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Qualitative analysis of propagation of isothermal and adiabatic
acceleration waves in the range of finite deformations

NGUYEN HUU VIEM (HANOI) ()

ON THE BaAsis of constitutive equations of metallic isotropic elastic-plastic bodies, motion of
a second order discontinuity surface in an infinite space is subject to a qualitative analysis
in a local approach. Propagation velocities of isothermal and adiabatic waves (plastic, loading
and unloading wave fronts) are compared with the corresponding elastic wave velocities.
In this manner, the analysis of acceleration waves given by Mandel is generalized to the case

of finite deformations.

Na podstawie rownan konstytutywnych dla metalicznych izotropowych cial sprezysto-plastycz-
nych przedstawiono badania jako$ciowe ruchu powierzchni nieciagtosci drugiego rzedu w nie-
skonczonej przestrzeni, w aspekcie lokalnym. Poréwnano predkoSci rozprzestrzeniania sig fal
izotermicznych i adiabatycznych (fal plastycznych, front6w fal obciazenia i odciazenia), z pred-
kosciami odpowiednich fal sprezystych. Uogblniono w ten sposéb rozwazania nad analiza fal

przyspieszenia podane przez J. Mandela na przypadek skoriczonych deformaciji.

Ha ocroBe ONpENesIOMMX YPaBHEHHIT [UIsI METAJUITMUECKHX H30TPOMHBIX YIIPYro-IUIacTH-
YECKMX TeJ MPEICTABJIEHHI KAUECTBEHHBIE MCCJIENOBAHUA IBIYKEHUSA MOBEPXHOCTH Pa3pbIBa
BTOPOro NMOPAAKA B GECKOHEUHOM NPOCTPAHCTBE, B JIOKANbHOM acrnekTe. CpaBHEHBI CKOPOCTH
PACOPOCTPAHEHMA M30TEPMHUECKMX M aauabaTHyecKHx BOJIH (IUIACTHYECKHMX BOJIH, (ppoHTOB
BOJIH Harpy3KM M PasTPY3KHM) CO CKOPOCTSAMH COOTBETCTBYIOILMX YOPYTHX BoJH. Taxmm 00-
pazom 0606IIEHbI PacCY)KAEHHUA 10 aHANM3Y BOJIH YCKopeHus, npuBeneHHble JDHx. Mannenem,

HaoIy4JailKoHeUHBIX Aedopmarmii.

Notations

A@B AI.B; or AuB,,,.,
B A,B; or AyByy,
AB AUBJ or AuuB.u,

Attl
unit tensor,

A

1

- 1

K A-— @A,
T

A

transpose of a tensor

1. Introduction

A MOVING surface of discontinuity of field functions, its propagation velocity depending
on the nonlinear properties of the material, is called a wave. Let us consider the acceler-

ation waves.

(*) At present a visiting research associate at the Institute of Fundamental Technological Research,

Warsaw.
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Propagation of the second order discontinuity in a three-dimensional, unbounded,
elastic-plastic medium was considered originally in a paper by MANDEL [5], who investi-
gated the motion of the discontinuity surface in the local sense: the speed was determined
at an arbitrary point and in a given direction normal to the surface, on the basis of the
HapamarDp Compatibility equations [4]. The paper was generalized by TiNG [13] who
determined the character of the discontinuity vector and the form of the transport equa-
tion. Assuming certain particular forms of the constitutive equations, RaNIeck1 [11] and
W. K. Nowackr [8] investigated the problem of propagation of acceleration waves in
metals and soils. All the approaches mentioned above apply to small deformations.

The first papers dealing with the problem of wave propagation at finite deformations
appeared in the seventies: BALABAN et al. [1], D’EscATHA [2], Piau [9, 10]. Papers of this
kind are usually aimed at determining the relations between the velocities of elastic
and plastic waves, waves of loading and unloading. In some of the papers, variations in
amplitudes of such waves were considered. GUELIN and NowackI [3] studied the propa-
gation velocity of acceleration waves in an elastic-plastic medium with a perfect material
hysteresis,

In the present paper, velocities of such waves in isothermal and adiabatic processes
will be studied on the basis of the constitutive relations presented in [12, 7]; the relations
are derived from Mandel’s theory of elastic-plastic materials [6], logarithmic elastic strain
measure being assumed as one of the fundamental state parameters. They describe the
finite deformations of the medium. Let us start with a short presentation of the fundamen-
tal equations.

