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On the theory of large, non-isotherm.ic, elastic-plastic 
and elastic-visco-plastic deformations 

Th. LEHMANN {BOCHUM) 

IN THE description of elastic-plastic or elastic-viscoplastic deformations we have to distinguish 
between the description as a thermo-mechanical process and the corresponding description by 
means of thermodynamic equations. In some previous papers this was pointed out with regard 
to large non-isothermic elastic-plastic deformations. The aim of this paper is to extend these 
considerations to large non-isothermic elastic-viscoplastic bodies. 

W opisie odksztalcen spr~i:ysto-plastycznych lub spr~zysto-lepkoplastycznych odr6i:niac nalezy 
charakterystyk~ procesu termomechanicznego od odpowiedniego opisu za pomoc<t r6wnan 
termodynamicznych. We wczesniejszych pracach wskazano na t~ r6i:nic~ w odniesieniu do 
przypadku dui:ych nieizotermicznych odksztalcen spr~zysto-plastycznych. Celem niniejszej pracy 
jest rozszerzenie tych rozwai:an na przypadek nieizotermicznych odksztalcen cial spr~zysto­
lepkoplastycznych. 

B onHcaHHH ynpyro-nnacrHt-~ecKHX HJIH ynpyro-BH3I<onnacrHqecKHX .z:te<J?opMarutii cne,Z:tyeT 
pa3JIHqaTL xapai<TepHCTHI<Y i'epMoMeXaHHqeci<oro npo~ecca oT coorneTcrayromero onHCaHHH 
npH noMomH TepMo,Z:tHHaMHt-~eci<HX ypaaHeHHii. B 6onee paHHHX pa6oTax yi<a3aHa 3Ta pa3~a 
no oTHollleHHIO 1< CJiyqaro 6oJII>lllHX, HeH30TepMHqeci<HX, ynpyro-nnaCTHqeci<HX .z:te<J?opMai.Ufii. 
I.leJII>IO HaCToHmeii pa60Tbl HBJIHeTCH paClllHpeHHe 3THX paccy>K,!l;eHHH Ha CJiyqaii HeH30TepMH· 
qeci<HX .z:te<J?opMa~Hii ynpyro-BH3I<onnacrHqeci<HX Ten. 

1. Introduction 

THis PAPER deals with the phenomenological theory of elastic-plastic and elastic-visco­
plastic bodies. The processes inside the lattice and at the border of the crystal grains may 
be taken as the physical background. But in this paper the connection between this physical 
background and the macroscopic behaviour of the material shall not be discussed. In this 
respect the reader may be referred to the literature (e.g. [1 to 13]). 

For simplicity we shall restrict ourselves to so-called elementary processes, i.e. to 
processes which are homogeneous throughout the body. In this case we do not need the 
thermic and mechanical field equations. We may focus our considerations on the thermo­
mechanical process of one element. 

In some recent papers [14 to 17] it has been shown how the usual description of non­
isothermic elastic-plastic deformations as a thermo-mechanical process corresponds to the 
description by means of thermodynamic state equations. The aim of this paper is to extend 
these considerations to non-isothermic elastic-viscoplastic bodies. For this purpose, after 
some general remarks, we will briefly repeat the results of the above papers. Then we 
will discuss the theory from the rate-independent plastic behaviour to the rate-dependent 
viscoplastic behaviour. We shall see that there is an important difference from the thermo­
dynamical point of view. 
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394 TH. LEHMANN 

2. Definitions and some basic assumptions 

We consider the bodies as classical continua and introduce a body-fixed coordinate 
system ;i deforming together with the body. The metric of this coordinate system in the 
undeformed state (time t0 ) is 

(2.1) 

In the deformed state the metric is 

(2.2) 

All quantities will be related to the metric of the coordinate system ;i in the deformed 
state. 

