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Surface waves in elastic Hadamard material

K. SAXTON (WARSZAWA)

IN THE PRESENT paper we study the existence and properties of Rayleigh waves propagating
in homogeneous isotropic Hadamard materials. An infinitesimal deformation is superposed
on finite homogeneous static deformation. The constitutive functions must satisfy some restric-
tions, first of all because we demand that acceleration waves may propagate through the medium.
It is shown that for some situations there exists no Rayleigh type wave, and this result is in
accordance with the conditions under which the surface becomes unstable. Finally, we discuss
two different models of Hadamard material in order to show how the initial deformation and
material constants have an effect on the propagation of Rayleigh wave. This knowledge could
be useful in determining the forms of the strain energy function.

Praca poéwiecona jest analizie fal Rayleigha propagujacych si¢ w izotropowym materiale spre-
zystym typu Hadamarda. Na statyczne, jednorodne i skonczone deformacje polprzestrzeni
zostaly nalozone odksztalcenia nieskoriczenie male. Wyprowadzono warunki ograniczajace na
funkcje konstytutywne wynikajace z zadania aby w polprzestrzeni propagowaly sig¢ fale przy-
spieszenia. Udowodniono, ze istnienie fali Rayleigha zalezy od funkcji materialowych iod
wstepnych duzych deformacji. Nieistnienie fali Rayleigha jest rtownowazne utracie statecznosci
potprzestrzeni. Dla dwoch modeli materiatu typu Hadamarda wyprowadzono warunki istnienia
fali Rayleigha. Warunki te moga byé pomocne przy okreslaniu funkcji energii.

PaboTa mocBsAlleHa aHANN3Y PEJIeeBCKHX BOJIH, PACIPOCTPAHAIOUMXCA B H30TPOIHOM YHIpY-
rom matepuaie TMna Amamapa. Ha craTHueckue, OJHOpPOIHbIE H KOHEUHbIE AeOPMALMH TMO-
JIYNIPOCTPaHCTBA HAaJIOYKEHBb]l DeCKOHeYHO Manble Aedopmanuu. BriBefeHbI OrpaHHYMBAIOLINE
YCJIOBHA IS ONpeesAlommX GyHKuMi, BbITeKaolme 13 TpeGoBaHuA, YTo0bl B IOJIYNPOCT-
DAHCTBe paclpOCTPaHsJINCh BOJHBI ycKopenusi. [[0Ka3aHO, YTO CYIIECTBOBAHHE PeleeBCKOM
BOJIHBL SaBHMCHT OT MaTepHAJIbHBIX (PYHKLMIA ¥ OT TpefBAPHTENBHBIX GONBLINX e(opMaliyii.
HecymecrBoBaHye pesieeBCKOH BOJIHBI SKBHBAJIEHTHO TOTEPH YCTOHUMBOCTH MOJIYIPOCTPaH-
crBa. I OBYX Mopeneill marepuana Tema AfamMapa BBIBEICHbI YCJIOBHA CYIIECTBOBaHMA
PEJICeBCKON BOIHBI, DTH YCIIOBUS MOTYT GbITh MOJE3HbIMH IIPH ONpEesieHHH QYHKIMH JHEp-
THH.

1. Introduction

IN THE PRESENT paper we study the existence and properties of Rayleigh waves propaga-
ting in homogeneous isotropic Hadamard materials. As a basis we use the results obtained
by HAYEs, RivLIN [2] for isotropic hyperelastic materials in cases when an infinitesimal
deformation is superposed on finite homogeneous static deformation. The governing sys-
tem of equations is linear. The coefficients depend on material properties and on the
amount of the initial deformation. These coefficients must satisfy some restrictions, first
of all because we demand that acceleration waves may propagate through the medium
and secondly from the vanishing of the traction on the plane bounding surface.

The next step is to examine whenever Rayleigh waves can propagate. If the initial
deformation is suitable, we show that for an arbitrary Hadamard material there is only
one Rayleigh wave and it is a retrograde. For some values of the initial deformation and
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of the material constants it is shown that there exists no Rayleigh type wave propagating
parallel to the free surface of the body and with its amplitude decreasing with distance
from the surface. This result is an accordance with the conditions obtained by USMANI,
BeATTY [4] under which the surface becomes unstable.

Finally we discuss two different models of Hadamard material in order to show how
the initial deformation and material constants have an effect on the propagation of the
Rayleigh wave. This knowledge could be useful in determining the forms of the strain
energy function for Hadamard material.

