Archives of Mechanics @ Archiwum Mechaniki Stosowanej @ 29, 1, pp. 125-141, Warszawa 1977

On elastic-plastic wave propagation; transmission of elastic-plastic
boundaries

H. M. CEKIRGE (ISTANBUL) and C. ROGERS (LONDON, ONTARIO)

THE PURPOSE of the present paper is two-fold. Thus, in the first instance, a general approach
to the governing equations of one-dimensional elastic-plastic wave propagations (in the absence
of strain rate and lateral inertia effects) is presented via the Bergman integral operation method.
Termination of the Bergman series is shown to occur in a simple manner for certain multi-
parameter non-linear constitutive laws of significance. Secondly, there is a discussion of the
important concept of “elastic-plastic boundary”. In particular, the propagation of the elastic-
plasticiboundary for a semi-infinite medium subjected to a monotonically increasing and then
monotonically decreasing load at its open end is investigated.

Cel niniejszej pracy jest dwojaki; po pierwsze, przedstawia ogolne podejcie do réwnan rzadza-
cych jednowymiarowa propagacja fal sprezysto-plastycznych (z pominieciem wplywu predkosci
odksztalcen i bezwladnosci poprzecznej) na podstawie metody operatoréow catkowych Bergmana.
Na przykladzie pewnych wieloparametrowych nieliniowych réwnan konstytutywnych pokazano
proces zakoficzania szeregéw Bergmana. Po drugie, praca zawiera dyskusjc waZnego pojecia
“granicy sprezysto-plastycznej”. W szczegdlnosci zbadano propagacje tej granicy dla oSrodka
polnieskoriczonego poddanego dzialaniu obcigzen, ktore najpierw monotonicznie wzrastaja,
a nastgpnie rowniez monotonicznie maleja.

Hacroaman pabora amMeeT OBoiHYIO 1ens. Bo-nepBhIxX, npeacTaBieH obLHil MOIX01 K YpaBHe-
HHSAM ONHCBLIBAIONIMM ONHOMEPHOE PACTPOCTPaHEHHE YNPYro-TUIaCTHMYECKHX BOJH (C mpeHe-
OperxeHMeM BIIMAHMA CKOPOCTH AedopMalMii M MOMEPEYHOH HMHEDLMH), OMMPAasCh HA METOH
HMHTErpanbHeIX onepatopoB Beprmana. Ha npumepe HeKOTOPBIX MHOrOmapamMeTpHUecKHX He-
JIHHEHHBIX ONMpENeIAIONIMX YPaBHEHMIl TOKa3aH Npouecc OKoHuaHuA pAnos Beprmana. Bo-
BTOPBIX, PaboTa CONEPIKHT OBCYIKACHHE BaXKHOrO TOHATHSA ,,yIPYTO-ILUTACTHYECKMIt mpeaet’’.
B yacTHOCTH HCCneoBaHO PAacHpOCTPaHEHHE STOr0 Npedena A NoNyGeCKOHEYHOH Cpeapbl,
NMOJBEPTHYTON NEHCTBHIO HAIPY30K, KOTOphie CHayala MOHOTOHHO BO3PAcTaloOT, a 3aTeM TOXKe
MOHOTOHHO YOLIBAKOT.

1. Introduction

THE PHENOMENON of plastic deformation arises naturally when materials are subjected
to large disturbances such as those produced by the detonation of explosives. Its study
is of importance, in particular, in connection with the construction of impact-resistant
structures. The present paper is concerned with one-dimensional wave propagation in
elastic-plastic materials; strain-rate and lateral inertia effects are neglected. A general
discussion on the hodograph system governing the plastic region is presented via the
Bergman integral operator approach (BERGMAN [1]). It is shown that termination
of the Bergman series after two terms occurs for precisely those non-linear stress-strain
laws generated by RoGERs and CLEMENTS [2] via Baecklund transformations. For these
multi-parameter constitutive laws, the hodograph equations are readily integrated. Such
stress-strain laws and their application in non-linear elasticity have been discussed recently
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by CexIRGE and VARLEY [3], KAzZAKIA and VARLEY [4], ERINGEN and Sunusl [5] and
ROGERS [6]. Thus, a similar reduction in analysis is available, in principle, for the analysis
of elastic-plastic wave propagation problems {(see COURANT and FRIEDRICHS [7, p. 246]).