The deformation of the body can be measured by the metric transformation tensor 

(2.2') 

or its inverse 

(2.2") 

The strain rate is defined by 

(2 3) di 1 ir{') 1 (')ri 1 ( -l)i(')' 1 'i{ -l)r · k = 2.- g g rk = - T gkr g = 2 q r q .k = - 2 q, q .k> 

where (') denotes the partial derivation with respect to time with ;i being held constant. 
We assume that the total deformation of the body can be split into an elastic and 

an inelastic part by setting 

(2.4) 

gik belongs to a fictitious intermediate state which is in general incompatible. From 
Eq. (2.4) we derive an additive splitting of the total strain rate (for details see [17, 18]) 
according to 

(2.5) di 1 {( -l)i( ')' } 1 {( -l)i( ')' ,m} dj di k=sym-
2 

q ,q,k +sym-
2 

q ,q,m'1k = k+ b 
E E P E E P 

where sym { ... } denotes the symmetrical part of the tensors. 
For simplicity we assume further more that the thermo-elastic behaviour of the bodies 

is isotropic and unaffected by inelastic deformations in the sense that the material con­
stants characterizing the thermo-elastic behaviour are independent of inelastic deforma­

tions. Thus we obtain a unique relation between the elastic deformations represented by 

qi, the Kirchhoff stresses sl and the temperature T: 

(2.6) qi = qt(s~, T), sl = sl{q~, T), T = T(sk, q~). 
E E E E 

This function may be transformed into an incremental relation by differentiation with 

respect to time. This leads to a general expression of the form 

(2.7) 
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In this formula 

(2.8) 

denotes the covariant derivation with respect to time, also called the convected or corota­
tional derivation, which is due to Zaremba and Jaumann. From Eq. (2.7) and (2.8) we 
see that the total strain rate enters the incremental form of the thermo-elastic stress-strain 

. . 

relations. Therefore, the thermo-elastic deformations are not independent of the inelastic 
deformation occurring at the same time. The same follows from the fact that in the in­
tegrated form (2.6) of the thermo-elastic stress-strain relations the stresses and the 
strain are related to the deformed state of the body. 

In many cases we may replace the hyper-elastic behaviour described by Eq. (2.6) and 
(2.7) by a hypo-elastic one without large error. Then we obtain in the linear case 

(2.9) . 1 { . V · ) • . 11c = 2G sklo- 1 +v s~lo (jk + aT()k. 

We suppose that inelastic deformations occur if and only if a function 

F(sL T; k ... , ai ... ) = 0 ) 

oF . aF . 
--. siclo+ - - T > 0 osk oT 

(2.10) elastic-plastic material, 

or if 

(2.11) F(sL T; k ... , ai ... ,) > 0 elastic-viscoplastic material. 

The function F represents the yield condition which bounds the domain of pure thermo­
elastic behaviour in the 10-dimensional space of stress and temperature. The inequality 
(2.1 Oh is the loading condition. The actual form of the yield condition for a given material 
is determinated by a set of so-called internal parameters (internal variables), which are 
scalars or tensors of even order. The current values of the internal parameters depend 
on the initial state of the material and the history of the thermo-mechanical process. 

Further assumptions concerning inelastic behaviour will be specified in connection 
with different cases. 

3. Some general remarks on the thermodynamics and the description of thermo-mechanical 
processes 

We shall not discuss all aspects of the thermodynamics of irreversible thermo-me­
chanical processes. We shall restrict ourselves, rather, to some features essential for the 
elastic-plastic and elastic-viscoplastic elementary processes under consideration. This 
means, for instance, that we need not analyse whether the applied heat q arises from heat 
conduction or from heat sources. For the same reason it is unnecessary in our case to 
introduce the temperature gradient (besides the temperature) and the body-forces (besides 
the stresses) as (independent or dependent) process variables. 

Under these restrictions, we get the following scheme for the description of a thermo­
mechanical process: 

The first step is to determine the reference frame of the description by specifying the 
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396 TH. LEHMANN 

body-fixed coordinate-system ~i and the time scale t, i.e. the space-time base with the 
metric Kik(~r, !0) in the initial state(!). 

