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Remarks on Rayleigh-type waves in visc~elastic incompressible fluids 

S. ZAHORSKI (WARSZAWA) 

THIS PAPER is a supplement to our previous considerations [6] where the surface- and interface­
type waves in viscoelastic fluids were discussed in greater detail. Now it is shown that certain 
properties of viscoelastic Rayleigh-type waves in two-layer incompressible fluids essentially 
differ from their counterparts for compressible fluids. 

Niniejsza praca stanowi uzupelnienie naszych poprzednich rozwa.Zan [6], w kt6rych szczeg6lowo 
przedyskutowano fale typu powierzchniowego i mi~dzyfazowego w cieczach lepkospr~i:ystych. 
Obecnie pokazano, ze niekt6re wlasqosci lepkospr~i:ystych fal typu Rayl~igha w dwuwarstwo­
wych cieczach niescisliwych r6i:ni(l si~ istotnie od odpowiednich wlasnosci dla cieczy scisliwych. 

HaCTOHIIJ;aH pa6oTa COCTaBJIHeT ,[lOllOJIHemte HamHX npegblgylll;HX paccymgeHHH [ 6], B KO­
TOpbiX llO,Llp06HO o6cymgeHbi BOJIHbl llOBepXHOCTHOrO H Mem<t>a3HOrO THDOB B BH3KOynpyrHX 
mH.[lKOCTHX. Ceiiqac noKa3aHO, qTo HeKoTopbie CBOHCTBa BH3Koynpyrux BOJIH THna Panea 
B ,[lByxCJIOHCTbiX HeC)f{HMaeMbiX )f{H,[lKOCTHX OTJI~alOTCH cyiiJ;eCTBeHHO OT COOTBeTCTByiOlll;HX 
cBoHCTB gJIH cmHMaeMbiX mHgKocreii. 

1. Introduction 

THE PROPERTIES of viscoelastic Rayleigh waves in homogeneous media were discussed in 
a series of papers (cf. [1-5]). In our recent contribution [6], devoted to the surface- and 
interface-type waves in homogeneous and two-layer viscoelastic fluids, we intentionally 
omitted the case of Rayleigh-type waves in incompressible fluids; similar waves were 
discussed for more general cases of compressible fluids. In the present note, being a supple­
ment to paper [6], we briefly consider viscoelastic Rayleigh waves in two-layer incom­
pressible fluids. It is shown that many properties of such waves essentially differ from those 
observed in two-layer compressible fluids. 

2. Basic equations for homogeneous. fluids 

In paper [6] we considered the following linearized equations (cf. Appendix): 

(2.1) 

where p is the hydrodynamic pressure, e - the density of a fluid, A.* and 'YJ* denote the 
frequency-dependent dynamic second (dilatational) and . shear viscosities, respectively. 
For plane flows the scalar potentials (/>i (i = 1, 2) determine the velocity components 
in the form 

4* 
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(2.2) 

We analysed certain solutions of Eqs. (2.1) in the form of harmonic waves, viz. 

f/>1 = (A 1e",z+B1e-,,z)exp(px+iwt), 
(2.3) 

p = Po(z)exp(ux+iwt), 

where capital letters denote integration constants, and 

(2.4) 

are simply related to the components of waves vectors. Gi = iw( A.*+ 2n*), Gf = iwn* 
denote the dynamic complex moduli. The waves considered may propagate along the 
x-axis ' if Re,u2 < 0, being simultaneou~ly damped in the z-direction if alsq Revl > 0. 

For incompressible fluids V2 f1> 1 = 0, and Eqs. (2.1) remain valid under the assumption 
that A.* -+ oo. This assumption implies that also q1 -+ oo, and V2 f1> 1 = ~0 gives vi = - p,2

• 

The same results could be rediscovered if we started directly from the constitutive equation 
of an incompressible fluid. 

For homogeneous compressible fluids contained in the lower half-space z ~ 0 (with 
the z-axis directed upwards), the relevant boundary conditions at the free surface (T13 = 
= ]'33 = 0) lead to the following secular equation (cf. [6, 5, 3]): 

(2.)) 

On denoting 

(2.6) 

we also have 

(2.7) 

-4,u2v1 v2 = (v~-p,2)2 • 

"· 
Gf {) = --Gi' 

For incompressible fluids, for which G1 -+ oo and {)-+ 0, we a~rive at 

(2.8) 

The same equation can be obtained on the basis of the corresponding constitutive equation 
of an incomp.ressible fluid. To this end, however, one has to substitute into the boundary 
conditions at the free surface p 0 (0) = -iweA 1 instead of p 0 (0) = 0 (cf. [6]). 

