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Monte Carlo simulation of a homogeneous dissociating diatomic gas 

P. S. LARSEN (LYNGBY) 

THE ISOTROPIC relaxation of a homogeneous diatomic gas at constant volume including contin­
nuous internal energy modes and dissociation-recombination reactions is treated by the direct 
simulation technique suitable to rarefied gas flows. The simulation includes five collision types 
two of which are inelastic and all of which be reactive. The successive selection of collision type 
is governed by time counters. Collision dynamics is hard-sphere for elastic collisions and hard­
sphere statistical for inelastic and reactive collisions. The dissociation reaction occurs in a one step 
bimolecular collision while recombination occurs in a termolecular collision simulated by two 
successive bimolecular collisions. Typical CPU-times IBM 370/165 range from 0.75 to 5 seconds 
for 1000 collisions. Results include the transient approach to equilibrium, the degree of dissocia­
tion at equilibrium for various values of density and temperature, and the effect of activation 
energy on reaction delay for recombination transients. 

Problem izotropowej relaksacji dwuatomowego gazu w stalej obj~tosci, przy ci(!glych postaciach 
energii wewn~trznej i przy wyst~powaniu reakcji dysocjacji i rekombinacji zostal rozwi(!zany 
bezposredni<l technik'l symulacji stosowan<l w teorii przeplyw6w gaz6w rozrzedzonych. Modelo­
wanych jest pi~ r6i:nych typ6w zderzen, z kt6rych wszystkie S<l reaktywne prowadZClce do 
reakcji chemicznych a dwa z nich niespr~i:yste. Wyboru kolejnego typu zderzenia dokonuj<l 
Iiczniki czasu. W zderzeniach dynamicznych CZ<!Stki modelowane S<l sztywnymi kulami dla zde­
rzen spr~i:ystych i statystycznie sztywnymi kulami dla zderzen niespr~i:ystych i reaktywowanych. 
Rekacja dysocjacji zachodzi w jednym kroku zderzen bicZ<lstek, podczas gdy rekombinacja ma 
miejsce przy zderzeniu termomolekularnym modelowanym przez dwa kolejne zderzenia bicZClstek. 
Typowe jednostkowe czasy zderzen IBM 370/165 obejmuj<l zakres od 0.75 do 5 sekund na 
1000 zderzen. Wyniki dotyCZ<l chwilowego osi<lgni~ia stanu r6wnowagi, stopnia dysocjacji 
w stanie r6wnowagi dla r6i:nych g~stosci i temperatury oraz wplywu energii aktywacji na op6z­
nienie chwilowych reakcji rekombinacji. 

3a.Llatia H30Tp0IIHOH pe.Tiai<ca~HH .LlByxaTOM}{OrO ra3a B llOCTORHHOM o6"heMe, npH }{enpepbiB­
}{biX BH.Ll;ax B}{yTpe}{}{eH 3}{eprHH H npH BbiCTynaHHH peai<~HH Jl;HCCO~Ha~HH H pei<OM6HH;a~HH, 
perne}{a aenocpe.n;CTBe}{}{OH TexH;HI<OH MO.Ll;e.TIHpOBa}{HH, npHMe}{.HeMOH B TeopHH TetieHHH pa3-
pRme}{}{biX ra3oB. Mo.n;e.TIHpyeTca n.HTh pa3lihiX THnOB croJII<liOBeHHii, H3 I<oTophiX ace 
peai<THBlibie (npHao.n;~He I< XHMHtieCI<HM peai<~H.RM), a .n;aa H3 HHX HeynpyrHe. Bhl6op 
noCJie.n;oaaTe.Tihlioro THna CTOJII<liOBeHHH npOH3BOJl;RT ctieTtiHI<H apeMe}{H. B Jl;H}{aMHtieCI<HX 
CTOJII<HOBeHHRX MOJiei<yJihl MO.Ll;e.TIHpYJOTCH meCTI<HMH IIIapaMH Jl;JUI ynpyrHX CTOJII<HOBeaHH 
H craTHCTHtieCI<H meCTI<HMH rnapaMH .n;na HeynpyrHX H peai<THB}{hfX croJII<aoaeaHii. Peai<~H.H 
Jl;HCCO~Ha~HH npOHCXO.LlHT B O.Ll;HOM rnary CTOJII<}{OBeHHH 6HMOJiei<yJI, B TO BpeM.H, I<Or.n;a 
pei<oM6Hlia~HR HMeeT MeCTO npH TepMOMOJiei<yJIRpHOM CTOJII<HOBeHHH MOJl;eJIHpOB3H}{OM tiepe3 
.n;aa nocne.n;osaTe.TihHhix croJII<HOBe}{HH 6HMoJiei<yn. THnHti}{bie e.n;HliHl!Hbie BpeMeHa croJII<­
aoaeaiDI (IBM 370/165) OXBaTbiBaiOT HHTepBaJI OT 0,75 Jl;O 5 Cei<yH.n; Ha 1000 CTOJII<HOBeHHH. 
Pe3yJibTaTbi I<acaiOTCH Mraoae}{}{oro .LlOCTHmeaH.H cocroHHHH paBHOBecHR, creneaH .n;Hcco­
~Ha~HH B COCTOHHHH paB}{OBeCHR Jl;JIH pa3HbiX llJIOT}{OCTeH H TeMnepaTyphi, a Tai<me BJIHH}{HH 
3HeprHH ai<THBa~HH Ha 3ana3Jl;h1Ba}{He Mr}{OBe}{}{biX peai<I.(HH pei<OM6HHa~HH. 