2. Fundamental equations

In the case of metallic, isotropic, elastic-plastic materials, the following equations in
Eulerian description are used under certain well-grounded assumptions [12, 7]:

@ ¥ = LD—]ﬁ(ﬁ-ﬁ)ﬁ,

where
, 20
Lijy = p(04 05+ 06, d5) + (K" — 3 81y Okt

K"= B(K-p); p=— G;" mean pressure,

K — bulk modulus, z — Lamé constant, ¥ = T—wT+7Tw — Jaumann derivative of the
stress tensor t, T = fioe — Cauchy stress tensor, f = go/o, 0o and p are the respective
densities in the reference configuration and the actual configuration, according to the
theory of MANDEL [6].

1 T ;
D= 5 (gradv+gradv), o — velocity,

1 T
W= (gradv—gradv).
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The yield condition is assumed in the following form

(22) f(?) 6’ a) - O’
where f'is a normed function, so that

 _ — _
(2.3) —a-é—=m, ttm=0, m-m=1

0 is the absolute temperature, « is the hardening parameter (power of plastic strain in
this case).
The hardening function H for an isothermal process has the form
1 h aof _
i = — — 1 = —— L

2.4) H Ly ( % + ) where h £ (v-m)
and for an adiabatic process
2.5) H“—L(L+1+ m)

2 — 2” 2,“ qamg]| .
Here g, is the thermal coefficient of energy dissipation

l—m __
QC (m'ﬂ’ .7'L'=Qo

0%“e

do(x)

(2'6) da = d“ ’

@ stored energy per unit mass (which may be measured experimentally). In most metals
takes the values between 0.02 and 0.1. C, is the specific heat at constant deformation,

1 9 : :
mg = — —F—i — thermal coefficient of softening.
Equation (2.1) describes both the isothermal and adiabatic processes; the difference
between them consists in the fact that H' # H*, if certain minor coupling effects are dis-
regarded (heat of elastic deformation and thermal expansion due to the dissipation energy).

@7 j:{l if f=0 and m-D>0,

0 if f<O0 or f=0 and m-'D<O0.

These equations, together with the equations of continuity, motion, temperature and
evolution, represent a closed system of equations for the following unknowns: 8, i,
v, 0, a (cf. [7]); they all are functions of x and ¢,

3. Qualitative analysis of acceleration wave velocity

In elastic-plastic media the four types of acceleration waves mentioned above may
propagate, depending on the state of the medium in front of and behind the wave. The
propagation of waves may be analyzed in the space, that is in Eulerian coordinates, or
with respect to the material, that is in Lagrangean coordinates. However, in order to
obtain the simplest results, let us assume the material configuration at instant ¢ as the
reference configuration. It means that the motion of the wave in the time interval (¢, t+dt)

12 Arch. Mech. Stos. 4-5/85
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is referred to the material particles at instant ¢. The following relation between the veloci-
ties holds true

3.1 W=804+v-v.

Here W is the wave velocity (in space), £2 is the local velocity (with respect to the material
at time ¢), v is the unit vector normal to the discontinuity surface S.

In Eulerian coordinates, if y(x, t) remains continuous at passing through § but its
derivatives are discontinuous, there exists such I” that

(3.2 d=Iv, [d=-I'W, [y=-1IQ,

where [A4] denotes the jump of 4, y,; = —b‘a%’ and
1

_E vV =y 4+ ,0
Y= T Y =Y. TV.4%.

Owing to the compatibility conditions, we obtain

(3.3) .l = - 4 Gl

a) Isothermal wave

In the isothermal plasticity it is assumed that the temperature is constant and equal
to 0,. Isothermal waves represent a certain idealisation of the actual wave processes pro-
duced by the impact at the surface of elastic-plastic bodies. Let us now consider the propa-
gation of isothermal acceleration waves in an infinite three-dimensional elastic-plastic
material, and apply the method proposed by MaNDEL [5].

In the case of acceleration waves, at passing across S, the functions f, 7;,, v; are con-
tinuous, but their first derivatives with respect to time and x suffer jump discontinuities.

The equations of continuity and motion assume now the forms

(3.4) B = Bor.x,
1 s
(3.5) Tig 1~ B TiyB.1 = eo?y.

Taking into account Eqgs. (3.2), (3.3) and the formula for derivatives ¥, Egs. (3.4),
(3.5) are reduced to the single equation

v 1 1 ..
(3.6) Q[r v+ 3 [T Tmyvivm+ 3 [Oml Tmg?i 7

| [ ) [ é
+ 5 [Oml2?: Tim— a5 [9)] Tim¥i¥m+0022[0)] = 0.

