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On displacement functions in the discrete elasticity theory
/K. H. B(_)JBAE | (GLIWICE)

THE PAPER deals with generalization of the Moisil method of resolving the system of differential
equations to the case of equations of linear discrete elasticity theory. A way of reduction of
the number of equations and displacement functions is presented. As the particular case of
the theory the discrete Cosserat medium and monopolar discretized body are considered. The
procedure was illustrated with the example of net shield with freely supported hinges construc-
ted from the three families of rods.

W pracy uogélniono sposob Moisila rozwiklania uktadu réwnan rozniczkowych na przypadek
rownan liniowej dyskretnej teorii sprezystosci. Podano réwniez pewien sposob redukcji liczby
rownan i funkcji przemieszczen.

B paGore o06obiuen cnocob Moucuns paspeienns cucremb! quddepeHIMANEHBIX YPaBHEHHIH
Ha cllyuaii ypaBHeHuil JHHeiiHO AMcKpeTHol Teopuu ynpyrocru. aercs Toxke crocod pe-
OYKIMH 4Mcia ypaBHeHHH M (yHKumii nepememennii. Kax vacTHBIf ciywall paccMOTpeHBI
muckperHaa cpefa Koccepa m ogHomomiocHoe JuCKpeTusupoBaHHoe Teno. Ilenocrs noaxona
HJUTIOCTPHPYETCA Ha NpPHMEPE PELIeTyaToro JHCKA, C IAPHHPHBIMHM y3JIaMH, 006pas0oBaHHOTO
H3 TpeX CeMEHCTB CTepyKHeM.

1. Introduction

THE MAIN role of displacements functions is to reduce the combined system of displace-
ment equations to equations of simple structure. In the theory of elasticity a very useful
way of resolving the system of partial differential equations was given by G. C. MoisiL [5].
This method was applied among others in papers ([6], pp. 279, 505), ([7], pp. 185, 189),
([21, p. 119), [1].

In this paper the Moisil procedure was generalized to the case of displacement equa-
tions of the linear discrete elasticity theory. A certain manner of reducing a number of dis-
placement functions particularly useful in the lheor)g of elastic.discretized bodies is also
discussed. This is so since in this theory the boundary conditions are prescribed in a dif-
ferent way than in the classic theory of elasticity. In the further part of this work the
particular form of the operators appearing in the displacement equations of Cosserats
discrete media [10] and unipolar discretized bodies [4] are presented. Media with regular
structure and homogeneous in the sense of independence of the properties of the place
are considered. The same notation as in the works [3, 4, 8, 9, 10, 11] is used.

In particular, the symbols 4,¢ and 4,¢ denote the right and left derivatives of the
function ¢. The indices a, b, ..., run the numbers 1, 2, ..., n, the indices «, g, ..., — the
numbers 1, 2, ..., r, the indices k, / — the numbers 1, 2, 3, the indices KL the numbers
1,2 and the indices /1, @ the series I, II, ..., m. The summations convention is used.
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2. Displacement functions

The system of displacement equations for the discrete elasticity theory, [8], consists
of the equilibrium equations
(2.1) AT+ 1,4+, =0
and constitutive equations which, in the linear theory, may be presented in the following
form:
(2.2) Ti = AW 404"+ Bo ',

—fﬂ = Bﬂd@qb'i‘cabqj.

 The quantities 74 and ¢, in Egs. (2.1) and (2.2) are the components of the state of

stress; f, is the exterior load, ¢* are the generalized coordinates of the particle «. The
quantities A44%, BZ, C,, characterize the elastic properties of the considered discrete

systems.
’ Substituting Eq (2.2) into Eq. (2.1), we obtain the following displacement equations:
(2.3) ARA4 400 + Bl A1q ~ B Aod"— Cand* +1, = 0.
Introducing the operators
(2.49) Loy = AP0, 0o+ Bay Ay~ B Ao —Coy.

Equation (2.3) may be written in the form
(2.5 Lupg*+f, = 0.

From Eq. (2.4) it follows that the operators L, are commutative and linear.

The linearity of operation is understood here in its common sense, that is, if

@1, 92 €{p: _(‘P5 D - R)},
o, 0 €ER,
then
{}[L”(a, P1+0292) = a3 Lapy®; + a2 Lapy @],

where D is the set of particles « of a discrete medium, and R is the set of real numbers.
Then, expressing the generalized coordinates ¢° of the particle a in terms of the dis-
placement functions

Fi:D— R
in the following manner,
(2.6) q° = detL?,
we receive the equations
@7 detLF,+f, =0,

where L = [L,] and the matrix L is obtained from the matrix L by replacing a-th
column by the vector F.

The system of Eqs. (2.7) consists of n equations, each of which contains only one
unknown function F,. Thus, each equation may be solved independently.
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Let us now discuss a certain way reducing the system (2.7) to the smaller number of
equations.
Denote by Lj the commutative endomorphisms with the operators L,

L3:C(D) - C(D),
C(D) ={p:(p:D-> R}, DecD,
such that
(2.8) /\({(p = 0} < Kerl)),
where KerL% is a kernel of LZ.

As it results from Eq. (2.8), the operators L% cannot be the injections. If one may
determine such functions

@2 D — R,

that

(2.9) Ja = La@a,

then expressing F, in terms of the new displacement functions @, in the following way,
F, = L},

we obtain the equations

(2.10) detL®@,+¢, = 0.

The quantities ¢* are calculated in this case from the formulae
.11 ¢ = LID"®, = detL“D,,

where D" is a co-factor of the element L,, of the matrix L; the matrix L being obtained
from the matrix L by replacing the a-th column by the vector L* = (L%).