1. Introduction 

BECAUSE of the complexity and for the sake of obtaining "exact" solutions, at least for 
some canonical problems, kinetic gas formulations merit the use of numerical schemes 
for their solution, such as the direct Monte Carlo simulation technique originally intro-

http://rcin.org.pl



720 P. S. LARSEN 

duced by BIRD (1963) for a monatomic gas. This scheme has more recently been extended 
to polyatomic gas mixtures by BoRGNAKKE and LARSEN (1975) employing a statistical 
collision model for inelastic energy exchanges. The continued interest in chemically­
reacting gas flows at rarefied conditions warrants further exploration of the simulation 

techniques. 
In one of the early Monte Carlo simulations of chemically reacting gases, YosHIZAWA 

(1967) considered the irreversible recombination reaction in a homogeneous diatomic gas. 
The test particle method (HA VI LAND 1965) was used and collisions and reactions were 
treated by the reactive hard-sphere collision model. The recombination reaction was 
modelled by two successive binary collisions involving an intermediate activated 
molecule A~ whose concentration was always low. Dissociation reactions were not consi­
dered, therefore, only the temperature rise associated with the complete recombination 
of an initial monatomic gas could be studied. CPU-times (HITAC 5020) was given to I 00 sec 
per 1000 collisions. 

BIRD (1970) studied the dissociation-recombination relaxation in a homogeneous 
diatomic gas initially in the molecular state at chemical non-equiiibrium. Employing the 
direct simulation method and hard-sphere particles without internal energy, recombi­
nation was modelled by three body collisions. The probability of these was taken to be 
proportional to the number of particles in a cube with sides equal to the mean free path. 
Dissociation occurred in binary collisions with a steric probability whenever pair transla­
tional energy exeeded the dissociation energy. The case of constant steric probability 
leads to fJ = 0 in the following expression for the equilibrium dissociation 

(1.1) 

where a: denotes the degree of dissociation, e the density and ed the dissociation energy. 
Equation ( 1.1) corresponds to the reactive hard-sphere model with a constant cross section. 
A similar result applies to the ideal dissociating gas of LIGHTHILL (1957). Bird also consi­
dered the reactive hard-sphere model with a steric probability proportional to the amount 
by which the relatiy.e translational energy exeeds ed leading to fJ = 3/2 in Eq. (1.1), which 
agrees with the law of mass action for a translational gas. 

KouRA (1974) studied velocity distributions and reaction rates for fast one-step exoth­
ermic chemical reaction in a homogeneous gas using the reactive hard-sphere model for 
particles without internal energy. The Monte Carlo calculations included forward and 
backward reactions and corresponding rates during the approach to equilibrium which 
was established in 15-25 mean collision times. 

Using a moment method and the sphero-cylinder molecular model PAI and RAMA­
CHANDRA (1974) calculated the shock structure in a dissociating diatomic gas for M 1 < 30, 
where ionization and photo-dissociation is unimportant. A part of the integrations in the 
evaluation of the collision integral was solved by Monte Carlo techniques. 