An important concept associated with elastic-plastic wave propagation is that of the
“elastic-plastic (E-P)” boundary, that is, the boundary of irreversible deformation sep-
arating the elastic region and the elastic-plastic region in which the deformations are
beyond the elastic limit. The determination of the propagation of this boundary has been
discussed by several authors, such as Lre [8], SkoBeev [9], CLIFTON and BoDNER [10]
and BeviLACQUA [11]. The second part of this paper concerns the derivation of the E-P
boundary for a semi-infinite medium modelled, in part, by a Bell law, when subjected to
monotonically increasing and then decreasing loads. Numerical results are presented
for aluminium.

2. The hodograph equations

A Lagrangian formulation is adopted wherein both the material coordinate X and
the spatial coordinate x are referred to the same fixed Cartesian system. Thus,

x=x(X,1)
denotes the position of a typical particle at time ¢ so that
x = X+u,

where u is the particle displacement in the deformation. The strain and particle velocity
at the point x at time ¢ are

_a
X ~ ot
whence,
oe ou
(2-1) a_f = —a;.
The equation of motion in one-dimensional wave propagations is
orT ou
(2.2) X Qo5

where T and g, are, respectively, the stress and density of the undeformed state. When
the dynamic response of the medium is isotropic and homogeneous with respect to the
undeformed state,

2.3) T = T(e),
Eq. (2.2) can be written as
de ou
2. 20 o T
(24 a*(e) X =
where
@5 ae) =L

00 de’
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Hence, the governing equations (2.1), (2.4) may be written in the convenient matrix from
0 a¥7) T

-l "o a-{1)

The hodograph transformation is now introduced wherein the roles of the dependent

and independent variables are interchanged. Thus,

o| ool awol 0| oro| o
X~ xorLtoaxuly kT o or)t o duly
so that
o | oT & ara/J ol _Jawao ol
=l merwal* wolaaTwmwl”
0T du 0T ou
where J = Pl Pl i e Consequently,

X,= T, Xr=ull,

Ty T.|J, tp = —u[J

and the system (2.6) becomes

t 0 1/ooa®*(T)][ ¢
&a [X]t = [”90 0 ][X:Iu-

Introduction of the new strain measure

T e
.8 é =-'_f Lar- [ ade,
900 a o

reduces (2.7) the canonical form

t 0 K@)y [ ¢
@9 [X]f[w) 0 ][X].

where
(2.10) K($) = a(T).
Hence,

. ot 2%t
(2.11) W{Ka_(b“] = KéTuf

so that, if we set
@.12) = K,

then (2.11) becomes
7 S

Tﬁ}ﬁ_*_ az+Mf =0,

(2.13)
where

(2.14) M= —(K*).,;K*.
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3. The Bergman series approach

Solutions of (2.13) are sought in the form

(1) #® = N () Fuu+9),
n=0

(2 @ = N 2.($)Ga(u—¢),
n=0

where

(3.3) Fi = Foy,

(3.4 G.=G,_y, n=1,2,...

It is observed that

(3.5) f="l¢—ul,

(3.6) g = alp+u]

are the Riemann invariants. They are constant respectively along any one a- or f-charac-
teristic which propagate from left to right and right to left, respectively, according to the
respective equations

(3.7) dxdt|, = a(e),
(3.8) dX|dtl; = —a(e).

The formal substitution of (3.1) into (2.13) shows that the latter admits such solutions
if the recurrence relations

3.9 2hysy o thngot+Mh, =0, n=0,1,2,..., hy= constant

are obtained. If we take hy = 1, it is seen that (3.9) provides the ‘transport equations’
for the A, in the form

¢
(3.10) b= =3 [ ln-s.06+Mhai)dp, n=1,2,..
®n

where the ¢, are arbitrary constants of integration. Hence, the h, may be generated once
the T'(e) constitutive law is specified.
The recurrence relation (3.3) provides, on integration,

n ¥
BT Fo=r | G-aF@ds,

whence we obtain the formal solution

oo 14

@12y ow = D' TWB) [0 g ry(e,)de, = bf F.;(gl)2[§h,(¢)(g—gl)-]dgl.

n=0 n=0
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where the interchange of the process of summation and integration is valid in the region
of uniform convergence of

G.13) 2"hn($)

n!