When r < n, the system of Egs. (2.10) contains fewer equations than the system (2.7),
For example, if for a certain fixed value

heEhssh i =hu=...5£=20, fi#0,
occurs, then
fn = éf‘ln?:'
and
F, = 6®@,

Hence, the multiplications through 6( are here the endomorphisms L? (x = (k)). The
system (2.10) reduces in this case to the single equation

detL@+(}‘) e 0!
and ¢° is evaluated from the formula
¢ = DW g,

4*
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The procedure analogous to that described by the relation (2.9) is broadly used in
the classical theory of elasticity; for example, in deriving the stress equation for shields
it is frequently assumed that the mass forces X; have the potential V

XJ=—81V, f=1,2.

In all particular cases the equations for the displacement functions are determined
from Eq. (2.7) or Eq. (2.10), and only the shape of the operators is different.

3. Some particular cases
The discrete Cosserats medium is a particular case of the discrete media considered
in the previous sections. In the theory of discrete Cosserats media one assumes [10]
q° = Ofut+ 6§ 3,
T4 = &TA+ 85, M2,
t, aﬁ- 3 ekpr T;qgs
fo= 5§fx+<5'.§~3nm

where the quantities #* and * are the components of the displacement state and /% are
the components of the vector connecting the centre of the mass body d with the centre
of the mass body f;d in a reference configuration.
The linear constitutive equations have the form
T = Al yo+ Bil®xa,

M = BRAyh+ Fi®xb,

Il

where
Y = A+ ek o8,
xf«] = AA'U",

are the components of the displacement state.
Hence, the following relations hold:

= 0K A{P+ 0k 0} _ s B+ 0k _ 5 8L BRA+ 8k, 8L _ 1 FA2,
3.1) B,, = Ok Of_seh I3 ALP+ 0% _ 3 OF_ sl ImBRA,
Cap = 0 355—35 k€ !k[chtm
Substituting Eq. (3.1) into Eq. (2.4), we obtain
(3.2) Loy = 040, A+ 05043 By + 8%_ 3 0, Cy+ 053 843 G
The operators appearing at the right hand side of Eq. (3.2) have the following form:
Ay = fi‘ff’d/ldo.
By = B{PA, Ap+e" 5 A4,
Cy = BRA Ao+ ImA2%4,,
G = FAPA, Ao+ " 12 BEAA 4+ £40n™IT BAPA o+ £10” e 015 AT
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The components of the displacement state are evaluated from the formulae
u* = ¢,
'Uk i qk+ 3‘
For the net shields we have [3]
q° = oxu*+ 6%v.
Hence,
uk = gk,
v =g,
and the operators L, have the following form
Loy = 656, Ag + 0X03 By + 830EC+ 82636,
where
AgL = A‘}fd_,,‘d@,
By = B{®A, A+ €y 14 A424,,
Cp = B4, Ao+ ey I A2 A,,
G = F190,Ap+ "y 1§ B A g+ ex™ 1N BIPA g+ ey o I} 15 AR
But for the net plates [3]
¢ = O5u+ oxvX.

Thus
u=q’
vk = gk
and
Loy = 0303 A+ 030k By + 0K 03 Cx + 0K 0k Gy,
where

A = A%%4,44,,
By = BRA Ag+ ey I3 474,
C = B* A, A+ exp ¥ A4%4,,
Dxr = Fi8 A4 A0+ en ¥ B A g+ exm I B Ao+ experp 15 15 A7°.
In the formulae for the net shields and plates the following notations are introduced
Af3 =A%, Bl =DB% BiS =B, Fif=Fw.

The monopolar discretized body is a particular case of the discretc Cosserat medium [4].
For this case

g =0k, AW = 00,Al°, Bk =Cp=0.
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Hence,
v = ¢*,
(3.3) ¢
Loy = 050} Ay,
where

Ay = AfPA,4,.

In plane problems the indices k,/, ..., should be replaced by K, L, ....

4, Example

Consider a net shield with free supported hinges and formed from three families of
rods. For the purpose of computation the two-dimensional monopolar discretized body
was chosen. The range of the difference structure m for this body is three. For the case
considered according to Eq. (3.3) we have

Ly = 5551{'44'334 Ads-

Hence, Egs. (2.7) now assume the form
4.1) CATA A Ap ArFr+ fx = 0,
where

CA99 = A1 AT~ ATZA.
Since the expression for A4? is
0, where A # @,

4.2 ARE = | E4,

; t8t{, where A =00,
p

then
0, where A#® or Q#T,
(4.3) CAD@I‘ - EZAA

Elata (arigeg—rpegif19), where A=0,0=T.
AR

In formulae (4.2) and (4.3), E is the modulus of longitudinal elasticity of the materia
of the rods, 4, is the cross-section area of the rods belonging to the family A, ¢ are the
components of the unit vector parallel to the direction of the axis of the rod of the family
A. The components of the displacement vector uX are evaluated from the following
formulae

u' = Aggjddﬂpl_Af?JAAOF29
u? = Af?JAA@Fz"AE'? -AA¢F1-
If
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then,
f E= 6}1@9
FK = Oi@.
In this case the system (4.1) reduces to the single equation
(4.9) C199TA A, ApAp P+ = 0,

and the components of the displacement state are evaluated from the following formulae:
w = A424,4,9,
u? = — A2A,4,9.

(4.5)

If, moreover,

then, Eq. (4.4) is homogeneous
(4.6) CA9TA Ao ApAr® = 0.

The displacement function satisfying Eq. (4.6) determines two possible displacement
states: one given by Eq. (4.5) and the second given by the following formulae

W= — A4, A,D,

4.7 i
u? = A1%4,4,9.
The formulae (4.7) result from the relation
fx = %9,
Fx = 6%@,
where
=0

should be assumed.
The application of the displacement functions discussed above will be specially suitable
when the displacements are prescribed on the boundary.
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