Numerical solutions of Eqs. (2.7) and (2.8) were extensively discussed by CURRIE 

eta/. [3, 4]. It has been proved, among other things, that only two roots of Eq. (2.8) are 
admissible; these are 

(2.9) n1 = 0.9126, n2 = 3.5437- i2.2303. 

The real root n 1 describes quasi-elastic waves, also occurring in purely elastic and elastic­
like media, while the complex root n2 characterizes new viscoelastic waves. Such visco­
elastic waves may be observed in incompressible fluids if tan~ > 0.159, where ~ denotes 
the frequency-dependent loss angle (cf. [4]). It is worth noting that the speeds of propaga­
tion corresponding to the roots n1 and n2 are less and greater than C2 , respectively. 

http://rcin.org.pl



R EMARKS ON RAYLEIGH-TYPE WAVES IN VISCOELASTIC INCOMPRESSIBLE FLUIDS 493 

For homogeneous compressible fluids with rigid outer surfaces, the relevant boundary 

conditions (u = w = 0) lead to the secular equation (cf. [6]) 

(2.10) #2 +Yt .,2 = 0 (n = I +{} {} ) ' 

where n and {} has been defined by Eqs. (2.6). After passing to a limit for incompressible 
fluids ({} . ~ 0), we obtain 

(2.11) 

Thus the Rayleight-type waves have an infinite speed of propagation along the x-axis, 

without any damping effects in that direction. Since 

(2.12) 

where 

(2.13) 

2 

d = - ~i cos2<52(1-itand2), 

ImGi 
tand2 = ReGi , 

the waves also propagate (with a finite speed) in the z:-direction, being simultaneously 

damped if only tan 152 =I= 0. 

3. Rayleigh waves in two-layer incompressible fluids 

We shall briefly discuss certain cases of two-layer incompressible fluids in which thin 

layers of thickness h are superposed on bulk fluids contained in the lower half-space z ~ 0 

(cf. [6]). Apart from the boundary conditions at the outer surface of a fluid (T13 = T 33 = 0 

or u = w = 0), the boundary conditions at the . interface between two immiscible fluids 

should be taken into account. If the layers can slide freely at the interface, we have 

(3.1) 

where the overbars refer to the lower fluid. If the layers fully adhere at the interface, we 

have, moreover, 

(3.2) T13 (0) = T13 (0), u(O) = u(O). 

The above conditions, after substituting from Eqs. (2.3) and taking into account the fact 

that far away from the interface the amplitudes must vanish, lead to systems of homo­

geneous linear equations. Their nontrivial solutions essentially depend on the number 

of constants available and the assumed values of p0 (h), p0 (0) and p0 (0) (cf. [6]). 

For example, in more general cases of compressible fluids with the free outer surfaces 

and the layers sliding freely at the interface, we obtained four equations involving eight 

quantities to be determined. If the waves are only transmitted from the upper fluid to the 

lower one, the number of constants can be reduced (cf. [6]) and the secular equation is 

expressed in the form 

(3.3) 
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where the overbars refer to the lower fluid. Therefore, two types of waves are possible 

for incompressible fluids: the waves described by Eq. (2.8) may appear in the upper layer, 

and those for which · 

(3.4) - 41? 0 
n=--~-

40-1 

in the lower one. They do not propagate at all along the x-axis; the damping is full in that 

direction. 
Similarly, for compressible fluids with the rigid outer surfaces and the layers sliding 

freely at the interface, we obtain, instead of Eq. (3.3), 

(3;5) (~t2 -P1 v2)(2:V1 v2 - (v~- ,r)) = 0. 

Therefore two types of waves are possible for incompressible fluids: waves with infinite 

speeds ~f propagation along the x-axis in the upper ·layer, described by Eq. (2.11 ), and 

those described by Eq. (3.4) in the lower fluid. 
Now let us consider the case of waves fully reflected in the upper layer. If the outer 

surface is free, we arrive at the secular equation ( cf. [6]) 

(3.6) ( 4,u2v1 v2 +(vi- ,u2)2) (2v1 v2 +(vi- ,u2)) = 0. 