The next step consists in choosing a suitable set of independent (external) process 
variables. The set of the independent process variables must be complete, i.e. the thermo­
mechanical process must be determined uniquely by the history of these process variables. 
One possible choice · is to introduce the stresses sl and the temperature T as independent 
process variables. But we may replace these quantities (totally or partially) by the con­
jugated external process variables, namely the strains (represented by qi) and the applied 
heat q. · 

The dependent process variables may be divided into two groups. The first group 
contains only those quantities additionally required to determine the state of the material. 
In the case where the (external) independent process variables are, at the same time, 
thermodynamic state variables (like the stresses and the temperature), this first group 
contains only the so-called internal parameters (scalars and tensors of even order). If not 
all (external) independent process variables are state variables, then this first group of 
independent process variables has to be correspondingly enlarged. 

The second group of dependent process variables contains all other quantities not 
required to fix the state of the material. The number of the!ie quantities is unlimited since 
we may arbitrarily define new quantities (for example through combination with others). 

Under the usual assumptions we may express the functionals which represent the 
dependent process variables by a system of first-order differential-equations combined 
with some auxiliary conditions. This leads to the basic scheme of the process description 
shown in Table 1. 

The choice of the independent process variables depends . on the kind of process to be 
described. An isothermic pure shear process, for instance, requires the introduction of 
the stresses and the temperature as independent process variables, whereas an adiabatic 
simple shear process is determined by the given strains and the (vanishing) applied heat. 

The number of internal parameters is independent of the kind of the process. It de­
pends only on the material and on the desired exactness of the description of the material 
behaviour. 

We may define the individual internal parameters in different ways obtaining different 
sets of internal parameters on the same level of description. But in any case, the different 
sets have to be equivalent. 

The constitutive equations describing the evolution of the metric and the dependent 
process variables contain on the right side 

a) the current values of the independent process variables (sl, T), 
b) the current values of the first group of the dependent process variables (k ... , aL ... ), 
c) for elastic-plastic bodies fu:thermore the increments of the independent process 

variables (sllo, T); for elastic-viscoplastic bodies is this only valid tor the elastic 
strain increments. 

If, in the equations of evolution, other quantities are introduced as independent 

e) In classical mechanics only the metric of the space depends on the process whereas, in relativistic 
mechanics, the metric of the time depends on the process, too. A special (classical) case with a changing 
metric of time is the so-called endochronic theory of viscoplasticity introduced by VALANIS [19, 20]. 
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Table 1. 

1. Space-time base: 
body-fixed coordinate-system: 
time scale: t 

metric: g,,(~", t) 

2. Independent process variables: 
3. Dependent process variables: 

I. group: k ... ,a.! ... ,At, ... 
(internal variables) 

2. group: q, ... 
4. Constitutive equations: 

yield condition, loading condition etc. · 
equations of evolution: 
base: 

i - 1 ;,. • - di { i i I T • . . k i ir } k - lg Krlr. - k Sk, Sk o, , T, K11r., , ... , a.k ... Aks 

internal parameters: 
k = k{ ... }, 

a.L!o = a.!lo{ ... } 

other dependent variables: 
q=q{ .. . } 

process variables instead of the stresse5 sL and the temperature T, then the increments 
of these independent process variables take the place of the increments of the stresses 
and the temperature in the scheme in Table I. But the current values of the stresses and 
the temperature can only be replaced by state variables which are unique functions of 
s~· and T. The same is true with respect to other constitutive equations like the yield and 
loading condition. 

The corresponding description of thermo-mechanical processes by means of thermo­
dynamical state equations is based on the first and second law of thermodynamics. The 
first law states, under our simplifying assumptions, that the increment of the specific 
internal energy u is the sum of the increments of the specific mechanical work w and the 
(specific) applied heat q: 

(3.1) u = w+q. 
The increment of mechanical work is given by 

(3.2) • 1 idk w = """'0 sk i e 
and may be split into an elastic and an inelastic part according to 

. 1 . k 1 id' • • 
w = ---oslcdi +a-sk l = w+w. e E e P E I 

(3.3) 

