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Vibration of a brit}ge beam due to highway traffic 

R. IW ANKJ:EWICZ and P. SNIADY (WROCLAW) 

DYNAMIC response of a beam to the passage of a train of concentrated forces with random 
amplitudes is considered. Arrivals of forces at the beam are assumed to constitute a random 
(Poisson or, more general, correlated) process of events. Thus the excitation process idealizes 
the vehicular traffic load on a bridge. Based upon the introduction of two influence functions, 
the analytical technique is developed to determine the response of the beam. The explicit express
ions for the expected value and the varia,lce of the beam deflection are provided. As an example, 
the response of the beam to the stationary Poisson stream of forces is determined and discussed 
for some practical situations. The extension of the presented approach to the case of multi-axle 
vehicles is also outlined. 

Rozwai:ane s~ drgania belki pod wplywem przejazdu serii sit skupionych o losowych amplitu
dach. Przyj~to, i:e wjazdy sil na belk~ stanowi~ losOYiY (poissonowski lub og6lniejszy - sko
relowany) proces zdarzen. Przyj~ty proces wymuszenia jest zatem modelem obci~enia mostu 
ruchern drogowym. Reakcj~ belki wyznaczono w spos6b analityczny, posluguj~c sict dwiema 
wprowadzonymi w pracy funkcjami wplywu. Wyprowadzono wzory na wartosc oczekiwan~ 
i wariancj~ ugi~ia belki. Jako przyklad zanalizowano, dla r6i:nych praktycznych sytuacji, drga
nia belki pod dzialaniem stacjonarnego poissonowskiego strumienia sit Om6wiono taki:e spo
s6b rozszerzenia przedstawionej metody rozwi~ania na przypadek pojazd6w wieloosiowych. 

PaccMaTpHBaiOTCH I<one6aHHH 6ani<H no.n; BJIHHHHeM nepeea.n;a ceplrii cocpe.n;oToqeHHbiX CHJI 

CO CJiy'IaHHbiMH aMnJIHTY.z:taMH. IlpHHHTO, liTO B"be3,ll;bl CHJI Ha 6aJII<Y COCTaBJIHIOT CJiy'IaHHbiH 
(nyaccoHOBCI<HH HJIH 6onee o6~HH-I<oppeJIHpOBaHHbiH) nponecc co6hiTHH. HTai< npHHHTb:tii 
nponecc BbiHym,n;eHHH HBJIHeTCH MO,ll;eJibiO HarpymeHHH MOCTa ,ll;OpO)J(HbiM ,ll;BH)J(eHHeM. 
Peai<nHH 6aJII<H onpe.n;eneHa aHaJIHTH'IeCI<HM o6paaoM, noCJiy)J(HBaHCb .r:tBYMH:, aae.n;eHHhiMH 
B pa6oTe, <PYHI<nHHMH BJIHHHHH. BbiBe,n;eHhi <f>opMyJibi .r:tJIH MaTeMaTH'IeCI<oro O)J(H,ll;aHHH 
H aapHaHnHH nporH6a 6aJII<H. Kai< npHMep aHaJIH3HpyiOTCH, .r:tJIH pa3HbiX npai<TH1IeCI<HX cH
TYanHH:, I<one6aHHH 6aJII<H no.n; .n;eH:CTBHeM cranHoHapHoro nyaccoHOBCI<oro noToi<a CHJI. 06-
cym.n;eH Tai<me cnoco6 pacumpeHHH npe.n;craBJieHHoro MeTo.n;a pemeHHH Ha cnyqaH: MHOrooc
HhiX TpaHcnopTHbiX cpe.n;cra. 

1. Introduction 

VmRATION'S of bridge structures produced by- travelling loads constitute one of the most 
mportant problems of structural dynamics. The problem has been investigated for many 
years and ample literature is listed, for example, in the book by FRYBA [1]. 