(g—24)"

n=0

In a similar manner, it is seen that (2.13) admits solutions of the form

f -]
! n 2,'- n
(3.14) o) = of Go(/) }3} [(— D" @)1 ]df.
valid in region of uniform convergence of
ST

(3.15) (=17 &@)([-A)

n=0 :
and where
(3.16) 28nt1,6=8noo—Mg =0, n=0,1,2,..., g, = constant

so that the ‘transport equations’ for the g, are (with g, = 1)

]
G.17) gn="1s [ Bros+Maildp, n=1,2,..
bn

where again, the ¢; are arbitrary constants of integration.
If there is termination in the Bergman series (3.1) so that

gk =0, K>0,

then

(3.18) Ewosiay = KDgsl K2,
whence

(3.19) an = K¥a+B [K-1dp),

where a, f are arbitrary constants of integration. In particular, if N = 0 so that the Berg-
man series terminates after a single term, then

(3.20) K = [B¢+ 6P,

where f, d are arbitrary constants of integration. The relation (3.20) leads to the three-
parameter (T, e) — constitutive laws (ROGERS and CLEMENTS [2])

(3.21) T= —Ale+pul2—v,

where 2 > 0 and » are arbitrary constants. Similarly, the Bergman series (3.2) terminates
after a single term in this case. From (2.13) it is seen that

(3.22) t* = [fp+0] = (p—u)+G(dp+u)

9 Arch. Mech. Stos. nr 1/77
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while (2.9) produces
Xy = [Bd+ 011, = —f{F(p—u)+G(d+u)}+ (B +0) {F(p—u)+G'(p+u)},

whence
(2.23) X = g{F(¢—uw)—G*(@+w)}+ B+ ) {—F@—u)+G(p+u)},
where F = F¥, G = G*!.

If N = 1, so that the Bergman series terminates after at most two terms, then (3.19)

2|a&H KD, +BED)KE[K-1dp| = (k).

In particular, if § = 0, then
(3.24) kh,—axd-s =0,
where 8 is an arbitrary constant of integration. The Riccati equation (3.24) generates
precisely the stress-strain laws treated by CEKIRGE and VARLEY in [3] and associated
with the Baecklund transformation method by ROGERs [6].

It may be noted that the solution (3.22), (3.23) of the hodograph equations for the
stress-strain law (3.21) is appropriate for the solutilon of the initial value problem

(3.25 o(X,0) =1,
(3.26) u(X,0) = V*(X).
In the hodograph plane these conditions become
(3.27) t(v,1) =0,
(3.28) X(V,1) = Xx(V),

where X* and V* are inverse functions.
Application of (3.22) and the initial condition (3.27) shows that G(§) = —F(2—§),
whence,

(3.29) & [F(¢—u)—FQ2— {¢p+u})],

{ﬁ¢ +9)]
(330) X = B{[IFQ~ {p+up)~ F(§—u)ldu}~ [B$ + 8] [F¢—)+ FQ— {p+u}).
Combination of (3.30) and the initial condition (3.28) shows that

(3.31) Xico = X*(V) = —2[B+8]F(1-V).

Thus, the solution of the initial value problem is given by

1 * *(1 _
(333) X = 2(ﬁ+6) [X*(1—¢+1)—X*(~1+¢ +u)ldu

+ (B +0) [X*(1 —p+u)+X*(—1+¢+u].

A further class of solutions of the hodograph equations may be readily generated.
Thus, if we set ¢* = 2¢, then (3.16) becomes

(3.39) 42, 0006+ MEE —48n11,06 =0, n=0,1,2,..., go = const.
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If M is specialised to be of the form

4c

) M = =g

then (3.34) becomes
(336) gx-l-l.dm = gn‘¢t¢t+c(b_¢*)_2gm nh= 0, l; 2s LR 8o = const.