Therefore two types of waves are possible for incompressible fluids: the waves described 

by Eq. (2.8) and those for which 

41? 
~ o- or JJ

2 -+ 00 ,· n = -4---=n=---- 1 (""' (3.7) 

both waves occur only in the upper layer. If the outer surface is rigid, we obtain 

(3.8) Gu2 -vt v2) (2v1 v2 - (vi- ft2
)) = 0. 

Therefore two types of waves are possible for incompressible fluids: waves with infinite 

speeds of propagation along the x-axis, described by Eq. (2.11), and those described 

by Eq. (3.7); both waves occur only in the upper layer. Since there are no waves in the 

lower bulk fluids, the upper layers act as waveguides for Rayleigh waves of the types 

considered. Of course, the case of full reflection at the interface between two incompressible 

fluids requires that 

Ci 1 +tan2 "32 

C22 > 
1 +tan ~2 tan ~ 2 

(3.9) 

where the overbars refer to the lower bulk fluid. 

The above analysis shows that for incompressible two-layer fluids sliding freely at 

the interface, the Rayleigh waves of finite or infinite speeds of propagation may appear 

only in the upper layers of fluids if any disturbances arising in these layers either are trans­

mitted to the lower bulk fluids without reflection or are fully reflected at the interface. 

This conclusion is opposed to that drawn in the cases of two-layer compressible fluids 

for which the Rayleigh waves with finite speeds of propagation could occur in the lower 

bulk fluids (cf. [6]). 
For further illustration we also consider the case of two-layer incompressible fluids 

with free outer surfaces and the layers fully adhering at the interface. We additionally 
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assume that only shear waves can propagate in the upper layer. The system of equations 
resulting from the relevant boundary conditions (six in number) can be satisfied if (cf. 
[6]) 

(3.10) 

Thus the waves considered always propagate along the x-axis. The damping conditions 
in the z-direction require that 

(3.11) 

This means that the dilatational waves (iif = - p,2
) _ are always d~mped, while any damping 

of shear waves in the lower fluid is determined by the inequality (3.11h. If, moreover, 

(3.12) 

for certain discrete values of frequency, the damping of shear waves is full, i.e. there is 
no propagation in the z-direction. 

In a similar way, other more complex cases of two-layer or multi-layer incompressible 
fluids can be analysed. The question still remains as to experimental evidence for Ray­
leigh waves in real, practically incompressible fluids. 

Appendix 

It seems that the form of Eqs. (2.1) deserves some additional comments. Starting fr~m 
the linearized constitutive equation of a viscoelastic compressible fluid, viz. 

(A.1) T = (-p+A.*trD)1+21J*D, 
1 

D = l {Vv+ (Vv)T), 

where A.*, 17* denote the frequency-dependent dynamic viscosities, and denoting 

(A.2) 

we arrive rather at 

(A.3) 

than at Eqs. (2.1). The condition (A.2h leads directly to Eq. (2.1) 1 , where for plane flows 
the vector potential 4l2 has been replaced by the scalarone f1> 2 (cf. Eq. (2.2)). If p is an 
undetermined hydrodynamic pressure such that V 2p = 0, we immediately obtain the 
remaining Eqs. (2.lh,3 , since for cqmpressible fluids V2 f1> 1 =P 0. In particular, for isochoric 
flows V2 $ 1 = 0 and Eq. (A.3h gives V2p = 0. On the other hand, if p is a barotropic 
pressure, we have either 

(A.4) 
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for isothermal or adiabatic flows, respectively. Since the equation of continuity leads to 

t 

(A.5) e = eoexp(- jv2(/>1dt) = eo(l-V2(/>1+ ... ), 
0 ' · 

where eo is a constant density at rest, we have 

(A.6) ·v2 dp V2V2.m. P =-eo- '~-"1 + 
de 

... , 

whe~e only linear terms in (/>1 have been retained. It also results from Eq~. (A.4) that 
either 

(A.7) 
dp 

eo-= Ceo de 
or dp C k k-1 C k k(l V2A- )k-1 eo de = 1 eo e = 1 eo - 't'1 ' 

respectively. Thus the linearized expressions (A.7) may be treated as quantities independent 
of time. After substituting from Eq. (A.6) into Eq. (A.3)2 , we again arrive at Eq. (2.1h 
if),*+21J* is replaced by J..*+21]*+eo/iw(dpfde). 
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