In most papers moving loads are J:reated as deterministic processes. Since, however, 
moving fo.rces acting on a highway bridge (wheel pressure) have random magnitudes and 
appear at random instants, the traffic loading of a bridge should be treated as a stochastic 
process. Such an approach to the problem has been applied by few authors only. FRYBA 

[I] considered the vibrations of a beam provoked by a single travelling concentrated force 
stochastically variable in time. KNOWLES [3] tackled the problem of vibrations of an 
infinitely long beam subject to a travelling concentrated force, its position on the beam 
being described by a strictly stationary process, the Gaussian stationary process and the 
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672 R. IwANKIEWicz and P. SNIADY 

Wiener process. Vibrations of a beam under the action of travelling continuous loads were 
investigated by RoBSON' [4], BOLOTIN [5] and FRYBA [1]. 

A fundamental contribution to the problem of vibration of bridge beams due to ran
dom travelling loads was made by TUN'G [6, 7, 8]. The author assumes each vehicle to be 
represented by a single concentrated force, the vehicles move at equal and constant vel
ocities, have the same weight and appear on the bridge at random instants. The traffic 
is thus modelled in this case by a random stream of concentrated forces of equal ampli
tudes. Application of numerical techniques makes it possible to determine the one-di
mensional probability density function of response of the system and the expected rate 
of threshold crossings. However, in the papers mentioned above, only random streams 
of independent arrivals are considered. 

The present paper deals with beam vibrations due to the passage of a random series 
of concentrated forces having random amplitudes. Variability of the forces in time may 
be described by a certain nonrandom function. The time intervals between the instants 
of arrivals of the individual forces are treated as random variables (generally correlated). 
The series of forces constitutes a model of a random stream of vehicles of random weights 
which move at constant velocities; it represents a simplified model of loading of a bridge 
by traffic, the effects of inertia of the vertical motion of the vehicles being disregarded. The 
beam response is determined analytically. The formulae for the expected value and vari
ance of the beam deflection are given; the possibility of extending the solution to the 
case of multi-axle vehicles is also discussed. The resU:lts presented may be useful in the 
analysis of dynamics of highway bridges and in estimating the reliability of civil engin
eering structures. 

2. Formulation and general solution of the problem 

Let us consider damped vibrations of a beam of length I produced by a series of forces 
moving in the same direction at a constant velocity v (Fig. 1). Assume that the forces 
arrive at the beam at random instants tk and form the stream of force arrivals; the 
stream is assumed to be inhomogeneous and of intensity A.(t). 

~ AkS(t-tkl 

,lrrmrk 1 C)vrb/11}4;, 
~----v( t-tkl ~ l EJ m c -~· 

Fm.l. 

Let N(ti, ti) and dN(t) denote the number of force arrivals in the time intervals (ti, t1) 

and (t, t + dt), respectively, and the symbols P {} and E[] denote the probability and the 
expected value of the magnitude in brackets. 

Let us assume the probability of appearing of a force in an infinitesimal time interval 
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VIBRATION OF A BRIDGE BEAM DUE TO ffiGHWAY TRAFFIC 673 

dt to be proportional to dt, and the probability of appearing of a larger number of forces 
to be negligibly small as a higher order vanishing value, so that 

(2.1) 

(2.2) 

(2.3) 

P {dN(t) = 1} = ).(t)dt+o(dt), 

P {dN(t) > 1} = o(dt), 

P {dN(t) = 0} = 1- ).(t)dt+o(dt), 

whence the relations follow: 

(2.4) 

(2.5) 

E[dN(t)] = ).(t)dt+o(dt), 

E[dN2(t)] = ).(t)dt+ o(dt). 

