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A continuum model of the dislocation core 

0. W. DILLON, Jr. (LEXINGTON) 

A CONTINUUM model, which includes higher strain gradients in the constitutive equations, is 
shown to be the equivalent of a periodic array of discrete dislocations. The particular problem 
that is considered is the Taylor model of the dislocation core. However the approach is general 
and any other model could be used. The continuum model can be made as accurate as one 
wants by taking a sufficient number of terms. Thirteen gradients are sufficient to model the 
core to a specified (reasonable) accuracy. In the Appendix a theory which includes only three 
gradients is evaluated in terms of a common model of the glide process. 

Wykazano, i:e model osrodka cictglego, zawierajctCY w r6wnaniach konstytutywnych wy:lsze 
gradienty odksztalcenia, jest r6wnowa.Zny periodycznemu rozmieszczeniu dyskretnych dyslo­
kacji. Problem szczeg6lny, jaki tu jest rozwaZa.ny, stanowi model Taylora osrodka dysloka­
cyjnego. Rozwictzanie nasze jednakZe jest og6lne i r6wniez kaZdy inny model more bye zasto­
sowany z powodzeniem. Model kontynualny more bye dowoln~ dokladny, wystarczy tylko 
uwzgl~nie odpowiednict Iicz~ wyraz6w. Trzynascie gradient6w wystarcza do modelowania 
osrodka z Z<tdanct (roz~dnct) dokladno8cict. Zamieszczona w Dodatku teoria zawierajctca tylko 
trzy gradienty zostala wyznaczona za pomoect prostego modelu procesu poslizgu. 

,UoKaaaHO, liTO MOAeJlb CUJIOIImOH cpeAI>I, COAepm~a.H B onpeAeJIHIOI.QHX ypaBHeHHHX BbiC­
nme rpa,llHeHTbi Ae<t>opMal.lHH, 3KBHBaJieHTHa rrepHo,llHlleCKoMy pacrrpeAeJieHHIO ,llHCKpeTHbiX 
,llHCJIOKal.lHH. 'LJaCTHa.H 3aAaqa, KOTOpa.H 3AeCL pacCMaTpHBaeTcH, COCTaBJIHeT MOAeJIL TeiiJiopa 
,llHCJIOK81.UfOHHOH cpeAbi. Ham IIOJ(XOA OAHaKO HBJIHeTCH OOIInfM H Ka)f{Aa.H ,n;pyraH MOAeJib 
MO meT 6b1Tb _ c ycrrexoM npHMeHeHa. KoHTHHYaJILHYIO Mo,n;eJIL MO)f{HO CAeJiaTL TaK TO~o:H, 
KaK Tpe6yeTCH, AOCTaTO~o TOJILKO yqHT~>maTL COOTBeTCTBYIO~ee KoJiuqeCTBo qneHoB. Tpu­
~Ha.n;ttaTL rpa,llHeHTOB AOCTaTO~O AJ1H MOAeJIHPOBaHHH cpeAbi C Tpe6yeMOH (paayMHOH) Toq-
HOCTLIO. lloMe~eHHa.H B AOITO~eHHH TeOpHH, co,n;epm~aH TOJILKO TpH rpa.queHTa, onpeAe­
JieHa npu noMo~ npocro:H MOAeJIH npo~ecca cKoJILmeHHH. 

1. Introduction 

THE concept of a dislocation as an excess (shortage) row of atoms inserted into an other­
wise perfect array can be relatively easily understood at the atomic level. In the past this 
writer has had great difficulty in understanding the connections that have been proposed 
for relating these atomic dislocations and the macroscopic level observations of plastic 
deformations. The need for a continuing action process is evaluated by HEAD [1]. Many 

. attempts at providing the connections are not clear on what is assumed, on what is pre­
dicted and what could come from combining some elementary dimensional analysis with 
the experimental data. Especially hard for an outsider to fathom are the limitations of 
the specific models. 