2. The system of equations

First we investigate the full system of equations of motion for an isotropic hyperelas-
tic half-space occupying the region X, > 0. We assume that motion depends only on
(X,,X,,t) and we have a decomposition:

2.1 X = X, +eu;.

It means that we can write the deformation Fj; = 0x;/0X, as

(2.2) FTIL = F+eu,L.
Let us assume that the initial deformation is static and pure homogeneous:
4,0 0
F=1|0 4, 0
0 0 4

The Cauchy stress tensor o;; associated with the doformation (2.3) is given by
g =0 (a # ),

.4 8 (o # f)
O = 212 {22 W, + 2Z2(1—2) W, +11IW, },

where
I=2+A2+23, I=23A3+2323+412;, QI = A}i343,
W, = oWw/lol, W,= oW/, W, = oW/dll
and W is the strain energy function W = W(I, II, III). The incremental stress o;; associat-
ed with the deformation (2.2) must satisfy the equation of motion in the coordinate
system x:
(2.5) Giy,5 = 001,
where
v = U = Uy,

For the half-space X, = 0 we assume that the displacement u is simplified to

uy = uy(xy, x3, 1),

Uy = (X1, X2, 1),

u3=0
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and thus the stress ¢;; has the components (cf. Hayes, RivLIN [1, 2]):
0y = ¢y HyyteiaHy,,

G2y = Ca  Hyy+¢2,GHss,

27 0 -
2:7) 01y = 05y = 2712 {W + 3 W, (A1 Ha,y +2A3H,;) = b(A1H, + A3 H,,),
033 = O3 = 013 = 023 = g3, = 0,
where
Hy, Hy; 0
b= 2[[[_”2(W1+A§ Wz), H” = Ui, H = HZI sz 0].
0 0 0

Finally the governing system of equations contains the equation of motion and compat-
ability conditions:

do;

Q'bi_ W;Hlk,j =0,
Hu—’Ui,j =i
leading to
] 1
vy — ?(CuHu,L‘Fblngz.z +bAiH,1,,+Ci2Hy,,) =0,
. 1
(2.9) Uy — ’é'(CnHu,z‘}‘b)v%Hnﬂ +b}‘?1-H21.1 +C'22H22.2) =0,

HU—‘Z)IJ:O, i,jz 1, 2.

We are interested in the material in which the acceleration (plane) waves can propagate.
Under this regime the constitutive function (energy function) must satisfy some restric-
tions. The general three-dimensional case was investigated in several papers (HAYES, RIVLIN
[1], OGDEN [3]). The discussion of this problem for the half-space (system (2.9)) is simpler,
it means that the well-known result is possible to get very quickly. The assumption that
the bounding surface X, = 0 is traction-free in the conﬁguratlon leads to additional
restrictions for 4,, A, 1; and the strain energy function W. Then et us recall very briefly.
We call a surface 2 an acceleration wave if the first derivatives of v and H on X’ are not
continuous. The jumps of v and H are:

l]:'t:),]] 5‘& 0, [[H”"j]] # 0.

The unkown functions must satisfy at the surface &

i 1
[[7)1]] = ? (CLLI[HH,L}] +bZ§|[H12,2]]+bA%[[H21.2]]+ 512[[H22,1]]) =0,

, 1
(2.10) [[Wz]]— E (021[1{11,2]]+b'1%l[H12.1]l+b1§|[H21.1]} +5'22|[H22.2]]) =0,

[#i]—[21] =0
Introducing the amplitude s, = n'n/[H,;,;] and using the compatability condition:
[f:] = —An*[fi] (for the arbitrary function f whose first derivatives are discontinuous
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at X, 1 is the normal speed of propagation and n is normal to the surface X) we obtain

two algebraic equations for s, and s,:
@1 A%, — (c0(nY)%s, +b23(n?)%s, +biin'n?s,+c,n'n%s,) = 0,
’ 0A%s,— (o n' n?sy +bA3n'n%s +bA3(n")2s,+ ¢, (n%)%s,) = 0.

Thus A must be a root of
(2.12)  p%2*—p2% {(c11 + A (")* + (22 +bA3)(n?)?}
+ {11 (") +bA3(n*)?} {BAT(n') + €22 (122 } = (e +5AD)*(n'n?)* = 0.

For the special case of a Hadamard hyperelastic material, for which W(I, II, III) =
= xI+yII+ F(III) (F is an arbitrary function of III), the coefficients ¢, ¢,, and c,,
have the simple form:

ey = bA2 420012 {42 129 + IILF' (1) + 2112 F (D) } = bA2+ A,

€2z = bAZ+ 2111~ V2 {12 229+ TIIF'(ID) + 2LI12F" (II1) } = bA2+ A,
(213) ¢y = —bAZ+2UI-V2 {22 22y + 1IIF (LD 4 2AMF’(II)} = —bA}+ A,

b= 200"YV2(e+23y), A =20"Y2{3223p+IIIF +20II12F"}.
Using Eq. (2.13), Eq. (2.12) gives
214) A% =02 (B(A(n") + B0 )+ (c1a(n') +c2a(n?)?)}
+b(A3(n")* +23(n2)*) (c11(c")* +¢22(n?)?) = 0.