Correlation between two arrival instants t 1 and t2 is described by the product density 
function of second degree cp(t1 , t2) (cf. SRINIVASAN [9]) defined as 

(2.6) E[dN(tt)~lf)t2)] = cp(tt, t2)dtt dt2 

or, equivalently, by the second-order correlation function 

(2.7) 

In the case of independent arrivals (uncorrelated), f(t 1 , t2 ) = 0, the stream is a 
nonhomogeneous Poisson stream and the probability of appearing of n forces within the 
time interval (ti, ti) is given by the formula 

(2.8) 
A_n(t t) 

P{N(t · t) = n} = --1
-'-1- e-A<1t· 1J) 

~' J I ' n. 
where 

tj 

A(tb t1) = J ).( r)dr. 
II 

In such a case the average number of forces acting on the beam at an arbitrary time 
t > I jv equals 

(2.9) E[N(t- ~ , t)] = ./ ).(r)dr. 
t-lfv 

In the case of the stationary Poisson process of arrivals, i.e. when ).(t) = ). = const, 
we obtain 

(2.10) 

It is evident that the mean number of forces acting on the beam is in this case inversely 
proportional to their velocity. 

Let the damped vibration of a beam with bending rigidity EI, mass density m and damp
ing coefficient c be described by the equation 

(2.11) Elw1v(x, t)+cw(x, t)+mw(x, t) = 2; AkS(t-tk)<5[x-v(t-tk)] 

keN(t- ~.t) 
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and by the corresponding initial conditions at instant t -11v; here c5 is Dirac's delta, 

w(x' t) - deflection of the beam, ( . ) = 0 I ot, ( )1v = o4 I ox4
• Amplitudes Ak are inde

pendent random variables of identical probabilistic characteristics independent of the 

times of arrivals tk; assume the values E[Ak] = E[A] = const and E[An = E[A 2
] = 

= const to be known. The deterministic function S(t- tk) describes the time-dependence 

of the force. · 
The state of displacement of the beam acted on by a series of travelling forces is the 

sum of the displacements produced by individual forces. At an arbitrary instant t > 11v 

the beam performs the vibrations provoked by the forces which are actually present on 

the beam (their times of arrivals tk E (t-11v, t), and free vibrations provoked by forces 

which have already left the beam (i.e. tk E (0, t-11v). It is advantageous to introduce two 

influence functions H 1(x, t-tk) and H 2 (x, t-tk-11v), the first of which represents the 
beam deflection at timet produced by force S(t-tk) present on the beam (tk E (t-11v, 

t)), and the second one describes the free vibration due to the force which has already 
left the beam (tk E (0, t-11v)). The functions satisfy the equations 

(2.12) EIHiv(x, t-tk)+cH1 (x, t-tk)+mH1 (x, t-tk) = S(t-tk)b[x-v(t-tk)], 

(2.13) Elmv(x, t-t,- ~) +cii2 (x, t-t,- ~) +mii2 (x, t-t,- ~) = 0, 

together with the corresponding boundary and initial conditions (for t = tk and t = 
=tk+11v) 

(2.14) H 1 (x, 0) = 0, H1 (x, 0) = 0, 

(2.15) H2(x,O) = H,(x, ~ ). Ii2 (x,O) = Ji,(x.~). 
Deflection of the beam w(x, t) at an arbitrary time t > 11v is the sum of two effects, 

i.e. of forced and free vibrations, 

(2.16) w(x, t) = w1 (x, t)+w2 (x, t) = 2 AkH1 (x, t-tk) 

keN{t- ~.t) 

This formula may also be written in an integral form (Stieltjes integral of the N(t) process) 
as 

t t-1/v 

(2.17) w(x, t) = w1 (x, t)+w2 (x, t) = J A(r)H1 (x, t-r)dN(r)+ J A(r) 
t-1/v 0 

xH2 (x, 1-T- ~ )dN(;). 

Equation (2.17) will be used to determine the expected value and the variance of the 
deflection of the beam. 
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VIBRATION OF A BRIDGE BEAM DUE TO HIGHWAY TRAFFIC 675 

Performing the expected value operation on the formula (2.17) and taking into account 