Experimental data on many metals indicate the 95% of the plastic work appears as 
heat while 5% goes into the "stored energy" of cold work. The heat more or less cor­
responds to the dissipation in the core of the dislocation and the storage of energy to 
the elastic energy in the "far field". Calculations concerning th~ far field are based on the 
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continuum view of matter and indeed even assume a reversible elastic material. These 
far field calculations, taken as a class, are quite successful and very useful in leading to 
increased understanding of some concepts of macro-level plasticity. They suffice, for 
example, in a discussion of how dislocations interact with each other or with other defects. 

There are major problems when considering the core region and in metals that means 
with 95% of the energy. A discussion of the more successful core models is given in HIRTH 

and LOTHE, [5, p. 217f). 
To construct a continuous model of nature which contains every detail of the atomic 

model, we visualize replacing the discrete variables by continuous ones in the same -sense 
that the density function is the analogue of the discrete masses. Once a perfect continuous 
model exists, there still remains the question of how to simplify it to the point where it 
would be practical for stress analysis work. For any given approximation to the perfect 
continuous model, one can then ask, what continuum framework assumptions must be 
made in order to produce the same results. Clearly the perfect atomic model does not 
exist so that imperfect ones must be considered. 

The writers view of a good connection between the discrete model and the correspond­
ing continuous one is given by MINDLIN [6] concerning polarization. 

The Taylor dislocation potential is the atomic model to be considered here. To permit 
a complete and systematic connection to be made between the atomic model and the 
continuum one, the Taylor potential is replaced by its Fourier series representation. We 
then develop a one dimensional continuum theory which produces the same stresses as 
the Taylor model, including those in the core region. 

As anticipated, the continuum theory so developed is quite complex, and is based on 
some non-classical concepts. It is also very specialized and is possibly not the most efficient 
continuum model of the real dislocation. Nevertheless, it is complete, involves tight as­
sumptions and provides whatever accuracy one needs. The basic steps in the formulation 
of the continuum theory were given by DILLON et al. [1-3]. The basic concepts are the 
use of generalized stresses which depend on higher spatial gradients of the strain. The 
net result of such a theory is a local and very nonhomogeneous spatial deformation field 
in problems which classically have a homogeneous strain. Thus an accurate continuum 
theory which is the complete counterpart of the Taylor atomic-level model is created. It 
is extremely important to the writer that the reason one normally develops strain gradient 
theories is to include non-local effects. For if one fact characterizes the atomic level prop­
erties of a dislocation, it is that its very presence affects its distant neighbors. 

DILLON et al. [1-3] were formally complete but it was not clear there how to select 
the particular deformation gradients which should be used. The present paper illustrates 
the procedure for deciding on the number of gradients needed in a continuum theory 
when one assumes the Taylor model of a dislocation is valid. 

It is customary in atomic models to use interatomic potentials q; and then to calculate 
"stresses" as dq;fdx. On the other hand, continuum theories of the type utilized below are 
easier to motivate by using deformation gradients. Stresses are then calculated from the 
associated constitutive equations. Thus the quantitative connection between the two 
models of matter is made via their respective stresses, whereas much of the paper will 
directly involve either potentials or deformation gradients. 

http://rcin.org.pl



A CONTINUUM MODEL OF THE DISLOCATION CORE 36~ 
----------- ----~---

Potentials with certain p-roperties are created from descriptive data. An overall govern­
ing theory of the potential does not seem to be commonly used. Thus Frenkel assumed 
that the perfect part of matter in one dimension was 

(1.1) 
b 2nx 

q; = -
2
n A cos -b-. 

where b is the interatomic spacing and xis the generic coordinate. The stresses associated 
with this potential are 

(1.2) 
. 2nx 

a= Asm-b- . 

The parameter A is identified with the ideal strength of the material. For small strains 
it can be evaluated in terms of the elastic modulus. However, the maximum stress in (1.2) 
is much greater than the values that one usually observes. Hence imperfections must be 
considered. 