It is assumed, for convenience, that g, = 1.
The solution of the recurrence relations (3.36) is sought in the form

n

(3.37) = N Gy anl(b—¢*) "t
j=0

where the a;,j=0,1, 2, ...,n, are arbitrary constants. Hence, on substitution, it is
seen that constants u;, obey the recurrence relations

[(n+1) +1=Dpjner = [(0=)) —j+ D +clpm, j=0,1,2,...,m,

0, j>n,

Thus,

¥ 0 0 "
a1  ro=| Ga(f)Z[ 2 am,-.(b—cﬁ*)fu—nﬂzn[{j;] a,
0 n=0 j=0

valid in the region of uniform convergence of

4 Z; [ ;a;m,(b—crs*)f] (- 1)~2~[{_‘£‘,] :

In particular, if j = 0, the uo,, obey the same recurrence relations as the uo,, in the
hypergeometric series

(3.41) 2Hy(a*, p*; 15 %) = 2 Ho,sX"s
y=0

where
(3.42) a* = 1)’:*(‘/4—0)%’
(3.43) B* = 1+ Cla—0.
Thus, if

19 j = 0’
G4 “={o j>o.

then the particular solution
(3.45) gn = n! poa(b—¢*)"

9.
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is obtained, whence

e 4 -1)"2”3.;5?)0—1%)" _ 28.(@[::;!4{; +2]r

n=0 n=0
& * O%. 1. u_¢+2ﬁ
= ZHI(Q lﬁ * l:l: b‘—‘-(P*__]).

The validity of the associated solution

* — * * . (ﬁ.
(347 ¥ f Go(f)2 Hl(ac 8% 1; [ 2% ]) df,
is assured in the region
2(}‘1 = )
(3.48) -3¢ +1.

Similar results hold for the solutions t*) involving the Riemann invariant g.
In view of (3.35),

(K%),,,.‘,. +c(b—90*) K% =0
so that

(3.49) K¥ = 5, |b=g*[* + 72106,

where a*, f* are defined by (3.42), (3.43) and y,, y, are arbitrary constants of integration.
The specialisation a* = 0, §* = 1 generates the case (3.20) leading to the stress-strain
law (3.21).

This completes the general discussion. The subsequent work is concerned with the
propagation of elastic-plastic boundaries in connection with a semi-infinite medium
subjected to increasing and then decreasing loading at the open section.

4. Propagation of elastic-plastic boundaries

When a semi-infinite medium is subjected to a loading at the open section, the pulse
propagates as a simple wave, namely g = 0. The Riemann invariant at the boundary
is assigned as

@.1) f=F(a),

where « is the time measure at the boundary, whilst, through the relations (3.5), (3.6),
“.2) ¢=Fa and wu= —F(a).

Equation (3.7) then provides

4.3) t = a+X/a(a),

where a(a) is defined by the relations (2.5), (2.8) and (4.2).
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The theory of wave propagation is the same for elastic and elastic-plastic materials
for a loading in which the stress at the boundary of a semi-infinite medium increases
continuously. When the stress at the boundary begins to decrease, the wave propa-
gation differs in elastic-plastic materials. A unique state equation governs both loading
and unloading processes in elastic materials. In elastic-plastic materials loading and un-
loading occur according to different relations, and hysteresis effects cannot be neglected.
Fig. 1 shows the dynamical stress-strain relation of polycrystalline metals such as alumin-
ium, zinc, silver etc.. The material is loaded along OABE and plastic deformations start
at the elastic limit 4. The OA portion of the curve is a straight line and unloading from
any point on ABE occurs along a line parallel to OA4. CD is the magnitude of strain re-
leased during the unloading and OC is the irreversible strain that depends upon the level
of stress at which the unloading starts. The reloading from the zero stress level C occurs
along CBE.

T}

tan a=£,

OAq= Elastic limit
0C= Irreversible strain
CD= Reversible strain

PR T ——

0A, I3 e

FiG. 1. Stress-strain relation for a polycrystalline material.

at |
E-Plunloading) region
£-P boundary

=l

E (toading) region

=

Undisturbed region

T X

F1G. 2. Loading and unloading regions in the characteristic field.

When the stress, which is beyond the elastic limit, starts to decrease at the boundary,
the medium shows an elastic-plastic response. At this stage, the unloading state equation
must account for the wave motion. The state equations T, = T.(e) and T, = T,(e) consti-
tute, respectively, elastic and elastic-plastic regions, see Fig. 2. In the elastic region E,
the medium is loaded and

4.4) 0T [0t > 0, Jdeldt > 0;
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in the elastic-plastic region E-P, the medium is unloaded with
4.5) 0T,/dt <0, deldt < 0.