Eq. (2.4), we obtain 
t 

(2.18) E[w(x, t)] = E[,w1]+E[w2] = E[A] J H1(x, t- r)l(r)dr 
t-/fv 

t-/fv 

+E(AJf H2((x,t-T- :)).(T)d:. 
0 

The formula for the variance of the deflection 

(2.19) a;(x, t) = E[w2(x, t)]-E2[w(x, t)] 

is derived on the basis of Eq. (2.17) and Eqs. (2.5)-(2. 7) to yield 
t t-/fv 

(2.20) a;(x, t) = E[A 2
] J Hf(x, t- r)l(r)dr+E[A 2] J Hi(x, t- r-1/v)A.(r)dr 
t-/j v 0 · 

I I 

+E2[A] J J H1(x, t-rt)Ht(x, t-r2)f(r1 , r2)dr1 dr2 
t - /fv t-/fv 

t 1-lj v 

+2E2 [A] J J Ht(x,t-r1)H2(x,t-r2-/jv)f(r1 ,r2)dr1dr2 

t-lfv 0 

t-1/v t-lfv 

+E2[A] J J H2(x, t-rl-/jv)H2(x, t-r2-l/v)f(r1, r 2)dr1 dr2 • 

0 0 

In the particular case of an uncorrelated stream of arrivals (i.e. f( r 1 , r 2 ) = 0), Eq. (2.20) 

is reduced to the form 
I 

(2.21) a;(x, t) = a;,,+O';:z = E[A 2
] J Hf(x, t-r)l(r)dr 
1-lfv 

1-lfv 

+E[A 2
] J Hi(x, t-r-1/v)l(r)dr. 

0 

Let us expand the influence functions H 1 (x, t-tk) and H 2 (x, t-tk-1/v) into the series 

of eigenfunctions Wn(x) 
Cl) 

(2.22) Ht(x, t-tk) =}; qn(t-tk)Wn(x), 
n=l 

Cl) 

(2.23) Hix, t-tk-1/v) = };fn(t-tk-1/v) Wn(X). 
n=l 

Substitution of expresions (2.22) and (2.23) into the respective formulae (2.12) and (2.13) 

and application of the orthogonality properties of eigenfunctions yields 

(2.24) fin(t- tk) + 2a)Jn(t- tk) +w; qn(t- tk) = 4 S(t- tk) Wn [v(t- tk)], 
'Yn 

(2.25) j~(t-tk-l/v)+2a./,.(t-tk-lfv)+w;fn(t-tk-l/v) = 0, 
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1 

where 2oc = cjm, y~ = J mWi(x)dx, and wn is the free vibration frequency. From Eqs. 
0 

(2.24) and (2.25) we obtain 

(2.26) 

t 

qn(t- tk) = ~ f hn(t- r) S( r- tk) Wn [v( r- tk)] dr. 
Yn 

1 k 

tk+lfv 

(2.27) J,.(t-tk-1/v) = ~ J hn(t- r)S(r-tk) Wn[v(r-tk)]dr, 
Yn 1" 

Here hn(t- r) denotes the .impulse response function 

(2.28) 

where .Q; = w;- oc2
• 

Using the eigenfunction expansions (2.22) and (2.23), the formulae (2.18) and (2.20) 
are written in the form 

00 

(2.29) E[w(x, t)] = E[w1]+E[w2 ] = E[A] 2; [qn(t)+fn(t)] Wn(x), 
n=l 

where 
t 

qn(t) = J qn(t-r):A.(r)dr, 

(2.30) 
t-/fv 

1 -/f v 

l,.(t) = r J,.(t- r-1/v):A.(r)dr 
0 

and 
00 00 

(2.31) a~(x, t) = 2; 2; [covq 1q/t)+cov1,~/t)+covqd/t)] Wt(x) Wix). 
i=l j=l 

Here 
t 

COVq
1
q/t) = £[A2} f qi(t- ·c)qit- r)A(r)dr 

t-1/v 

t t 

+E2 [A] J J qi(t-r1)q1(t-r2)/(r1,r2)dr,dr2, 
t-/fv t-ltv 

t-/fv 

(2.32) cov1,~/t) = E[A 2] J ft(t- r"--1/v)jj(t- r~lfv):A.(r)dr 
0 

t-1/v t-/fv 

+ E 2[A] J J i(t- r1 -1/v)jj(t- r 2 -lfv)f(r1 , r 2)dr1 dr2, 
0 0 

t t -ltv 

COVq1f/t) = E 2[A] J J qi(t-rJjj(t-r2-lfv)f(r1 , r 2)dr1 dr2• 
t-1/v 0 
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VIBRATION OF A BRIDGE BEAM DUE TO HIGHWAY TRAFFIC 671 

