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Remarks on Rayleigh-type waves in viscoelastic incompressible fluids

S. ZAHORSKI (WARSZAWA)

THIS PAPER is a supplement to our previous considerations [6] where the surface- and interface-
type waves in viscoelastic fluids were discussed in greater detail. Now it is shown that certain
properties of viscoelastic Rayleigh-type waves in two-layer incompressible fluids essentially
differ from their counterparts for compressible fluids.

Niniejsza praca stanowi uzupehienie naszych poprzednich rozwazan [6], w ktorych szczegolowo
przedyskutowano fale typu powierzchniowego i miedzyfazowego w cieczach lepkosprezystych.
Obecnie pokazano, ze niektore wlasnosci lepkosprezystych fal typu Rayleigha w dwuwarstwo-
wych cieczach niescisliwych roznia sie istotnie od odpowiednich wiasnoéci dla cieczy Scisliwych.

Hacrosauas paGora cOCTaBisAeT LOMNOJIHEHME HAIIMX NPeOLIAYLUHX paccy)KaeHuil [6], B Ko-
TOPBIX NOAPOOHO 0OCY»KAeHbI BOJIHEI IOBEPXHOCTHOIO H Me»K(asHOrO THIIOB B BA3KOYIPYTHX
skuaroctax. Celuac NoxasaHo, UTO HEKOTOpPLIE CBOMCTBAa BSSKOYNPYIHMX BOJH Tvra Pones
B JIBYXCJIOMCTBIX HECHKMMAaeMbIX »KHIOKOCTAX OTJIMYAIOTCSA CYLIECTBEHHO OT COOTBETCTBYIOLLHMX
CBOMCTB JJIsI COKHUMaeMbIX »KHIKOCTE.

1. Introduction

THE PROPERTIES of viscoelastic Rayleigh waves in homogeneous media were discussed in
a series of papers (cf. [1-5]). In our recent contribution [6], devoted to the surface- and
interface-type waves in homogeneous and two-layer viscoelastic fluids, we intentionally
omitted the case of Rayleigh-type waves in incompressible fluids; similar waves were
discussed for more general cases of compressible fluids. In the present note, being a supple-
ment to paper [6], we briefly consider viscoelastic Rayleigh waves in two-layer incom-
pressible fluids. It is shown that many properties of such waves essentially differ from those
observed in two-layer compressible fluids.

2. Basic equations for homogeneous. fluids

In paper [6] we considered the following linearized equations (cf. Appendix):
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where p is the hydrodynamic pressure, p — the density of a fluid, A* and n* denote the
frequency-dependent dynamic second (dilatational) and shear viscosities, respectively.
For plane flows the scalar potentials @; (i = 1,2) determine the velocity components
in the form
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ob, 0D, oD, oD,

@2 u=xt 3 v=0 w=—pr——r.

We analysed certain solutions of Egs. (2.1) in the form of harmonic waves, viz.
D, = (A;e**+ Bie*®)exp(ux +iwt),
P = po(2)exp(ux +iwt),

where capital letters denote integration constants, and

2.3)

2
24 u:=—kZ, v=-ki= _(Q(C;U* +/12), i=1,2
i
are simply related to the components of waves vectors. Gf = iw(1*+2n*), G5 = ion*
denote the dynamic complex moduli. The waves considered may propagate along the
x-axis if Reu? < 0, being simultaneously damped in the z-direction if also Re»? > 0.
For incompressible fluids V2®; = 0, and Egs. (2.1) remain valid under the assumption
that A* — co. This assumption implies that also G} — oo, and V2@, = 0 gives v} = —pu2.
The same results could be rediscovered if we started directly from the constitutive equation
of an incompressible fluid.
For homogeneous compressible fluids contained in the lower half-space z < 0 (with
the z-axis directed upwards), the relevant boundary conditions at the free surface (T*3 =
= T3 = 0) lead to the following secular equation (cf. [6, 5, 3]):

@5 — 4y, = (G- ).
On denoting

wp Gz
(2.6) n=———r, #=_x
#G3 eh

we also have

.7 n?—8n?+ (24— 16$)n—16(1—9) = 0.
For incompressible fluids, for which G} — co and # — 0, we arrive at
2.8) n*—8n?+24n—16 = 0.

The same equation can be obtained on the basis of the corresponding constitutive equation
of an incompressible fluid. To this end, however, one has to substitute into the boundary
conditions at the free surface p,(0) = —iwpA; instead of py(0) = 0 (cf. [6]).