The regions E and E = P are separated by the E— P boundary ¢, = y(X,), which is not
known ‘a priori’. It is this boundary that is sought. In the region E, the pulse propagates
as a simple wave according to the relation (4.3), so that the information at the boundary
is carried along the a-characteristics. The E— P boundary starts to propagate when the
stress begins to decrease at the boundary at « = 7 (see Fig. 2). At a point X, the strain
increases continuously until z, = y(X,) when the E—P boundary is reached. Then, the
elastic component of the strain reverses and the same point is then included in the E—P
region. The behaviour of the function 7, = y(X,) depends strongly on the boundary
conditions assingned at X = 0.

Let us proceed to obtain the solution of the equations of motion in the E— P region.
The state equation in the E— P region may be written as

(4.6) T, = Ty(Xp)+ E, [e—en(X))],

where 73(X,) and e;(X,) are, respectively, the values of the stress and strain at the time
1, = p(X,) at which the E— P boundary reaches the point X,; E, is the linear elasticity
modulus of the material. Through the equations (2.1) and (2.2) the particle velocity and
the stress are given as

4.7) u = g(t+X/[aop)+f(t—X/a,),
4.8) T = (Eo/a,) [g(t+X[ao)—f(t—X]ay)),

for the region governed by the relation (4.6), where a, = J Eo /00, and fand g are unknown
functions.
With the parameter a being a natural time measure at X = 0, the stress at the boundary
is assigned as
(), O0<a<r,

49 T\ T, T<a<oo,

where T; and T, are, respectiviely, monotonically increasing and decreasing functions.
Namely, at first, when 0 < a < 7, the medium is loaded and then it is unloaded. At
time o = v the E—P boundary is formed at the boundary and the initial condition of
the E— P boundary is

(4.10) X, (¢ = 7) = 0.

In this paper, we are concerned with the E— P boundaries across which stress and
particle velocity are continuous, but their derivatives are discontinuous [8]. Hence at
the E£— P boundary

(4.11) T,=T, and U =U,,

where T; and U are, respectively, the stress and particle velocity at the elastic side of
the E— P boundary and T, and U, are, respectively, the stress and particle velocity at
the elastic-plastic side of the E— P boundary.
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It should be noted that the pulse propagates as a simple wave in the elastic region E.
Equations (2.3), (2.8) and (4.2) give that

(4.]2) U; = U;(o:).

The evaluation of the function U;(«) for a centred simple wave will be given in the second
example of Sect. 5. Then, Eqs. (4.7)-(4.9), (4.11) and (4.12) yield

4.13) Ui(®) = g(tp+Xp)/a0) +f(1,— X /a0),

(4.14) Ti(@) = (Eolao) [g(ty +X/ao) —f(t,— X, a0)],
and also

4.15) 1, = a+X,/a(a).

At the boundary X = 0, the equations (4.8), and (4.9) produce
(4.16) Tu(a) = (Eolao) [g(@)—f(a)].

By insertion of equations (4.15) and (4.16) into equations (4.13) and (4.14), the unknown
function g is eliminated, and hence
X,
2ot 25-5)

a(a) a

.17) m(a)—é—‘;:r.( b ) f( Aot

@ [T‘(“) mfet g+ XP)]”(“*:%'* ) ~t(e+ a5 %)

Combination of these equations leads to

(4.19) a(a) =11 [y(a)],

(4.20) a+ a’:,;) ; =" [ya(a)],

where

@21) 8= 1/'2{;;;({:) + %:; [T,(a)—ET,,(a + ;Sl + X—iﬂ)]}
@422 p2(2) =/, [u,(a)~ = T;(rx)],

and f~! is the inverse function of £, If we set
(4.23) a* = 3 {pu e, X,(@)]} = #la, X, ()],
where 7' is the inverse function of y,, the equation (4.20) becomes

Xp {xlo, Xp(@)]} X, {x[a, Xp(x)]} /-
a{x[a, X,(2)]} dy

Thus, (4.20) and (4.24) provide a single functional equation,
(4.25) Xp(2) = L{a, #[a, X, ()]} + K {a, %[a, X, ()]} X, {x[, X,()]},

(4.24) [, X ()] + iy (@)
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where

(4.26) Lla, Xp(®)] = aoa(a) {x[a, X,(a)]—a}/[ao + (0)],

4.27) Kla, X,(@)] = a(a) {ao—a{x[a, X,(0)]}}/a {x[a, X,(2)]} [ao+a(a)].