When the stream of forces is uncorrelated (f(t1 , t2 ) = 0), Eq. (2.31) is reduced to the 
form 

(2.33) 
00 00 

O"!(x, t) = 0';,, +0';,
2 

= }; }; COVq1q/t) Wt(x) WAx) 
i= 1 )= 1 

00 00 

+ }; l, covfd/t) Wt(x) WAx). 
i= 1 j= 1 

Here the expressions covq1q/t) and cov1111(t) are expressed solely in terms of single inte
grals given in Eq. (2.32). 

3. Simply supported beam under stationary Poisson force stream 

On the basis of the general solution given in Sect. 2, let us determine the probabilistic 
characteristics of vibrations of a simply supported beam subject to .a series of constant 
forces ( S(t- tk) = 1) under the assumption that the stream of arrivals is uncorrelated 
and stationary, i.e. /(t1 , t2 ) = 0 and A(t) = A = const. Hence Wn(x) = sinnnxfl, and 
the generalized (normal) coordinates qn(t- tk) and f,.(tk- t-1/v) are derived from the 
formulae (2.26) and (2.27), 

(3.1) qn(t-tk) = ml~n [alnsinfJn(t-tk)+a 2ncosfJn(t-tk) 

+ a3ne-a.<t-tk>sin.Qn(t- tk)- a2ne-a..<t-tt>cos.Qn(t- tk)], 

(3.2) 

+b2.cosD.(t-t.- ~· )] . 
Here 

R = nnv 
Pn / ' 

Mn = (w;- p;) 2 +4cx2p; ; 

(3.3) a1n = w;- p;, a 2n = - 2cxfJm 

aJn = ~n [2cx2
- (w;- p;)], 

n 
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Substitution of Eqs. (3.1) and (3.2) into Eq. (2.30) yields 

(3.5) 

Here D 1 and D 2 are integrals g_iven in the Appendix. 
The mutual covariance functions of generalized coordinates appearing in Eqs. (2.32) 

assume the form 

( 6) ( z ( ) 4,1 J 1 I 2 Q 2 Q 3. COVq 11q11 t) = C1q 11 t = (m/)2~ 12-vMn+a3nl3(2a, n)+a2nh(2a, n) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

- a2na3nl1 (a, 2Qn) + 2a1na3nls(1X , fln, Qn)- 2atna2nl6(a, fln, Qn) 

+ 2a2,a3,I6(1X, fl., !J,)- 2a~,I, (IX, fl., !J,)}, 

4,1 
COVq

1
q1 = 2 {a1ia31ls(a, {Jb fJ1)-aua21 i6(a, flt, fJ1) 

(ml) M 1M 1 

+ a2ta31 fu(a, Qb fl t)- a21 a21 /1(a, {J" QJ) +a3tauls(a, {J" fJJ) 

+a3ta2Jh(a, Qt, {J1)+a3ta3Jls(2a, Qt, QJ) 

-a3ta2116(2a, Qb fJ1)-a2ta1J/6(a, [:J1, fJ,) 

-a21 a21 l1(a, Qb {11)-a2ta31 h(2a, Q1, fJ1)+a21 a21 11(2a, Q" Q1)}, 

cov1"1"(t) = a}"(t) = (ml~~ M; {binD3 (2a, Qn) 

+2btnb2nD4(2a, Qn)+b~nDs(2a, Qn)}, 

4,1 
covftf1(t) = (mlYMtMJ {bubl}D6 (2a, Qb Q1)+b1ib21D1(2a, fJ1, Q1) 

