function of f. If we set 

(4.23) 

where tpJ. 1 is the inverse function of 1p1 , the equation (4.20) becomes 

(4.24) [ X ( )] 
Xp {u[a., Xp(a.)]} _ Xp {u[a., Xp(a.)]} 1_1 [ ( )] 

" a., P a. + { [ X ( )] } "Pt a. . a " a., P a. a0 

Thus, (4.20) and (4.24) provide a single functional equation, 

(4.25) Xp(a.) = L{a., x[a., Xp(a.)]}+K{a., x[a., Xp(a.)]}XP {x[a., Xp(a.)]}, 
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136 H. M. CEKIRGE AND C. ROGERS 

where 

L[ex, Xp(ex)] = a0 a(ex) {x[ex, Xp(ex)]- ex}/[a0 +(ex)], (4.26) 

(4.27) K[ex, Xp(ex)] = a( ex) {a0 - a {x[ex, Xp(ex)]}} fa {x[ex, Xp(ex)]} [a0 +a( ex)]. 

Equation ( 4.25) may be written in the form 

(4.28) Xp(ex;:') = {Xp(ex:'-t)- L[ex:'-1, Xp(ex;:'_ 1)]}/K[ex;:'_1, X(ex;:'_ 1)] 

through which the coordinates of the E- P boundary are obtained from the condition 
Xp(ex8) = 0, where the subscripts n are defined by ' 

(4.29) 

Equation (4.28) gives the coordinates of the E-P boundary when m = 0, namely at 
the discrete values of ex. If more boundary points are necessary in any interval :x~- 1 < 
ex < ex~, then we start by setting 

(4.30) ex;:'_ 1 = ex~- 1 + mL1 ex, 

and equation (4.25) can be written as . 
(4.31) Xp(ex=_ 1) = L{ex=_ 1 , x[ex=-HXp(ex;:'..:-})]}+K{ex;:'_ 1 , x[ex;:'_ 1 ,Xp(ex=.:l)]}Xp(ex:'- 1

). 

Equations ( 4.28) and ( 4.31) then determine the space coordinates of the E- P boundary 
in the t-X plane. It should be noted that the values of Eqs. (4.28) and (3.21) then 
determine the space coordinates of the E- P boundary in the t-X plane. It should be 
noted that the value of 

(4.32) 

has to be chosen to satisfy the condition 

(4.33) IXp(ex!_ 1 )-Xp(oc~)l < s 

for admissible values of s. The time coordinate of the E-P boundary can be found through 
the equation (4.3). 

5. Applications 

Consider the case in which a material behaves as a linear elastic material until the 
strain reaches the elastic limit and then obeys a parabo1ic Jaw of the type given by Bell, 
namely 

(5.1) 
T = p(e+eb}!, ee < e, 

where ee is the elastic limit, and p and eb are the constants defined by BELL [12]. Unloading 
beyond the elastic limit occurs according to the relation 

(5.2) 

where T0 and e0 are, respectively, the values of stress and strain at which unloading starts. 
The relations (5.1) and (5.2) define polycrystalline materials. For comparison with experi­
ments, the application of the method is considered for aluminium so that E0 = 703.1 x 10l 
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kg/cm2 , eo = 2.8124 x 10- 6 kg x sec2 x cm- 4
, ee = 0.001, {3 = 39.4 x 102 kg/cm2 and 

eb = 0.03084 (see BELL [12], CRISTESCU [13]). 
The interpretation of the results is faciliated by the use of normalization quantities: 

(5.3) ao = Jl Eo/eo and To = Eo ee. 

Then the normalized quantities, which are shown starred, are written as 

(5.4) a* = a/a0 , u* = u/a0 , c* = c/a0 and T* = T/T0 • 

The problem is considered in infinite space and time, so that there is no normalization 
for length and time. For these variables, thoug artificial, the measures are taken as 

(5.5) X* = X/a0 and t* = t. 

The stars will be dropped in the following calculations. 
The main concern in section is to obtain the trajectory of the E- P boundary produced 

by an impact load. To understand the details of the phenomenon, the following examples. 
are treated : 

i) At X = 0, the stress is linearly increased and monotonically decreased through. 
a given function, so that 

(5.6) 
T, = Tmrx, 

T, = Tm/rx 2
, 

where rx is the time at the boundary and 

1<rx<oo, 

(5.7) Tm = ({3/To) (em+eb)! 

is the maximum value of the applied stress, (em = 0.06 (T AYLOR [14]) ). 
The various regions of the characteristic plane t-X are shown in Fig. 3. The region 

R1 is an undisturbed region if the semi-infinite medium is initially at rest. In the region 

2.5 ··~ 0.06 

0.04 

0.02~ 

a 

2.0 o X'c 5.0 10.0 15.0 

Rs E-P boundary 

15 

X/100 

TT,n 0 0 4.0 8.0 12.0 16.0 2aD 

FIG. 3. Trajectory of the E-P boundary and distribution of the permanent strains in the medium. 
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R 2 , only elastic waves are present with the wave velocity a = 1 . The region R3 is a transi­
tion region and the values of strain and stress at the elastic limit are carried at the wave 
velocities ap ~ a ~ 1 where aP is calculated from 