Numerical solutions of Eqs. (2.7) and (2.8) were extensively discussed by CURRIE
et al. [3, 4]. It has been proved, among other things, that only two roots of Eq. (2.8) are
admissible; these are

2.9 n, = 0.9126, n, = 3.5437—i2.2303.

The real root n, describes quasi-elastic waves, also occurring in purely elastic and elastic-
like media, while the complex root n, characterizes new viscoelastic waves. Such visco-
elastic waves may be observed in incompressible fluids if tand > 0.159, where ¢ denotes
the frequency-dependent loss angle (cf. [4]). It is worth noting that the speeds of propaga-
tion corresponding to the roots n; and n, are less and greater than C,, respectively.
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For homogeneous compressible fluids with rigid outer surfaces, the relevant boundary
conditions (# = w = 0) lead to the secular equation (cf. [6])

(2.10) urtvv, =0 (n = %’9) ;

where 7 and & has been defined by Eqgs. (2.6). After passing to a limit for incompressible
fluids (# — 0), we obtain ,
(2.11) n— +o, or wu*-0".

Thus the Rayleight-type waves have an infinite speed of propagation along the x-axis,
without any damping effects in that direction. Since

) 2
(2.12) »2 = — (c)'f cos?8,(1 —itand,),
2
where
ReG3 ImG*
2 _ 2¥M2 = Wnini
(2.13) Cs = 5 ® tand, ReGY’

the waves also propagate (with a finite speed) in the z-direction, being simultaneously
damped if only tand, # 0.

3. Rayleigh waves in two-layer incompressible fluids

We shall briefly discuss certain cases of two-layer incompressible fluids in which thin
layers of thickness /i are superposed on bulk fluids contained in the lower half-space z < 0
(cf. [6]). Apart from the boundary conditions at the outer surface of a fluid (773 = T3% = 0
or u = w = 0), the boundary conditions at the interface between two immiscible fluids
should be taken into account. If the layers can slide freely at the interface, we have

(3. T23(0) = T3©0), w(0) = w(0),

where the overbars refer to the lower fluid. If the layers fully adhere at the interface, we
have, moreover,

(3.2) T3(0) = T'3(0), u(0) = u(0).

The above conditions, after substituting from Egs. (2.3) and taking into account the fact
that far away from the interface the amplitudes must vanish, lead to systems of homo-
geneous linear equations. Their nontrivial solutions essentially depend on the number
of constants available and the assumed values of py(h), po(0) and py(0) (cf. [6]).

For example, in more general cases of compressible fluids with the free outer surfaces
and the layers sliding freely at the interface, we obtained four equations involving eight
quantities to be determined. If the waves are only transmitted from the upper fluid to the
lower one, the number of constants can be reduced (cf. [6]) and the secular equation is
expressed in the form

(3.3) (dpPv vy — (03— p?)?) (299, — (B3 —p?)) = 0,
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where the overbars refer to the lower fluid. Therefore, two types of waves are possible
for incompressible fluids: the waves described by Eq. (2.8) may appear in the upper layer,
and those for which
_ 44 B 5

34 n - -0 or u*—>
in the lower one. They do not propagate at all along the x-axis; the damping is full in that
direction.

Similarly, for compressible fluids with the rigid outer surfaces and the layers sliding
freely at the interface, we obtain, instead of Eq. (3.3),

(E3)) (12 =2,2) (29,9, — (3 —p?)) = 0.

Therefore two types of waves are possible for incompressible fluids: waves with infinite
speeds of propagation along the x-axis in the upper layer, described by Eq. (2.11), and
those described by Eq. (3.4) in the lower fluid.

Now let us consider the case of waves fully reflected in the upper layer. If the outer
surface is free, we arrive at the secular equation (cf. [6])

3.6) (4pv v+ (03— 1)) (217, + (5 —p?)) = 0.

Therefore two types of waves are possible for incompressible fluids: the waves described
by Eq. (2.8) and those for which

49
3.7 n=m—>0‘ or u?- w;
both waves occur only in the upper layer. If the outer surface is rigid, we obtain
(3.8) (1 =v173) 2n v, — (3 —p?) = 0.

Therefore two types of waves are possible for incompressible fluids: waves with infinite
speeds of propagation along the x-axis, described by Eq. (2.11), and those described
by Eq. (3.7); both waves occur only in the upper layer. Since there are no waves in the
lower bulk fluids, the upper layers act as waveguides for Rayleigh waves of the types
considered. Of course, the case of full reflection at the interface between two incompressible
fluids requires that

C? 1 28
2 S + tan 62

3.9 X
©3) C3 1+tané,tand,

where the overbars refer to the lower bulk fluid.