+b11 b2tD1(2a, Q1, fJ1)+b2tb21Da(2a, Q" QJ)}, 

COVqtf/t) = 0, 

where Dk and Ik are expressed in terms of the integrals given in the Appendix. 
The solutions derived indicate that the expected value and the variance of the deflec

tion w1(x, t) are time-independent. As far as the function w2 (x, t) is concerned, it proves 
to be sufficient to know its asymptotic behaviour for t-+ oo, what takes place in the 
case when the effect of the transient process (initial perturbation) becomes negligible at 
the time of observation. From Eqs. (3.5), (3.8) and (3.9) for t-+ oo, it follows that 

(3.11) E[w2(x, oo)] = 2,1E[A] 
ml 

co 
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VIBRATION OF A BRIDGE BEAM DUE TO HIGHWAY TRAFFIC 67C) 

(3.12) . 
). 

o"}"(oo) = (mf)2Mffwi [bi,.D;+2btnb2ncx!Jn+b~n(2cx2 +D;)], 

(3.13) 
4). { cxQtQJ 

COY f tf/ 00) = b 1t b 1J --::-:------=------:--::::-n----=n::::-:-=-=-...,..::...-.,:-----:--=----=-:~ 
(m/)2 Mt M1 [4cx 2 + (~~ t- ~~1) 2] [4cx 2 + (Qt + Q1) 2] 

1 [ Qi-Qj Qt+Qj ] 
+2bub2J 4cx2+(Qt-QJ)2 - 4cx2+(Dt+QJ)2 _ 

1 [ D1-Qt Qt- +D1 ] 

+2b2tbu 4cx2+(Qt-Q1) 2 - 4cx 2+(Dt+D1) 2 

+ b21 b2) [ 4oc2 + (~.- .Qj)2 + 4oc2 + (~. + .Qj)2 n . 
In order to perform the quantitative analysis, a numerical example has been prepared by 
assuming that ), = 0.5 s-1, what corresponds to the traffic capacity of 1800 vehiclesjhourl> 
a = O.Olw 1 , w 1 = 10 s- 1

• The solution is found for the first eigen(unction W1 (x) = 
= sinnx//. The dimensionless magnitudes are evaluated: E[w]mlwi/E[A], a;,m2 f2wt/ 
/E[A2

] and awE[A]/E[w] V E[A2
] which correspond to the expected value E[w], variance a!

and the variability coefficient aw/E[w] of deflection of the beam. The results are shown 
in Fig. 2,3 and 4 as functions of the travel velocity. The dashed line denotes the solution 
for w1 , and the thin solid line- for w = w1 + w2 • It is easily · seen (Fig. 2) that the 
average deflection decreases with increasing force travel velocity in spite of the fact that, 
as it is known, response of the beam to a single passage of a travelling force increases with 
increasing travel velocity. This is only an apparent contradiction since, in the case of 
a random series of forces, the average number of forces acting on the beam (mean load} 
decreases with the velocity, see Eq. (2.10). 

2 
E[w ]mlw,/E[A] 

2 

40 60 80 100 120 

FIG. 2. 

The effect of free vibrations, that is the difference E[w2 ] = E[w1 +w2]-E[wtl, is. 
negligibly small for velocities less than 130 km/h. E[w2] assumes negative values, what 
follows form the fact that at the instant when the force leaves the beam, the process of 
exponentially decaying free vibrations begins (starting from the negative value of deflec
tion). The variance of the function w1 (Fig. 3) decreases with the velocity. Contribution 
of the component w2 in the total deflection variance cannot be disregarded, in particular 
when the velocity exceeds 120 km/h. Both the variance and the variability coefficient 
(Fig. 4) increase rapidly starting with the velocity 120 km/h. 
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FIG. 3. 

~E [A}IE[wJ(EfA'T 

---
V[km/h) 

40 60 80 100 120 160 200 240 

FIG. 4. 

FIG. 5. 

The assumption that the average arrival rate of forces A. is independent of the 
travel velocity is not accurate if the moving forces are asumed to model the traffic loads. 
In traffic engineering [10] it is known that the mean velocity of travel depends on the mean 
.arrival rate. This relation is illustrated by Fig. 5. 