The continuum theory of the "potential" in the perfect material has to be governed by 

(1.3) <P" + ( ~ r <P ~ o. 

where primes denote derivatives with respect to x. 

2. The Taylor model 

By introducing (deleting) an extra row of atoms whose effect could extend several 
atoms, Taylor developed the potential near the core of the dislocation to be 

(2.1) x ( N+l ) x ( N ) tp = -Acos2n;: N+ ~ -Acos2n-). ~~} , 

where A and N are core width and the number of atoms in the core, respectively when 
the external force vanishes. Dislocations which are located at a uniform spacing I are 
assumed. We therefore rewrite the potential equation (2.1) in its Fourier components 

00 00 

(2.2) 
bA 2nx 2-, . nnx n nnx 

m= --cos--+ A sm-- + 'B cos - --
·r 2n b " I ~ " I · 

I I 

The stresses associated with this potential are therefore 

(2.3) 

00 00 

dq; . 2nx )-, nn ( nnx) )~ nn . ( nnx ) a=-= Asm - -+ - A cos -~ - - B sm - -
dx b .:....J I " I .:.....J I " I . 

1 1 

Thus the Fourier representation equation (2.2) of the Taylor model of the dislocation 
is taken here as the dislocation model that should be equivalent to the continuum theory 
that is to be developed. Obviously, if other dislocation models are chosen, the details 
will be different but the concept for developing the continuum counterpart remains the 
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same. The numerical results given below show that the significant frequency components 
of equation (2.2) lie in a relatively narrow band and that within that band, none of them 
can comfortably be neglected. Thus we shall say that cp is adequat_ely(l) approximated by 

(2.4) <p=- ~~ cos( 2;x)+ i>.sin("';x)+ 2 B,cos( n;x). 
N N 

Table 1. Fourier Series Coefficients for the Eq. (2.4) minus the 
"far field" 

14 1.074691 X 10- 2 -6.776649 X 10- 2 

15 -3.173898 X 10- 2 -7.665861 X 10-2 

16 -7.819515 X 10- 2 -5.682711 x 10-2 

17 -10.83353 x 10- 2 -0.853763 X 10-2 

18 -10.51785 x10-2 5.357944 X 10- 2 

19 -6.479734 x10-2 10.57196 X 10- 2 

20 -0.0011196 X 10-2 12.60481 X 10-2 

21 6.479263 X 10- 2 10.57586 x 10-2 

22 10.52436 x10-2 5.36406 X 10-2 

23 10.85202 X 10-2 -0.852533 x 10-2 

24 7.848066 X 10-2 -5.70000 x 10-2 

25 3.196807 x 10-2 -7.713532 x 10- 2 

26 -1.083497 X 10- 2 - 6.851721 X 10-2 

The stresses obtained from the Eq. (2.4) are than 

(2.5) . ( 2nx) yN ( nn) nnx ( nn ) . nnx a= Asm -- + A - cos---B - sm--b ~n I I n I 1· 
M 

Thus the continuum theory which leads to stresses given by the Eq. (2.5) will be the 
continuum analogue of the discrete dislocation theory. Therefore, the criteria for selecting 
gradients which should be included in the continuum theory, and which was absent in 
Dillon has been developed. Namely, it must be a theory whose "stresses" contain those 
frequencies contained in the Eq. (2.5). By adjusting coefficients it will be shown below 
that the stresses can be made identical in both theories. 

3. Continuum model 

We temporarily set aside considerations of the atomic potential and discuss higher 
gradient elasticity theories which have become popular in some circles in recent years. 
For illustrative purposes, we limit to linear elastic theories and assume that equilibrium 
exists. We also consider that one-dimensional theories suffice for illustrative purposes and 
assume certain formal material parameters are zero. We first illustrate a continuum theory 
which contains the far field stresses given by the Eq. (1.1). 