The increment of elastic work, which can be written in the form 

(3.4) . - 1 i( -l)k ,., w - """'0 sk q ,.qi o. 
E e E E 

3* 
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398 TH. LEHMANN 

is reversible. The increment of inelastic work has to be split once more into one part w, 
D 

which is dissipated at once, and into another part w, which is used for changing the in­
H 

ternal state. So we obtain 

(3.5) . I idk • • 
w = --;:-- sk i = w + w. 
I (! P H D 

On the dissipated mechanical energy the second law of thermodynamic states 

(3.6) w ~ 0. 
D 

In thermodynamic equilibrium states the state of the material elements is a unique func­
tion of a closed set of thermodynamic state variables. We introduce as independent 
thermodynamic state variables: 

(3.7) qL T, h ... ' (3~ .... 
E 

The choice of qL and T as state variables is based on the fact that in pure thermo-elastic 
E 

deformations both quantities form a suitable set of thermodynamic state variables. The 
other state variables (scalars and tensors of even order) are added for the description of 
the changes of the internal structure of the material. The number of these other state 
variables must coincide with the number of internal parameters (k ... , cxL ... ) used in the 
process description. They need not necessarily be identical to those internal parameters, 
but they must form an equivalent set. 

In thermodynamic equilibrium states the specific free energy (Helmholtz-function) 

(3.8) q; = u- Ts 

(where s denotes the specific entropy) must be a unique function of the thermodynamic 
state variables: 

(3.9) q; = q; ( ql, T' h . .. ' PL ... ) . 
E 

With respect to the assumption that the thermo-elastic behaviour is unaffected by inelastic 
deformations, we may split the specific free energy into one term q;, related to the thermo­

E 

elastic part of deformations, and one other term q;, which corresponds to the changes 
H 

of the internal structure of the material. Thus we obtain 

(3.10) q; = q;(qL T)+q;(T, h ... , PL ... ). 
EE H 

From the relation 

(3.11) 

and from Eq. (3.1) and (3.8) we derive 

(3.12) g; = w-sT+w. 
E H 
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On the other hand we obtain from Eq. (3.10) 

af i a · ay: · 
(3.13) (p = ·aq~ qklo+ ar cr+y:)T+ ailh+ 

E 

By comparing Eqs. (3.12) and (3.13) we get 

acp 
I i( -l)r E " -- s, q k = aq" , 
(! E i 

(3.14) 

E 

s= 

acp 
• H • 
w = ~- h+ 
H ah 

For irreversible processes this scheme of description by means of thermodynamic state 
equations has to be completed by some statements about the entropy production depend­
ing on the thermo-mechanical process. Under our assumption we have only to deal with 
entropy production by dissipated mechanical work in connection with inelastic deforma­
tions. Thus we may assume generally 

(3.15) 

So finally we get the following basic scheme for describing elastic-plastic or elastic-visco­
plastic deformations by means of state equations as shown in Table 2. 

Table 2. 

thermodynamic state variables: qL T, h' ... ' p~ ... ' 
E 

free specific energy : f{J = q;(qL T)+q;(T, h ... ' p~ ... ) 
E E H 

thermic state equation: 

oq; 
1 i -I r E 

--;- s,(q )k = - k 
e oq; 

E 

caloric state equation: 
aq; a 

s = -- = - - (q;+q;) 
oT oT E H 

aq; oq; 
change of internal structure: 

H • H · w = -- h+ ... + --:- Pklo+ ··· 
H oh apk 

entropy production: 
• 1 i k 
w = - f.tkdi ' 
D Q 

evolution of entropy: c'l+w =Ts= -T( a"rp) _ -T{!_q; T+ 
D aT - oT2 

()2q; () 2q; ()2q; 
H i H • H i } + --.- qklo+ --- h+ ... + - -. - Pklo+ ... 

aqk ar E ahaT apkaT 
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The specific free energy cp, which determines the non-dissipated work of the thermo­
mechanical process, and the quantity !4, which governs the entropy production are to 
be specified according to the material behaviour. On the other hand, the complete set of 
constitutive equations cannot be derived only from the knowledge of cp and !4. But the 
knowledge of cp and 1-ti gives some important information about the frame in which the 
constitutive equations can be defined. 