The dimensionless magnitudes corresponding to E[w], a! and aw/E[w] are found by 
means of the relation 

{3.14) 
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Am being the maximum mean arrival rate, and Vm -the maximum velocity; they are shown 
by heavy solid lines in Figs. 2, 3 and 4. It has been assumed that Am = 0.5 s- 1 and 
Vm = 240 km/h. 

In Figs. 6.7 and 8 the dimensionless quantities E[w], a! and O'w/E[w] are plotted against 
the mean arrival rate A; dotted lines refer to the solution for w1 , solid lines -to the 
solution for w = w1 + w2 • In this case the analysis is confined to the range of velocities 
represented by the portion BC of the diagram in Fig. 5, and so the velocity is expressed 
by 'the formula 

(3.15) v(A) ~ ~ vm( I+ V 1- ;J 
E [W]mlw~ /E[ A] 

1.0 

0 

0.6 

0,4 

0,2 

0,1 0.2 0.3 0,4 0,5 .l 5-1) 

FIG. 6. 

6~m2l 2 w~ /E [tf] 

3,0 

2,5 

2 

1,5 

1 -- --
0,5 

0,1 0,2 0,3 0,4 0,5 .l[s-1] 

FIG. 7. 

6w .£..1Al 
E [W]VElAfJ' 

12 

10 

8 

6 
...... ....... 

4 ...... ....... ____ 

2 

0,1 02 0.3 0,4 0,5 [s-1] 

FIG. 8. 

9 Arch. Mech. Stos. 5-6/83 

http://rcin.org.pl



682 R. lwANKIEWICZ and P. SNJADY 

Here the values ·vm = 160 km/h and Am= 0.5 s- 1 have been assumed. The observation 
is confirmed that the contribution of w2 to the expected value is small, contrary to the 
case of the variance and response variability coefficient where the contribution is consider
able. 

4. Discussion 

The solutions and results presented here may be utilized in the analysis of vibrations 
of bridges induced by traffic. It follows from the irtvestigations on the traffic [11, 12] 
that the Poisson process describes fairly well the motion of vehicles in the range of small 
and moderate arrival rate and traffic density. In such a case the relation between the mean 
velocity and arrival rate is illustrated by the curve BC in Fig. 5. In the case when the traffic 
arrival rate or the density are small (curve AC), the stream of vehicles should be treated as 
correlated. In [13] the effect of correlation of the excitation process on the system response 
is analysed in the case of loading by a random series of impulses. It may be expected that 
the effect of correlation for a moving series of forces has a similar character. Assumption 
of nonstationarity in the arrival process makes it possible to account for the periodic 
changes in the traffic density occuring during the day and night or following from the 
light signalling. 

The solution obtained under the asumption that each vehicle is represented by a single 
concentrated force may be extended to the case of multi-axle vehicles represented by sev
eral forces. The influence functions H 1 and H 2 must then be modified. Let us illustrate 
this on the example of a biaxle vehicle represented by two concentrated forces of random 
amplitudes Ab Bk and distance Ll between them. The influence H 1 (x, t), H 2 (x, t) have 
the form 

(4.1) 

where the functions Ht and Ht* satisfy Eq. (2.12), while the functions Hi and Hi- Eq. 
(2.13) (with suitably shifted arguments). 

By analogy with Eq. (2.17) we obtain 
.d 

t t--v 
(4.2) w(x, 1) = J A(o)H:<x, t~ o)dN(-r)+ J B(o)Hl'*(x, t~o~ ~ )dN(o) 

t- }_ ,_l+.d 
v v 

1_.!_ 1_l+LI 

+ f A(o)HJ(x, t~o~ ~ )dN(o)+ { B(o)H;*(x, t~o~ l~LI )dN(o). 
0 0 

The expected value and variance of the random function w(x, t) defined by this formula are 
obtained similarly to Eqs. (2.18) and (2.20). 
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Deflection of the beam w(x, t) given by Eq. (2.I6) is, in the case of a Poisson process, 

the sum of independent random variables of identical distributions: In such case it may 
be shown, in similar manner like in the case of a series of impulses [I4, I5], that when 

the arrival rate tends to infinity (A. --+ oo) and the amplitudes fulfil the relations 

(\ E[Ak] = const, the distribution of the function of deflection w(x, t) tends to normal 
k>l 

distribution with the expected value mw = E[w] and the variance a~. 