(1) This is where one uses the idea of how accurate an approximation one needs. 
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One-dimensional classical elasticity is governed by oE I ox = 0 and the constitutive 

equation E = E :: . When these are combined the displacement equations are. Hence 

the solution is 

o2u 
E ox2 = 0, u = A+ Bx. 

The constants A and Bare evaluated for each particular problem by specifying boundary 
conditions. They cannot be matched to the stresses, the Eq. (1.2), and classical theory 
is inadequate for matching to the atomic model except for small strains. 

The new type materials are also governed by an equilibrium equation of the form 

(3.1) oE = 0 
ox ' 

but the constitutive equations(l) contain higher deformation gradients such as 

ou o3u 
(3.2) E = EBX +F2 ox3 • 

The displacement equations are obtained by combining equations (3.1) and (3.2) to be 

o2u o4u 
(3.3) E ox2 +F2 ox4 = 0. 

Thus the displacement is 

(34) c . {J D {J . u = A+Bx+ psm x-7fcos x~ 

where 
1 

(3.5) P=(:,f 
and A, B, C and D are arbitrary constants. 

Thus the frequency {J is formally determined by material constants in (3.1) and (3.2) 
which are analogous to the elastic modulus E. Suppose (for convenience) that one chooses 
the origin so that c = 0. Then the stress is 

(3.6) E = B+Dsin{Jx 

and we have the classical term represented by B and in addition an oscillatory one. By 
adjusting (i.e. interpreting) the material constants the second term in (3.6) can be made 
to match the "far field" stress in the Eq. (2.2) which is associated with the potential equa­
tion (2.1). In other words the far field fixes F2 in the Eq. (3.2). In particular if 

(3.7) 

and D is the ideal material strength, the stresses in the continuum model (3.6) exactly 
coincide with those in the atomic field equation (2.2) when the external force vanishes 

(2) The Eq. (3.2) is chosen for simplicity and neglects some interaction. 
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(making B = 0). In most continuum problems there simply is no need to simultaneously 
consider the residual stresses associated with the periodic atoms and those due to external 
loads and therefore in practice we have developed the habit of considering each separately. 

The procedure is quite similar in principle if one wants to establish the continuum 
theory which has_ the stress field associated with the dislocations which are uniformly 
spaced. The materials are governed by equilibrium equations of this form: 

(3.8) ar = o 
ox 

and the newer constitutive equations (but still very special ones) are assumed to be 

ou o3u o5u anu 
(3.9) I:= Eax +F2 ox3 +F3 axs + ... FP axn. 

The displacement equations then become 

(3.10) 
02U 04U 06U o2PU 

E ox2 +F2 ox4 +F3 ox6 + ... Fp ox2P = 0. 

Since this is a linear d.e. with constant coefficients the solution is routine. While perhaps 
cumbersome to relate to the specific material constants FP, the solution of the Eq. (3.10) 
can be expressed as 

- -

(3 11) A Ct . R c2 . R 
. u = +Bx+ Ptsm,., 1 x+ p;_sm,.,2x 

Cp . R jjl R D2 R Dp R + ... {JP sm,.,Px- -7J:cos,., 1 x- {f; cos,.,2x- ... ---;:J;cos,.,Px. 

Hence the stresses are obtained from the Eqs. (3.9) and .(3.11) to be 

(3.12) I:= B+c1 cos{31 x+c2cos{32x+ ... cpcosf3Px 

+D1 sin{31 x+D2sin{32x+ ... DPsin{Jpx. 

Thus if we associate the far field with the {31 frequency, we need to have p- 2 = N- M 
in order that the stresses (p.12) be identical with those in (2.5). 

In order that the stresses of (2.5) and (3.12) match, the coefficients of (2.5) and (3.12) 

must coincide. In the formal solutions of continuum problems these coefficients c1 -cP 
and D1 - DP are determined by boundary conditions. It is possibly going to be difficult 
to prescribe the boundary values of the appropriate gradients. Nevertheless this procedure 
illustrates how to develop a possible continuum theory with all of the atomic-level detail 
retained. It will be shown below that the same frequency band suffices when one applies 
an external force to the atomic model. The coefficients change but no additional terms 
are needed in the model. 