4. Elastic-plastic bodies 

Elementary processes of elastic-plastic bodies may be considered as a sequen~e of 
equilibrium states, at least as long as the rate of the deformation is moderate so that the 
specific free energy is well-defined in each stage of the processes. 

We consider a simple example assuming that the specific free energy is given as a func­
tion of the state variables qi, T, h, fJi in the form 

E 

(4.1) cp = cp(qL T)+cp(T, h, fJD = cp(qL T)+f(T)+h+gfJifJ~. 
EE H EE 

In this formula g denotes a constant with the dimension of a specific energy like the vari­
able h and the function f(T). 

Furthermore we shall· assume that the dissipation of mechanical energy is given by 

(4.2) 0 1 { . 0 fJ' }dk w = --o ~ sic- ceg :C t , 
D (2 p 

where ~ < 1 and c denote constant numbers. For elastic-plastic bodies the inelastic work 
is identical with the plastic work: 

(4.3) 0 0 1 idk 
W = W =----a-Sk i. 
I p (2 P 

Thus we obtain from Eq. (3.5) and (4.2) 

(4.4) w = w-w = (1-~)w+c~gfJid~. 
H P D P p 

On the other hand, Eq. (3.14)3 leads with the approach in Eq. (4.1) to 

(4.5) 

Equations (4.4) and (4.5) are compatible, for instance, if we put 

(4.6) iz =(I -~)w-+ h-fz = (1-~)w 
p p 
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and 

(4.7) 
. c~ . . . . 

,Bklo = -2 die -+ ,8ilo = Cdfc. 
p p 

From Eq. (4.6) it follows that in our case the plastic work w is equivalent to the thermo-
P 

dynamic state variable h. This is still true if we take ~ as a function of h, i.e. ~ = ~(h). 

But it does not hold in the general case when ~also depends on the other state variables 
T and ,81. 

Equation (4.7) shows that only in co-axial deformations (with non-rotating principle 
axes) and with constant C the state variable ,81 is equivalent to the plastic deformations. 
Especially if we take C as a function of the state variables T, h and ,BL which is possible, 
{3~ becomes non-equivalent to the plastic deformations. 

From the thermodynamical considerations it follows that we may introduce the quanti­
ties h and ,Bt defined by Eq. (4.6) and (4.7) or any other equivalent set (for example w 

p 

and c{!gf31) as internal variables into the corresponding constitutive equations of the process 
description. The constitutive equations themselves are not yet determined completely by 
Eqs. ( 4.1 ), ( 4.2) and ( 4.6), ( 4. 7) giving only the restrictive frame for the formulation of 
these relations. We may derive a complete set of constitutive relations, which is compatible 
with this frame, by the further assumptions: 

a) the yield condition may have the general form 

(4.8) F = (ti-(XD (tt-!X~)-k2 (w, T) = 0, 
p 

where rt denotes the deviator of the Kirchhoff stresses sL; 
b) the plastic deformations may obey the so-called normality rule (theory of plas­

tic potential) 

(4.9) 1 • 8F. 
d" =).-a", 
P si 

c) the quantities ~ and C are constant. 
This leads to the following system of constitutive relations given in Table 3. 
This constitutive law of an elastic-plastic- body describes a material showing a com­

bination of isotropic and anisotropic (kinematic) hardening which depend on tempera­
ture. If the constant c tends to zero, the anisotropic hardening vanishes. For this special 
case some elementary processes concerning a real material are discussed in [16]. 