It is evident that real acceleration (plane waves exist for all n if the constants b, ¢;, and
¢3, are positive. ‘

CoNcLusIoN 1
The necessary and sufficient conditions for propagating the acceleration wave in the

Hadamard material occupying the half space X, > 0 are b > 0 and 4 > 0.
Directly from Eq. (2.13), we have 4 = ¢,,— A2b. Thus

(ZAIS) 14_> 0¢>C22_l§b>0.

Further, if we demand to satisfy the boundary condition (no traction o, = 0) when the
body is subjected to a pure homogeneous deformation (2.3), then 4,, 4,, A are no longer
arbitrary but between them there is a relation:

(2.16) HIF'(IUL) = — 23 [x+ (AT +A3)9].
Putting Eq. (2.16) into Eq. (2.13) we obtain

e = (A=ADb+c;,,
2.17) €2y = —243b+c,,,

C2a = 4TI F/(IIN).

Requiring ¢,;, > 0 and ¢,, > 0 lead to

A2 = 23)(x+ A2p)+200IF” > 0,
¥

(215) F'>0.
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Additionally, inequalities must be true which result directly from Eq. (2.16):
F'<0,
y+A3F < 0.

When the surface is free of traction so that Eq. (2.16) holds, the acceleration waves may
propagate only when 4,, 4,, 15 satisfy the inequalities (2.18).

(2.19)

3. Rayleigh wave

In this section we discuss the existence and properties of Rayleigh waves for Hada-
mard. materials. After HAYES, RIVLIN [2] we can look for a solution of the system (2.9)
when the displacement components u; are given by

uy = fi(x)expi(px, +qt),
G.D u, = f3(x;)expi(px, +qt),
Uz = 0,
where p > 0 and ¢ < 0.
The displacement (3.1) will represent the Rayleigh wave lf u,, u, are to tend to zero
as x, tends to infinity. The general solution of type (3.1) (obtained by HAYEs, RIVLIN [2])
is
- uy = (¢, +Aib)ip(m, Ae~™2 +m, Be~™**)expi(px, +qt),
6D 4= {(eq® — c11p* +m} A3b) Ae™™ "2+ (0q* — 11 p? + m3 A3 b) Be™ ™"} expi(px, +qt),
where m,, m, must be positive roots of
(3.3)  A3bcyam*+{c22(0q* — c11p?) + 23 b(0q* — A1 bp?)+ (¢35 + A3b)’p*ym?

+(eq® — c110*) (0g* — 23bp”) = 0.
This equation in the case of Hadamard material takes the form

2

(34) _}»%bczz(%) —{lib[(i%—§A)b+c22~ﬁ]+cu(1§b-ﬁ]}(’_;_)

+[(A3 =23 b+cz,— Bl [A16—f] = 0,
where f is always positive through the definition

(3.5 B = eq*/p*.
Since Eq. (3.4) must give positive values for m? and m2, it follows that
A2—23)b+c,,—B >0,
(36) ( 1 2) 222 ﬂ
Atb—p > 0.
The inequality (3.6) together with Eq. (2.15) give
CONCLUSION 2
For a Hadamard material occupying a half-space which is homogeneously deformed

with the surface X, = 0 being free of traction, if the conditions of existence of accelera-
tion waves are satisfied (Conclusion 1), then the roots of Eq. (3.4) are real if A26—8 > 0.
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To determine an equation for § we shall use the boundary conditions, that there is no
surface traction in the state of pure homogeneous deformation and in the state of super-
imposed infinitesimal deformation:

3.7 0220 =0, 011Us,1—03, =0, 0,=0, 03, =0.

Introducing the solution (3.2) into these conditions and in order that 4 and B be nonzero
[2], we obtain the equation for §:
(B8)  [(AI-ADb+co—BlI(AT - A3)b—f]
m; m
= {caal (= )61+ 413blen~ 230 7170

From Eq. (3.4) we find

mi m3  [(A—23)b+cy,] [A16—f]

P p? - A3bc,, ’

Then Eq. (3.8) can be written in the form
(3.9) cz3+5dcz? +z(11c—16d)d*—cd® = 0,
where the following notations were introduced:
z = A1b-p,
(3.10) d= 13b,
C = Cy,.

Of course z (cf. Conclusion 2) must be positive.
The polynomial w(z) = cz3+ 5dez?+2z(11¢—16d)d®—cd? can have only one positive
root z, (see Fig. 1).

wiz) A

NY

—

FiG. 1.