In books on dislocations one frequently sees pictures of the "glide" (slip) process 
where one block of atoms is displaced relative to another. The dislocation is important 
to the mechanism but not to end result which is a purely kinematic situation where atoms 
initially in a line have moved to a new location. One might wonder if a continuum model 
could represent this way of considering dislocations. The answer is yes, as illustrated in 
the Appendix where the displacements are used for connecting the two different models. 
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4. Numerical results 

We have computed the Fourier series coefficients and associated frequencies for the 
representation of a potential consisting of a perfect lattice, except in the core region where 
the Taylor potential, the Eq. (2.4), is used. We next considered different truncations of 
the complete series, in order to simplify the corresponding continuum model. Typical 

1.60 

0 .00 

-0.80 

0.00 

o.oo 

-0.80 

NSTART = 2 
NEND = 30 
STND. DEV. = 0 .046 

NSTART= 9 
NEND = 30 
STND. DEV. = 0.049 

FIG. 1. (Upper) A comparisor. of the Eq. (2.4) minus the far field with a truncated Fourier series beginning 
at N = 2 and ending at N = 30. (Lower) The same as above except starting at N = 9. 

results are shown in Fig. 1 where the exact potential is compared with a truncated one 
consisting of 29 different frequencies. 

Since the Taylor model itself is schematic, we considered also somewhat cruder fits 
where larger standard deviations for the difference between the exact and the approximate 
one were obtained. For example, the results shown in Fig. 2 were obtained(3) with con-

(3) The results in Figs. 1 and 2 were obtained by simply neglecting the remainder of the series. A better 
fit could be obtained by adjusting some of the coefficients. 
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siderably fewer terms than those of Fig. 1. As a matter of personal judgement, we con­
sider the case N = 14 and M= 26, shown in Fig. 2, to be an adequate approximation 
to the Taylor model. The Fourier series coefficients for this case are shown in Table 1. 

-0.80 

1.60 

0.80 

0.00 

-0.80 

NSTART = 14 
NEND = 26 
STND. _DEV. = 0 . 157 

NSTART = 17 
NEND=23 
STND. DEV. = 0. 312 

Fro. 2. (Upper) The same as Fig. 1, except starting at N = 14 and ending at N = 26. (Lower) The same 
as Fig. 1, except starting at N = 17 and ending at N = 23. 

S. External force 

When an external force is applied to the discrete model the Taylor potential in the 
core region is 

(5.1) .m _ A 2 (x- ~) ( N + 1 ) '¥ - - cos 1&---

). N+_!_ 
2 

-Acos2n~ (~)· 
N+-

2 
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The shape of this potential ~as calculated by Taylor and is used to describe how the 
dislocation core "moves" under the action of an applied force. We have also computed 
the coefficients for the Fourier representation of a potential consisting of a perfect lattice 
except for the core where the Eq. (5.1) applies. The results obtained indicate that precisely 
the same frequencies are needed for the Eq. (5.1) as for the Eq. (2.4). The magnitudes of 
the coefficients change but the frequencies do not. 

Thus by selecting the number of gradients p according to the relation p- 2 = N- M, 
one obtains a continuum stress 1: which is precisely the same as the stress (] calculated 
from the truncated Fourier series of the discrete model potential. 

6. Discussion 

We have demonstrated above how one can develop a continuum model which has the 
properties usually associated with a discrete picture of nature including the core of the 
dislocation. The particular atomic model is due to Taylor, but it is clear that any other 
one could have been used as well. 

A number of factors have been left out in order to more clearly make the main point. 
For example, dislocations are used to explain work hardening through their interactions. 
Considerations of certain points becoming "unpinned" are not investigated. Furthermore, 
one clearly needs a constitutive equation that is different from the Eq. (3.2) if one wants 
the dislocation to stay in its new location when the external load is removed. These and 
many other aspects of dislocations can be considered but they obviously depend on this 
begin the process for developing the continuum model. 