Equation (4.25) may be written in the form

(4.28) Xp(ef) = {Xp(a )~ Llom o, Xp(ai D)} /Klom o, X (o )]

through which the coordinates of the E— P boundary are obtained from the condition
X,(af) = 0, where the subscripts n are defined by

(4.29) o = zlog_y, Xp(on 1))

Equation (4.28) gives the coordinates of the E— P boundary when m = 0, namely at
the discrete values of a. If more boundary points are necessary in any interval xJ_, <
o < a2, then we start by setting

(4.30) o, = al ,+mda,

and équation (4.25) can be written as

4.31) Xy ) =L {'a:'—l » %lopy, Xp(an= DI} + K{of 1, 2[af 1, Xp(an= D} X p(ar ")

Equations (4.28) and (4.31) then determine the space coordinates of the E— P boundary
in the 1—X plane. It should be noted that the values of Eqs. (4.28) and (3.21) then
determine the space coordinates of the E— P boundary in the #—X plane. It should be
noted that the value of

(4.32) da = (ag—al_;)/k
has to be chosen to satisfy the condition
(4.33) 1Xp(ak_1) = Xp(an)l < &

for admissible values of &. The time coordinate of the E— P boundary can be found through
the equation (4.3).

5. Applications
Consider the case in which a material behaves as a linear elastic material until the

strain reaches the elastic limit and then obeys a parabolic law of the type given by Bell,
namely

5.1

T=Ege, 0£e$e¢$
T= ﬁ(e'i'eb)%a ee. <e,

where e, is the elastic limit, and B and e, are the constants defined by BELL [12]. Unloading
beyond the elastic limit occurs according to the relation

(5.2) T = To+Eo(e—eo),

" where T, and e, are, respectively, the values of stress and strain at which unloading starts.
The relations (5.1) and (5.2) define polycrystalline materials. For comparison with experi-
ments, the application of the method is considered for aluminium so that E, = 703.1 x 10*
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kg/em?, g, = 2.8124x 10" % kgxsec?xcem™*, e, = 0.001, B = 39.4x10%2kg/cm? and
e, = 0.03084 (see BELL [12], CrisTESCU [13]).
The interpretation of the results is faciliated by the use of normalization quantities:

(5.3) a = VEjeo and T, = Ege,.
Then the normalized quantities, which are shown starred, are written as
(5.4) a* = afa,, uw*=ula,, c¢*=cla, and T* = T|T,.

The problem is considered in infinite space and time, so that there is no normalization
for length and time. For these variables, thoug artificial, the measures are taken as

(5.5) X*=Xlap, and 1*=1.

The stars will be dropped in the following calculations.

The main concern in section is to obtain the trajectory of the E— P boundary produced
by an impact load. To understand the details of the phenomenon, the following examples.
are treated:

i) At X = 0, the stress is linearly increased and monotonically decreased through
a given function, so that

T = Tpa, 0<ax<l,
0.0 T, = Tula? l<a< o
o m » »

where ¢ is the time at the boundary and
) To = (BITo) (emtent

is the maximum value of the applied stress, (e, = 0.06 (TAYLOR [14])).
The various regions of the characteristic plane #—X are shown in Fig. 3. The region
R, is an undisturbed region if the semi-infinite medium is initially at rest. In the region

€p
0.06
004

A X/100

Lo | 0 x5 50 na

E-P boundary

15
|
|
|
|
10 B 1
I
A |
—&g ’— Rz |
/
T Tn g o 40 80 12.0 160 200

FiG. 3. Trajectory of the E-P boundary and distribution of the permanent strains in the medium.



138 H. M. CexIRGE AND C. ROGERS

R;, only elastic waves are present with the wave velocity @ = 1. The region R; is a transi-
tion region and the values of strain and stress at the elastic limit are carried at the wave
velocities a, < a < 1 where g, is calculated from

(5.8) a = (VBl2golac) (e+e;)™*

for e = e,. All the characteristics emanate from the point A at which the material passes
the elastic limit. The region R, is the nonlinear loading region, the disturbances propagate
at the wave velocities @ < a, < 1. The values of a are found from (5.8) for e, < ¢ < e,.
The region R is the elastic-plastic region, irreversible deformations are present and the’
deformations propagate at the wave velocities @ = 1. The E— P boundary separates
the regions R, and R;s.