The approach may be extended to more complex hardening laws, for example, by 
introducing a fourth-order tensor as an additional internal parameter or state variable 
respectively [I 4, 15]. On the other hand, we should keep in mind that only under very 
special assumptions concerning the approaches for the free energy and the entropy pro­
duction can the plastic work be used as internal parameter as it is usually done. Replacing 
these assumptions by more general approaches we gain larger freedom for introducing 
internal parameters without changing the basic scheme of the constitutive relations. Thus 
we get many possibilities for the definition of constitutive relations for elastic-plastic 
bodies. 
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Table 3. 

independent process variables: 
dependent process variables: 

internal parameters: 

others: 
constitutive law: 

if the yield condition 

and loading condition 

are fulfilled, then 

TH. LEHMANN 

w, {J~ 
p 

q ... 

r " r s ok2 • 
. 2(ts- cefJs)trlo- -- T 

i 1 { i V r i} . i oT i i dk = -- Sklo- - - Sr/o<5k +tXT<5k + --------- --2--· -·----- (tk-cf!gfJk) 
2vG 1 +v ,.. " k 2 1 ok m o {Jm n 2.,ceg + --- (In -cog n)fm 

d~ e aw ~ 

E -----------p----~------------~ 

• 1 i k 1 i k 
w = -skdi = - tkdi . 
p e p !? 

tJLio = Cd~ 
p 

otherwise 

dl = dl 
E 

w=o 
p 

fJilo = 0 

5. Elastic-viscoplastic bodies 

d~ 
p 

Now we extend our considerations to elastic-viscoplastic bodies. As opposed to the 
elastic-plastic behaviour, thermo-mechanical processes in elastic-viscoplastic bodies cannot 
be considered as a sequence of equilibrium states in any case, not even in the case of 
elementary processes; Elastic-viscoplastic deformations are substantially connected with 
non-equilibrium states. This is the most important difference in comparison with elastic­
plastic deformations from the thermodynamical point of view. One consequence of this 
fact is that we may get a continuation of a process without any change in the independent 
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process variables. This is, for instance, valid in the case of creep with constant stress and 
temperature or in the case of an adiabatic relaxation at constant strain. In such cases 
the body tends from a non-equilibrium state to an equilibrium state. 

In order to establish the constitutive relations for elastic-viscoplastic bodies we adopt 
the usual assumption that the stresses which produce the inelastic deformations may be 

. . plastic:s£ 

-~ 
vtscous:s/c 

FIG. 1. 

expressed as the sum of the so-called athermal or inviscid stresses s~ and the exceeding 

(viscous) stresses 1~ : 

(5.1) 

This assumption corresponds to a material model as shown in Fig. 1. From the structure 
of this model we gather that the total work rate can be split in the following way: 

(5.2) . . . . 1 i dk 1 -j dk 1 * i dk w = w+w+w = -o sk i + --o sk i + o-- Sk i. 
E P V (! E (! P (! P --w 

I 

The viscous part of the work is dissipated totally. Thus we may write 

(5.3) w = w . 
V Dv 

Regarding the plastic work we have already stated that one part is used for changing the 
internal state and only the remaining part can be considered to be dissipated. Therefore 
we have to put 

(5.4) w = w+w. 
So we finally obtain 

(5.5) 

P H Dp 

w = w+w+w+w. 
E H Dp Dv 
~ 

w 
D 

We assume again that the changes of the internal state of the material can be regarded 
as a sequence of equilibrium states. Then the specific free energy is well-defined in each 
stage of the process and we may take over all statements concerning the specific free 
energy from the theory of elastic-plastic bodies. In doing so, however, we have to observe 
that into that part w of the plastic work rate, which is used for changing the internal 

H 

structure, only the athermal stresses s~ enter, since only these stresses operate in the plastic 
mechanism. For the same reason we are only allowed to introduce the athe~mal stresses 
s~ into the statement concerning the dissipated plastic work w . 

. Dp 
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--------- - - ------------------------------------------------------

On the other hand, we have to add · to the dissipated viscous work w = w to w in 
Dv V Dp 

order to obtain the total dissipation w. The dissipated viscous work depends on different 
D 

mechanisms determining the relation between the (viscous) stresses 11 and the inelastic 
strain rate d1. We shall not discuss this problem in detail referring the reader to the 

p 

literature [l to 13]. We only remark that we may choose two different approaches as first 
approximations in the isotropic case, namely, 

(5.6) 
. l *i 1 . -

dlc =- tk =-(tic-tic) 
p 2'Yj 2'Yj 

or 

(5.6') 
[ .. ;--;m;n ] 

di= i~_.,e v-;:~:-1 -11 
k -. /* * Yo . 

p Jl t: t: 
'YJ as well as y0 may depend on the state of the material. In the case of anisotropy these 
approaches have to be accordingly extended. 