(i) Elastic waves. Let the regions 1 (in front of the wave) and 2 (behind the wave) be
elastic. From Eq. (2.1) it follows that
v
3.7 Ty = LijuDu.
Substitution of Eq. (3.7) into (3.6) yields

(3.8) (Q}:)(V)—Q-Q 2 ajk)[i)k] =0,
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where Q4§ is the so-called elastic acoustic tensor

1 1 1 1
(3.9 Q¥ = % (Ll_rklvl"'l_ 2 TonjVeVm— 7 TtV = 75 TV + 5 TimViVm 51&) .

Under the assumption that the elastic distortions were small, it was shown in [7] that
tensor Qf was symmetric and positive definite. Hence, for each direction » normal to
surface S, there exist three possible acceleration wave velocities; they fulfill the following
relations

(3.10) 007 = 0f, o9 = Ofi, 0% = Of.
Here 0f > 0%, = Ofy are the eigenvalues of tensor Q®), and
(3.11) 252 05 > 93,

where ¢ are the elastic acceleration wave velocities.
(i) Plastic waves- In this case, plastic state prevails at both sides of S. Combining Eqs.
(2.1) and (3.6) we obtain

(3.12) (O —02%8,) [94] = 0
where
Q” = Q- = Q“ -ra®a,
(3.13) .
r= -ﬂ_IF >0, a=mv.

It is seen from Eq. (3.12) that p£2% and [v] are the eigenvalues and eigenvectors of the
tensor Q®, respectively. Non-trivial roots of the system (3.12) may exist, provided

(3.14) FP(X) = det(Q® —X1) = det(Q®—X1-ra®a) = 0
where 02? = X.

Let us assume the coordinate axes to coincide with the principal axes of the tensor
Q®@; then it follows from Eq. (3.14) that

(3.15) EP(X) = (Qi—X)(Qhi—X)(Qiu—X)
—r[(Ql'l—X)(QleII_X)a%+(Qlell_X)(Qf—X)a§
+(Qf —X)(Qfi—X)a3] =
In view of the fact r > 0, Eq. (3.15) yields
(3.16) FPQ) <0, F'(Qp)>0, FPQM)<O0, F/(—x)>0.

Figure 1 presents the diagram of function FP(X) satisfying the conditions (3.16). It is
seen that the eigenvalues of tensor Q? satisfy the inequality

(3 17) Qlll Qlll Qll QII Ql Qf:
what implies that
(3.18) DB<AB<AB<<O, Q< 028,

where Q7(i = 1, 2, 3) denote the plastic wave velocities. It cannot be seen from Eq. (3.18)

12*
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I In; Ty
(¥d4

Fic. 1.

whether the velocity £3 is real or not; in the case when the tensor Q‘® is positive definite,
we have 28 > 0 and

(3.19) 0 <<
The following conclusion may be drawn:
For each direction v, the plastic wave velocities are not greater than the corresponding

elastic wave velocities.
(iii) Unloading waves. This is the case when region 1 remains plastic, while region 2 is

elastic, hence from Eq. (2.1) it follows that

v v v 1 .
(3.20) [Tu] = Ti(Jl)_ Tt(f) = Luu[”k.x]"—HTmumuUﬁ},

where superscripts (1) and (2) denote the respective values of the functions at both sides
of S. Introducing the notation

(3.21) T=m'D=m-D=myvy,,
we obtain, after simple transformations of Eqgs. (3.20), (3.6) (3.21),

(3.22) (019 — 025 65) [vx] = — ﬁg‘ my v, "

if we assume (cf. MANDEL [5]) 2@ = £X'D), so that
(3.23) [Z]= ZD(1-8), &£<0.
Consequently, Egs. (3.21), (3.23) yield

M [k
T = . EAUTE

Q2(1-¢)
Substituting expression (3.24) into Eq. (3.22) we obtain
(Qﬂ “'Q-anuaﬂg) 2] =0,
o5 = 0% - aa,

(3.24)

(3.25)

where

1
~ BH'(1-9)
In view of & < 0, the inequality holds 0 < r*! < r. Comparison of Egs. (3.25) and (3.13)

reduces the considered case of unloading waves to the case of plastic waves. Mandel’s
procedure allows for drawing from Eq. (3.25) the conclusion that three possible unloading

ul = QSE)"'("—rul)aJak.
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I I, Ty
(¥4