The above analysis shows that for incompressible two-layer fluids sliding freely at
the interface, the Rayleigh waves of finite or infinite speeds of propagation may appear
only in the upper layers of fluids if any disturbances arising in these layers either are trans-
mitted to the lower bulk fluids without reflection or are fully reflected at the interface.
This conclusion is opposed to that drawn in the cases of two-layer compressible fluids
for which the Rayleigh waves with finite speeds of propagation could occur in the lower
bulk fluids (cf. [6]).

For further illustration we also consider the case of two-layer incompressible fluids
with free outer surfaces and the layers fully adhering at the interface. We additionally
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assume that only shear waves can propagate in the upper layer. The system of equations
resulting from the relevant boundary conditions (six in number) can be satisfied if (cf.

)}

2 2 w?
(3.10) ,u =7V; = — 2—(75
Thus the waves considered always propagate along the x-axis. The damping conditions
in the z-direction require that

cos?8,(1 —itand,).

w? ) C: cos?4,
(3.1 1) T%_ Ccos 62 > 0, E%— > m ,
This means that the dilatational waves (v} = — u?) are always damped, while any damping

of shear waves in the lower fluid is determined by the inequality (3.11),. If, moreover,

C? sin24,
(3.12) i 2 Sin2d,
for certain discrete values of frequency, the damping of shear waves is full, i.e. there is
no propagation in the z-direction.
In a similar way, other more complex cases of two-layer or multi-layer incompressible
fluids can be analysed. The question still remains as to experimental evidence for Ray-
leigh waves in real, practically incompressible fluids.

Appendix

It seems that the form of Eqs. (2.1) deserves some additional comments. Starting from
the linearized constitutive equation of a viscoelastic compressible fluid, viz.

(A.1) T = (—p+A*uD)1+29*D, D = %(Vv+(Vv)T),

where 1*, n* denote the frequency-dependent dynamic viscosities, and denoting

(AZ) Y= grad(ﬁ] +1‘0t¢2 ) diVQZ = 0,
we arrive rather at
0 Vip 0 0
A. 2 (g2_ @ 9 = . r 2(y2_ Y ")\ =
a3 v (V n* at)(p’ 0, A%+ 2n* L (V A* -+ 2mp* 31) (=0

than at Egs. (2.1). The condition (A.2), leads directly to Eq. (2.1),, where for plane flows
the vector potential @, has been replaced by the scalar one @, (cf. Eq. (2.2)). If p is an
undetermined hydrodynamic pressure such that V?p = 0, we immediately obtain the
remaining Egs. (2.1),,5, since for compressible fluids V2@, # 0. In particular, for isochoric
flows V2@, = 0 and Eq. (A.3), gives V2p = 0. On the other hand, if p is a barotropic
pressure, we have either

(A4 pl@) = Co or p(o) = C, 0"
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for isothermal or adiabatic flows, respectively. Since the equation of continuity leads to

t

(A.5) o = ooexp (= [ V2@, dt) = 0o(1-V2®, + ...),
3 s

where g, is a constant density at rest, we have

(A.6) Vip = —p, %VW’-@ + ...,

where only linear terms in @, have been retained. It also results from Eqs. (A.4) that
either

d) d)

A7 e =Coo of o= Cikeod" ! = Cikeh(1-V3, ),
do do

respectively. Thus the linearized expressions (A.7) may be treated as quantities independent

of time. After substituting from Eq. (A.6) into Eq. (A.3),, we again arrive at Eq. (2.1),

if A*+2n* is replaced by A*+2n* 4+ g,/iw(dp/do).

References

1. D.R. BLAND, The thegry of linear viscoelasticity, Pergamon Press, New York 1960.

2. R. D. BORCHERDT, Rayleigh-type surface waves on a linear viscoelastic half-space, J. Acoust. Soc. Amer.,
54, 1651, 1973, 55, 13, 1974.

3. P. K. CURRIE, M. A. Haves, P. M. O’LEArY, Viscoelastic Rayleigh waves, Quart. Appl. Math., 35,
35, 1977.

4, P. K. Currig, P. M. O’LEArY, Viscoelastic Rayleigh waves, II, Quart. Appl. Math., 35, 445, 1978.

5. M. Haves, Viscoelastic plane waves, in: Wave Propagation in Viscoelastic Media, Edit. F. Mainardi,
Pitman, Boston-London-Melbourne 1982.

6. S. ZAHORSKI, Propagation and damping of surface- and interface-type waves in viscoelastic fluids, Arch.
Mech., 35, 3, 409-422, 1983.

POLISH ACADEMY OF SCIENCES
INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH.

Received January 24, 1983.