In this case

(59 wi(@ = {(/8B/90/a0) €3 — (TTo x/B)**1+ TTo o/ Eo
— 2T, To/ Eola+ X, (a)a(2) + X, ()] }/2,
£(5.10) v2(@) = {(V'88/9%ola0) [€3'* — (TrTo x/B)**1— TToa|Eo}/2,

(5.11) a(@) = (V/ Bl20/ac)(TuTo i) %,

and () = w,”! [y,(«)]. Hence, the relations (4.28), (4.31) and (4.3) determine the
trajectory of the E— P boundary until it reaches the characteristics which separates the
regions R; and R,. Therefore the parameter « varies as @, < o < 1, where «, is the time
at the boundary at which the stress exceeds the elastic limit. The initial condition (4.10)
for the E— P boundary produces a singularity at »(« = 1). For the elimination of this
singularity, the initial condition of the E— P boundary is written as

(5.12) X(ae=1)=¢, t,=1+¢la(x=1),

where & has a small value around zero. The numerical example is treated for ¢ = 0.001.
The space ordinate X,(a = a,) of the point C is called the “penetration distance”, beyond
which there are no irreversible deformations and the material has not yielded. The dis-
tribution of the permanent strains in the elastic-plastic region can be found, through (5.1),
(5.2) and (5.7), when

(5.13) ey = (T TolB)* —es— (T To ¢/ Eo)

is plotted against X,(«) with «, < « < 1. This curve is also shown in Fig. 3.
ii) At X’ = 0, the traction is suddenly applied and after the duration time f4, decreased
exponentially, that is, the medium is subjected to an impact load at the boundary,

T'I=Tm, 0\{«“\{-“$

.14
14 T, = Thexp[—Ala—1tg)], ti<a< o0,

where A is the unloading rate and 4 > 1.

In this case all the characteristics emanate from the origin, so that a marked difference
exists between the features of the —X plane of this and the previous case. Fig. 4 shown
the various regions of the r—X plane. The regions R, and R, are, respectively, the undis-
turbed and transition regions. These regions are separated by a shock wave whose velocity
is s = 1. In the region R;, the medium is loaded along the nonlinear characteristics.
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The region R, is the elastic-plastic region. The regions R; and R, are separated by the
E— P boundary which starts from the point B,

(5'5) XB — {da(em)/[l _a(em)]’ tg = td[za(em)“ 1]!’[“(8)— l)]s

at which the last loading characteristic intersects the first unloading characteristic. In the
region K, which is the constant region, the irreversible strain is equal to its maximum
value.

€p
006
o t l a04 r
Ll & X X X/100
35 L L 1 1 |
100 200 300 400
30 b
E-P boundary
—2.5
2.0
15
10 A
—05
|
. X X/100
% 0 o0 100 200 300 400

FiG. 4. The characteristic field in the case (ii).

The strain e is chosen as a parameter instead of «, so that

(5.16)  yi(e) = {(V8B9¢o/a0)e3* — (e +es)**1 + le+es)*? | Eq
— (2T To/Eo)exp {— AlX,(e)/a(e) + X, (e) — )] } }/2,

(.17) v2(¢) = {(V/8B/90ac) €3’ — (e +es)*/*] - Ble+es) /2 [Eo } 2,
(5.18) a(e) = (VBl200lao) (e+es)~ 114,

and

(5.19) x(e) = p3'[yi (o).

Then, the relations (4.28), (4.31) and

(5.20) t, = X,(e)/a(e)

determine the trajectory of the £— P boundary in the —X plane. The penetration distance
X, is obtained for e = e¢,. The numerical results are presented for A = 1.0 and ¢, = 1.0
in Fig. 4 for the same numerical data as in the previous case.
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The maximum distance reached by irreversible deformations is termed the penetration
distance. Table 1 compares the penetration distances for aluminium in boundary-value
problems (i) and (ii) with analogous problems treated by CeKIRGE [15] but with the as-
sumpton of a rigid-plastic material response. It is observed that the penetration distance
is greater for elastic-plastic response. This result is to be expected from strain energy
considerations.

Table 1. Space and time coordinates of the penetration point
in the elastic-plastic and rigid-plastic semi-infinite media.

Case (i) Case (ii), 7, = 0.001
XF 'rl’ XP 'rP
Elastic-plastic
boundary 0.176 2,00 0.16 1.29
Rigid-plastic
boundary 0.173 1,973 0.145 1.161
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