Fic. 1.

whether the velocity £2% is real or not; in the case when the tensor Q‘? is positive definite,
we have 25 > 0 and
(3.19) 0 << MDA
The following conclusion may be drawn:
For each direction v, the plastic wave velocities are not greater than the corresponding

elastic wave velocities.
(iii) Unloading waves. This is the case when region 1 remains plastic, while region 2 is

elastic, hence from Eq. (2.1) it follows that

Yay_Ye 1 _ _—
Ti(J - Ti(.i) = Luu[’vk,x]-' 7L m,_,m.,v}h},

(3.20) [gul =

where superscripts (1) and (2) denote the respective values of the functions at both sides
of S. Introducing the notation

(3.21) E=ﬁ'ﬁ=m'l)-=n'iuv|.]
we obtain, after simple transformations of Eqgs. (3.20), (3.6) (3.21),

(3.22) (019 — 025 65) [vx] = — ﬁi){‘ m v &

if we assume (cf. MANDEL [5]) 2@ = £X'D), 5o that
(3.23) [Z]=2M(1-§), £<0.
Consequently, Egs. (3.21), (3.23) yield

ﬁktvt[ﬂ
20-% -
Substituting expression (3.24) into Eq. (3.22) we obtain
(Qﬂ — Q‘Qal(sjk) [e] =0,
Q?l: = Q},?—r“') a;ay,

(3.24) W= —

(3.25)

where

1
© BH'(1-9)
In view of & < 0, the inequality holds 0 < r*! < r. Comparison of Egs. (3.25) and (3.13)

reduces the considered case of unloading waves to the case of plastic waves. Mandel’s
procedure allows for drawing from Eq. (3.25) the conclusion that three possible unloading

ul = QSE)"'("—"“I)aJak.
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Analysis of these cases yields the final scheme of wave propagation shown in Fig. 3. The
loading wave is now seen to propagate at the velocities lying in the intervals shown in
Fig. 3. In this manner, all Mandel’s results are generalized to the case of metallic isotropic
elastic-plastic bodies in the range of finite deformations. The preceding results may also
be proved under the assumption that the differences X — X'® are known, as in the paper
[10] by PiAu, and not the ratio § = X /XM,

Let us now pass to adiabatic waves; the corresponding results concerning small de-
formations are given in [11].

(b) Adiabatic waves

Adiabatic waves represent also an extreme idealisation of actual wave processes. As
mentioned before, once some minor coupling effects are disregarded, the difference be-
tween the isothermal and adiabatic processes consists merely in the fact that the hardening
function H* must be replaced by the adiabatic function H® Thus, the general scheme of
propagation of adiabatic waves is similar to that found before. However, for given values
of v and £, the corresponding velocities are different. In addition, adiabatic waves are
not homothermal and the temperature is propagated at a finite velocity. Let us now com-
pare the isothermal and adiabatic wave velocities.

Let us recall that in an isothermal process (cf. [20])

QP = Q‘—ra®a where r= —ﬁ;{, 3

while in the adiabatic case we obtain, using a similar approach,

A A
(3.30) QP = Q®—ra®a,
where
A 1 1
(3.31) r= = ;
H, 1
4 B (H F+ ﬂ 4a me)
The yield limit in metals is known to decrease with increasing temperature, so that
1
df]/@6 > 0, and we have mp = — _3_f < 0, what implies that
2u o0
A
(3.32) r>r.

Taking into account Egs. (3.13), (3.30) we conclude that the elastic wave velocities
are identical in both processes. Let us now pass to the remaining waves. The procedure
is analogous with that applied in (a) and will not be considered in detail. Superscripts 4
refer to the adiabatic process.

The propagation tensor for plastic, unloading and loading waves have the form:

A
(3.33) Q® = QW —(7-r)a®a,

A A
(334) Q(ul) —_ Q(ul)_ (rul_ uI)a® a,



QUALITATIVE ANALYSIS OF PROPAGATION OF ISOTHERMAL AND ADIABATIC ACCELERATION WAVES 447

where
1
(3.39) M=t £<0,
A i 4
(3.36) QU — QUI _ (74 _yld)ayq
where
(3.37) pastto eso0

A A A T i .
Since r > r, we have ™' > r*! and 79 > r'¢ (cf, Fig. 2); hence the adiabatic waves of

other types are propagated at velocities smaller than the corresponding isothermal waves,

A

(3.38) 0,0 (@(=1,273).
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