Appendix 

9* 

I b 

J e-a(t-T)sinb(t- r)dr = ---::---:-
asinb__!_ +hcosb__!_ 1 

V V -a -

l a2 +b2 
- ---=----:-:=----- - e v 

a2+b2 
t- -

v 

t bsinb__!_ -acosb __!_ 1 

~ e-a(t-T>cosb(t- r)dr = a2 :b2 + --- : -=-2-+-=b--=-2 _ _ v_ e -a-v 
t-

v 

I f 

I - a _!_ [ I I ( b I 2b . 2b I ) ] -Te v a+ a2+b2 -acos2 v + sm v , 

I -a _!_ r I I ( I 2b . 2b I )] + - e v - - +--- -acos2b- + sm - , 
2 a a2 +4b2 v v 

fs(a, b, C) = r e-a(t-T)Sinb(f- T)Sinc(f- T)dT 
v l 

t- -
v 

I I 2abc 
= -

2 
Iia, b-e)- -

2 
12(a, h+c) = 

[a 2 + (b- c)2
] [a 2 + (b + c)2

] 

I e -a~ [ I . I ] 
+T a2+(b-c)2 -acos(b-c)v+(h-c)sm(b-c)v 

l 

-2 a2 ;~;:c)2 [ -acos(b+c) ~ +(b+c)sin(b+c) ~ ]. 
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t 

/ 6(a, b, c) = J e-a<t-T>sinb(t- r)cosc(t- r)dr 
l 

t- -
v 

1 e-a~ [ I I] - - asin(b-c)- +(b-c)cos(b-c)-
2 a2 +(b-c)2

. v v 

1 e -a~ [ . I . I ] 
-T a 2 +(b+c) 2 asm(b+c)v +(b+c)cos(b+c)v , 

t 

/ 7 (a, b, c) = J e-a(t-T>cosb(t- r)cosc(t- r)dr 
l 

t--
v 

1 e -a~ [ I I] +- -acos(b-c) - + (b-c)sin(b-c) -
2 a2 +(b-c)2 v v 

I 

1 e -av [ ' I 11 +2 a2 +(b+c)2 -acos(b+c)v +(b+c)sin(b+c)v , 

l 
t- 

v ( f -a(t-T- _!__) ( I ) D 1 a, b)= e v sinh t-r- v dr 
0 

b 
asinb(t- vi ) +bcosb(t- vi) 

e-a(t- ~) 
- -- ' 

l 
t- 

v ( f -a(t-T- _!__) ( I ) D2 a, b)= e v cosh t- T-v dr 
0 

1 -a(t- _!__) ~1 1 [ ( I ) ( I )] l --e v -+ · -acos2b t- - +2bsin2b t- - , 2 a a2 + 4b2 v v , 
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l 

-a t-r-- I I t-v l ( ) ( ) 
D4 (a, b)= J e ( v)sinb t-T-v cosb t- T-v d-r 

0 

l 

D
5
(a, b) = tJ- v·. e -a(t-r- ~) cos2b(t- T- vi ) d-r = a

2 
+ 2b

2 

a(a2 +4b2
) 

0 

l 

D6 (a, b, c) = T' e -a(t-'- ~)s!n+-T- ~}sin+- -r- ~)d..-
o 

l 

D1 (a, b, c) = T' e -a(t-'- ~)sin+- T- ~)cos+-T- ~)d..-
o 

l 

tj-.v -a(t-r-I) ( I) ( I) 
D8(a, b, c)= e v cosb t-T-v cosc t-T-v d-r 

0 
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