(5.8) a = (Y fJ/2eolao) (e+ebr* 

fore = ee. All the characteristics emanate from the point A at which the material passes 
the elastic limit. The region R 4 is the nonlinear loading region, the disturbances propagate 
at the wave velocities a < aP < 1. The values of a are found from (5.8) for ee < e < em. 
The region R 5 is the elastic-plastic region, irreversible deformations are present and the· 
deformations propagate at the wave velocities a = 1 . The E- P boundary separates 
the regions R4 and R 5 • 

In this case 

.(5.9) "Pt(ex) = {(V8fl/9eo'!ao) [eC14 -(TmToex/{J)312]+TmT0 ex/E0 

- 2Tm T0 /E0 [ex+XP (ex)/a(ex) + Xp(ex)]2 }/2, 

·{5.10) 1p2(ex) = {(J/ 8{J /9e0 /ao) [eC14
- (TmTo ex/{J)3

'
2]- TmT0 ex/E0 } /2, 

(5.11) a( ex) = (V fJ/2eo/ao)CTm To ex/fJJ -!, 
and "(ex) = 1p2 -l [tp1 (ex)]. Hence, the relations (4.28), (4.31) and (4.3) determine the 
trajectory of the E- P boundary until it reaches the characteristics which separates the 
regions R3 and R4 • Therefore the parameter IX varies as exy < ex < 1, where IXy is the time 
at the boundary at which the stress exceeds the elastic limit. The initial condition (4.10) 
for the E-P boundary produces a singularity at "(ex = 1). For the elimination of this 
singularity, the initial condition of the E- P boundary is written as 

(5.12) Xp(IX = I) = e, fp = 1 +e/a(ex = 1), 

where e has a small value around zero. The numerical example is treated for e = 0.001 . 
The space ordinate Xp(ex = exy) of the point C is called the "penetration distance", beyond 
which there are no irreversible deformations and the material has not yielded. The dis­
tribution of the permanent strains in the elastic-plastic region can be found, through ( 5.1 ), 
(5.2) and (5.7), when 

(5.13) ep = (TmT0 /{J) 2 -eb-(TmT0 ex/E0 ) 

is plotted against Xp(ex) with exy ~ ex ~ 1. This curve is also shown in Fig. 3. 
ii) At X = 0, the traction is suddenly applied and after the duration time t4 , decreased 

exponentially, that is, the medium is subjected to an impact load at the boundary, 

T, = Tm, 0 ~ IX ~ f4, 

Tu= Tmexp[-A.(ex-td)], 14 <ex< oo, 
{5.14) 

where .A. is the unloading rate and A. > 1 . 
In this case all the characteristics emanate from the origin, so that a marked difference 

exists between the features of the t-X plane of this and the previous case. Fig. 4 shown 
the various regions of the t-X plane. The regions R 1 and R 2 are, respectively, the undis­
turbed and transition regions. These regions are separated by a shock wave whose velocity 
is s = 1. In the region R3 , the medium is loaded along the nonlinear characteristics. 
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The region R4 is the elastic-plastic region. The regions R 3 and R4 are separated by the 
E- P boundary which starts from the point B, 

(5.15) 

at which the last loading characteristic intersects the first unloading characteristic. In the 
region K, which is the constant region, the irreversible strain is equal to its maximum 
value. 

8.5 

.. I U06 

Q04 

Q02 ~~c:(10D 
1QO 20.0 30.0 4QO 

a t 

3.0 

£-P boundary 

Q5 Shock wave 

X/100 

0 0 1QO 

FIG. 4. The characteristic field in the case (ii). 

The strain e is chosen as a parameter instead of a, so that 

(5.16) V't(e) = {(y8P/9eo!ao)[el14 -(e+eb)314]+P(e+eb)112 /E0 

- (2Tm T0 /E0 )exp {- ).[Xp(e)/a(e)+Xp(e)-r4)]} }/2, 

(5.17) "P2(e) = {(y8P/9eo/ao)[el14 -(e+eb)3
1
4 ]-p(e+eb)112/E0 }/2, 

{5.18) a(e) = (V P/2e0 /a0 ) (e+e6)-
11\ 

and 

(5.19) 

Then, the relations (4.28), (4.31) and 

(5.20) tP = Xp(e)/a(e) 

determine the trajectory of the E- P boundary in the t-X plane. The penetration distance 
Xc is obtained for e = ee. The numerical results are presented for ). = 1.0 and t4 = 1.0 
in Fig. 4 for the same numerical data as in the previous case. 
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The maximum distance reached by irreversible deformations is termed the penetration 
distance. Table 1 compares the penetration distances for aluminium in boundary-value 
problems (i) and (ii) with analogous problems treated by CEKIRGE [15] but with the as­
sumpton of a rigid-plastic material response. It is observed that the penetration distance 

. is greater for elastic-plastic response. This result is to be expected from strain energy 
considerations. 

Table 1. Space and time coordinates of the penetration point 
in the elastic-plastic and rigid-plastic semi-infinite media. 

Case (i) Case (ii), td = 0.001 

Xp tp Xp fp 

Elastic-plastic 
boundary 0.176 2.00 0.16 1.29 

Rigid-plastic 
boundary 0.173 1.973 0.145 1.161 
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