Especially the approach Eq. (5.6') may be modified in different ways in order to fit 
the experimental results better in certain domains of strain rate and temperature. It is 
not our aim to treat this matter here. 

Only the work of the viscous stresses ~1 is correlated to non-equilibrium states. Thus, 
it is only to this part of the dissipated work that we may apply the conception of thermo-

dynamic forces and fluxes taking ~1 as the forces and d1 as the fluxes or vice versa. For 
p 

the same reason we may introduce only for that part of dissipation a dissipation function 
in the usual manner, from which the fluxes can be derived as functions of the thermo­
dynamic forces~ We shall renounce to introducing a dissipation function and explicitly 
content ourselves with these hints. 

After these preliminary general remarks we may consider a special example in order 
to develop the full scheme of thermodynamics and a process description for elastic­
viscoplastic bodies. As an example we choose such a body which, for vanishing strain 
rate or vanishing viscosity respectively, reduces to the elastic-plastic body considered in 
Chapter 4. Therefore, we assume with respect to the specific free energy (see Eq. (4.1)) 

(5.7) q; = q;(qi, T)+f(T)+h+gfl~flt. 
EE 

Furthermore, concerning the entropy production we assume 

(5.8) 

· 1 { i -~}dk l:V = -a sk -sk i • 
Dv (! ;----;-- P 

~1 =si 
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This leads to 

(59) . . . 1 {(t 1)-j t 0 pi }dk 1 idk (t 1). t flidk • . w = w+w =" ~- sk-~ceg k i +-osk i = ~- w-~cg k i +w. 
D Dp Dv (! P (! P P P I 

Hence we obtain 

(5.10) w = w-w = (1-;)w+;cgflidt. 
H I D P P 

On the other hand the relation (3.14h applied to the approach in Eq. (5.7) leads to 

(5.11) w = h + 2gf3ifl~lo 
H 

as in Chapter 4. Equations (5.10) and (5.11) are again compatible, for instance, if we put 

(5.12) h = (1-;)w--+ h-h = (1-;)w, 
p p 

(5.13) 
. 1 . . . 

flklo = -
2 

c;dk --+ flklo = Cdk. 
p p 

Formally this is the same result as in Chapter 4 (see Eqs. (4.6) and (4.7)). The only dif­
ference is that we have to introduce the athermal stresses s1 into the definition of w for 

p 

elastic-viscoplastic bodies, whereas for elastic-plastic bodies the stresses sl themselves are 
used in this definition. 

Using the same assumptions as in the case of the elastic-plastic body (Eq. (4.8) and 
(4.9) etc., but now with sl instead of sl), namely 

a) general form of the yield condition 

(5.14) F = (tl-ocD (!~-ocn-k2 (w, T) = o, 
p 

b) normality rule 

(5.15) 
. . a£ 

dk = A. ::~-k' 
p USj 

c) ; , C = const, 
we may derive the constitutive relations of the process description for an elastic-visco­
plastic body based on the proceeding thermodynamic considerations. However, to begin 
with, we still have to discuss how we can eliminate the athermal stresses s1 from the equa­
tions of evolution since these stresses are neither external independent process variables 
nor internal state variables, but only dependent (internal) process variables of the second 
group (see Chapter 3, Table 1). For this purpose we start with the fact that the inelastic 
deformations can be expressed in two different ways, one taking into account the plastic 
mechanism and the second considering the viscous mechanism. Choosing the simplest 
approach in Eq. (5.6) for the viscous mechanism, we obtain 

r 0 r $ iJk2 • 
2(ts-cegf3s)trlo- oT T 

dl = 2~(tl- cf?gfli} = - (il- cegfli) (plastic), 
P 2r o -k2 1 iJk2 (-m o pm)-n 

~,ceg + o- -::\- tn - ceg n tm 
. (! uW 

(5.16) 

p 
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(5.16') 

By comparing these equations for dt, it follows 
p 

(5.17) 

and hence 

(5.18) 

or 

(5.19) 

TH. LEHMANN 

(viscous). 