The root z, should be such that 8 = 22b—2z, > 0.
There are three possibilities:
f=0<wz,=Ab<w(lib) =0,
@3.11) B>0wzy < A3b<s=w(dib) >0,
B <0< zy > 22b < w(i2h) <0,



SURFACE WAVES IN ELASTIC HADAMARD MATERIAL 737

where w(z,) = 0 and

(3.12) w(A3b) = b*{c,,[A5— A5+ 543 A1+ 1147 23] — 162343 b},
when w(42b) = 0; it means that the initial static deformation is unstable (cf. UsMANI,
BeaTTY [4]).

ConNcLusIoN 3

For Hadamard material the Rayleigh wave exists if w(A2b) > 0. There is only one such
wave and it is a retrograte. )

Proof. To show that the Rayleigh wave given by Eq. (3.2) is retrograde, we must

prove that
.| db
sign i)l = -1,
Xx,=0
where the angle 0 is such that
u3
tgld = — -
g ut

and »{ and uj mean the real part of Eq. (3.2).

Using sign (:Iit tgﬂ) = sign(ﬁ) and the boundary conditions (3.7), we have

dt
: de) . [q (my +m5) (0g> = c1,p?) ]
3.14 sign |- | = sign|—
( ) . (dt . p (0q*—ci1p?)+mymscyy
lx,:()

— —sign (my+my) (B—(2i-2)b—c) |
(B-3- %)b—clz)+ﬂ;m2

Ca1

1. If ¢,; < 0, then Eq. (3.13) is true because of the inequalities (3.6).
2. If ¢5; > 0 which is equivalent to c,,—2A4%2b > 0, then using ¢,; — ¢, = —243b
and Eq. (3.6) we have that

m;m
(ﬁ_(l‘-f—' %)b—czz)‘*‘ ;z 2 e

= [(;*% — A%)b +Ca2 _ﬁ] 2 2 2
= G- 15— 1= 4138le,; 28] (o (= b =l = 4kibles, ~ 138)

is always negative and also in that case Eq. (3.13) is proved.

4. Examples of Hadamard material

In this section we discuss the condition w(43b) > 0 for two different models of Ha-
damard material

W = «l + yII 4+ F(III).
Model 1:  F(III) = — (x+2y)InIII.
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x+2y Q)
I11.
For the first model we calculate that

(4.1)  w(Aib) = ALL12b3 {(+ 2p) (A5 — A5+ 528 A3+ 1123 2%) — 823 AS(x + A39) ).

a. If 4; > A,, then we have always w(4}b) > 0 which means that in this case a Ray-
leigh wave can propagate through the medium.
b. If 4, < 4,, let us say 4, = k1, and k > 1, then

(4.2)  w(Aib) = AL '2HA5{(1 — k®+ 5k? + 11k*) (2 + 2) — 8k® 23 (% + A3 )} .

Using the boundary condition ¢,, = 0 (2.16):

4.3) k223[x+ (A1 +A3)y] = =42y,

we have from Eq. (4:2)

44 w(Aib) = A Y2B328 {— kO(x+ 2y — 84t p) + 3k* (3 + 2) + 5k (» +2p) + (¢ +29) }
= 4111 12p3 28 N (k).

Model 2: F(II) =

ConcLusioN 4

i) For the first model, for all A, = A7 satisfying the inequality »+2y > 8(i9)*y,
there exists only one critical value &, such that N(k,) = 0. Then for all k£ > k, or, equival-
ently, for all 1, > A3 where 49 = ko A9, there is no Rayleigh wave since N(k) < 0 for
k > ko (cf. Eq. (3.1);). We shall calculate from Eq. (4.3) the value 43 corresponding to
the value 29, 49, k,.

ii) If 4, = A9 is such that »+2y < 8(A9)*y, then N(k) > 0 for all k. There is no cri-
tical value of k and the Rayleigh wave can propagate through the medium.

Similarly for the second model, for all A, > 1, we have always w(42b) > 0. If 4, =
= kA, k > 1 then
(4.5)  w(Aib) = 8LPATIII—32{(x 4+ 2y) (1 — k® + Sk* + 11k*) — 4kBAS A3 (2 + A3 y)}

= 8BAASIII-¥2M (k).

0,, = 0 means that

(4.6) k*28 32+ (A2 + A3)y] = =+ 2y.

The critical value of k is the solution of M(k) = 0 and Eq. (4.6); choosing k and A,
as known values we calculate A3 from Eq. (4.6) and put it into M(k) = 0.
Thus for the critical value k, we have the equation

@7 M) = 7" a,+2%,+2%s+2%a, + 2% +2%a, +Za, +ap = 0,
where z = k? and M(Z) = M(k),

a, = 4250+ 211y), ae = (x+29)—423(x+13y),
— 140 +2y)— 2043+ A5 y), a, = 390+ Ay)—4A5(x+ A3 y),
68(%+2y), ay=739(x+2y), a; =100+2y), ay=x+2y.

as

i

a;

Il

(*) This function satisfies Sal, 1 pes =
=ly=Ay=
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