It is our fond hope that the results given in the Appendix will become accepted by 
continuum workers and that the viewpoint presented there will enhance mutual collabora­
tion between them and metallurgists. A continuum theory with two or three strain gradients 
in it should prove tractable and at the same time provide sufficient "structure" to retain 
the main features of dislocation core phenomena. It is doubted that one can make much 
practical use of the more complete theory. Certain specialized features may become useful 
but the complete picture is too complex. Said differently, the writer sees very little hope 
of having sufficient boundary data in the near future which can be used to specify a unique 
theory with thirty gradients in it. 

Appendix 1 

The core properties of a dislocation are important in understanding the mechanism 
of plastic deformation. On the other hand, suppose one wants to consider a process where 
the core is included but the precise details are not so important. On might think, is the 
situation as complicated as that given above? 

Consider the "glide" (slip) process where one block of atoms is permanently displaced 
relative to another. There may be some merit .. in comparing the atom positions before 
plastic deformations occured with their locations afterwards. While this is an incomplete 
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picture, it is a useful calculation. The most frequent picture of this process in shown in 
Fig. 3. We consider that the glide planes are spaced L 0 = 2 units apart and that the 
relative displacement is given by P L 0 • Thus we have a purely kinematic picture to consider. 
Therefore we attempt to match displacements between the models rather than stresses as 
above. The macroscopic plastic strain P in this process is 

(A.l) P=t3/h. 

The relative motion of the atoms can be represented by a continuous function U(x2). 

Hence, we represent the difference between the actual and average displacements by a 
Fourier series 

N N 

(A.2) 
\1 . nnx2 '\! nnx2 U(x2)-Px2 = _L.JAnsm -

1
-
1
- -+ ~ Bncos - h- . 

n=l n=l 

Clearly the number of terms required in the representation depends on the specific atomic 
model, i.e. U1 (x2). If the displacement actually occurs as suddenly as frequently indicated, 

0000 
0®0@ 
0®®0 
0000 
EQUILIBRIUM 

D 

SLIP 

0000 
CD®®G> 

0®®@ 
0000 

EQUILIBRIU.. 

FIG. 3. A schematic picture of "glide". 

a large number of terms will be required in (A.2). However, many other writers [2] "smooth 
out" the transition region so that it occurs over &everal atomic planes. Thus if one does 
not insist on too precise a fit, the results shown below indicate that two or three Fourier 
frequencies suffice to represent the nonhomogeneous strain field associated with the core. 
Since the atomistic displacements are usually not well known anyhow, these are judged 
to be reasonable fits. Given this fact, then one can construct a simpler gradient theory. 
The procedure is the same as that used above but the material parameters have a very 
different physical interpretation. However a theory with three gradients can do a remark­
ably good job of approximating the ~mall scale nonhomogeneous deformations which are 
an inherent part of plastic deformations. 

Since most uses of the discrete atomic model are schematic rather than explicit, this 
representation may be closer to the view of most investigators who use electron micro­
scopes than is the Taylor model. 

Results for retaining terms from N = I to N = 4 are shown in Fig. 4. It is our judge­
ment that the case N = 3 is adequate for modeling n~ture. That is, the Fourier series 
with three terms is as close to "reality" as the curve it is representing. 

http://rcin.org.pl



A CONTINUUM MODEL OF THE DISWCATION CORE 375 

This indicates that a continuum theory which incorporates higher deformation gradients 
in its constitutive equations can be considered to be a continuum analogue of the discrete 
atomic model of glide. Furthermore two or three Fourier series terms do a fairly decent 
job of providing some core region structure and that in turn means a continuum theory 
which considers only two or three higher gradients. 

N =I N=3 

N=2 N=4 

FIG. 4. A comparison of the Eq. (A.2) with a truncated Fourier series, beginning at N = 1 and ending 
with N = 1, 2, 3, and 4 as indicated. 
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