Following the course of the process in each stage, the internal parameters w and f3L and 
p 

therefore also k 2 = k2 (w, f3D are known. Thus we may calculate ~from Eq. (5.19) and 
p 

then all the other quantities we need, for example~~ from Eq. (5.17), d~ from Eq. (5. 1 6) etc. 
p 

This procedure fails at the point of transition from the elastic domain to elastic-

viscoplastic deformations since in this instant tl = ~~ and therefore i, as well as dt, be­
P 

comes zero. But in this case we may calculate dllo from the following considerations. 
p 

From Eq. (4.25) we obtain on account of d1 = 0 and tk = tl 
p 

(5.20) 
• 0 • -k ok2 

• 
2(tic-cegf3k)ti lo- oT T = 0. 

On the other hand, we derive from Eqs. (5.16) and (5.16') (observing ~ = 0 and tl = il) 

(5.21) 
• •• • 0 • 1 . -. 

diclo = 2J.(tic-cegf3k) = '--
2 

(ticlo-ticlo). 
p n 

Equating Eqs. (5.21) and multiplying by (tf- c/!gf3n we get 

(5.22) 
.. -2 1 . -. k 0 k 

2J.k = 2:fi (ticlo- ticlo) (ti - cegf3i). 

Together with Eq. (5.20) this leads to 

(5.23) 

With this value of~ we may calculate dllo from Eq. (5.21) 1 , i1lo from Eq. (5.21h etc. 
Thus we finally obtain the following system of constitutive equations in the descrip­

tion of processes of elastic-viscoplastic bodies (see Table 4). 
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Table 4. 

independent process variables: st, T 
dependent process variables: 

internal parameters: 

others: 

constitutive law: 

a) if 

then 

with 

• 1 -i k 
w = ~ tkdi 
p (! p 

Ptlo = Cd~ 
p 

b) if 

and 

then 

with 

c) if 

or 

then 

w, pt 
p 

-i 
Sk, q ... 

;. = _1_ {y/ <r~-cegfJ~) <rt-cqgtJh _ 1) 
4~ k2 

-i 1 . . . 
rk = ---.- (tk-cogfJic)+cegfJfc 

1 +4~A "' 

F=O 

oF i oF . 
-i Skio+~T T > 0 
OSk u 

d~ = di 
E. 

d~ = 0, 
p 

F = 0 and 

F<O 

d~ = d~ 
E 

w=o 
p 

fJ~Io = 0 

[401] 

oF i oF. 
--i sklo+ ~r T~ 0 

OSk u 
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6. Some complementary remarks 

We may extend our considerations to more complex constitutive equations by in­
troducing more internal parameters or state variables, respectively. In some cases it may 
be more realistic to base the constitutive relations on another material model. Such 

I 

a possibility is sketched in Fig. 2. This model shows two different mechanisms of plastic 

----
FIG. 2. 

deformations. One corresponding approach for the stress-strain relations which is easy 
to treat is 

(6.1) 

This model seems to be more suitable to cover some experimental results concerning 
second-order effects and some observed deviations of the normality rule. Sometimes the 
normality rule is considered as a fundamental law based on some principles concerning 
entropy production. But we should keep in mind that not the whole plastic work is 
dissipated since one part is used for the change of the internal structure. Thus we cannot 
expect that the total plastic strain rate obeys the theory of plastic potential (normality 
rule), even when the mentioned principles of entropy production are correct. 

On the other hand, the scheme of the material behaviour based on Fig. 2 and the 
approach in Eq. (6.1) should only be considered as one possibility of an extended theory. 
Many other possibilities are still open. 
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