The purpose of the present study is to show how the internal molecular energy may 
be accounted for in the simulation of a reacting gas by using a previously developed sta­
tistical model for inelastic collisions. The procedure is illustrated for the simulation pro­
blem considered by BIRD (1970), the gas now possessing continuous internal energy modes. 
The initial state is a homogeneous molecular or atomic gas at thermal but not chemical 
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equilibrium. The constant-volume and adiabatic transient approach to dissociation equilib­
rium as well as the equilibrium state is simulated by samples of up to 500 molecules 
(1000 atoms) for different initial states of temperature and density and for different activ­
ation energies. Analytical expressions for reaction rates and dissociation equilibrium 
are derived for the model and compared to the results of the simulation. 

The solution procedure applies directly to the collision phase for one cell of constant 
volume in the direct simulation technique of a rarefied flow in which physical space is 
divided into many cells. For flow problems the procedure need be suplemented by the 
phase of particle motion. 

2. Flow diagram and initial conditions 

Figure 1 shows the ovetall flow diagram for simulating the reaction 

(2.1) A 2 ~ A+A. 

FLOW DIAGRAM FOR MAIN PROGR .~\, 

READ data input I 
I 

Compute constants 
Set initial conditions 
Set· up particle sample 
NTCOLL , I 

J 

Start collision loop J 
I 

"'&I roll;,;oo typ, MC h<w;,.,;,;"""' h•• m""'" TC IMCI J 
and at least NP partrcles of type lA and type 18 

I 
~ Select" collision pair, numbers NA and N'3 J 

l 
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1
, G, g J 
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Update time counter TC (MC) I 
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I 
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J 
NTCOLL = NTCOLL - I I 

J 
r NTCOLL-"' NTCOM X ) no ' 

G D 

FIG. 1. Flow diagram for main program. 
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The set-up of the initial particle sample at some temperature T consists in assigning to 
each particle a speed u according to the isotropic Maxwell-Boltzmann distribution, 

(2.2) f~(u)du = 4n( 2:kr )
312 

u'exp(- ;k~ )du, 

where a denotes the particle type (A or A2 ), and assigning to each A2-particle an internal 
energy ei according to the Boltzmann distribution, 

(2.3) 
o x/2 ef/2-1 

fi (ei)dei = T(x/2+ 1) -(kT)xl2 exp( -edkT)deb 

where x denotes the number of internal energy· modes, assumed to be continuous. The 
procedure is well-known (HA VILAND 1965 or DERZKO 1972) for employing random num­
bers 9l from a rectangular distribution, i1t E [0.1], and the implicit rejection technique 
of von Neumann (HAMMERSLEY and HANDSCOMB 1964, Ch. 3). 

The internal energy of atoms is set to zero. The dissociation energy ed is not included 
into the internal energy of molecules, but is added or subtracted when calculating recom­
bination or dissociation reactions resepectively. For the present isotropic problem only 
the speed and the internal energy need be stored for each particle. The direction of veloci­
ties, required for calculating collisions, are assigned at random whenever needed. 

The composition of the two-component mixture of a dissociating diatomic gas is con­
veniently expressed by the degree of dissociation a defined by 

(2.4) a= NA/N~, 

where N~ = NA + 2NA 2 denotes the total number of atoms in the sample. It follows that 
NAzfN~ = (1- a)/2. 

The initial state is prescribed by the degree of dissociation, temperature and density, 
where the latter is specified through the probability of a three-particle collision. 

The gas is specified by the following quantities: the hard-sphere atomic and molecular 
diameters aA and aA 2 , the particle masses mA and mA 2 , the inelastic collision number Z 
the number of molecular degrees of internal energy x, the activation energy ea and the 
energy of dissociation ed. 

3. Non-reactive collisions 

To account for the exchange of internal energy, non-reactive collisions are treated as 
being either elastic or fully inelastic. Their relative frequency is sepcified by the inelastic 
collision number Z, the ratio of inelastic to total collision time. There are then five types 
of collisions, MC= 1 ... 5, 

1: A +A --+A +A (elastic), 

2: A +A2 --+ A +A2 (elastic), 

(3.1) 3: A +A2--+A +Az (inelastic), 

4: A2+A2 --+ A 2 +A 2 (elastic), 

5: A2 +A2 --+ A2 +A 2 (inelastic). 
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To ensure that the correct collision frequency is maintained a time counter is kept 
for each collision type. As shown elsewhere (BoRGNAKKE and LARSEN 1975, Eq. AS) the 
time increment for a hard-sphere collision is 

(3.2) btab = [(1 + (Jab)/hab](vnanbna~bg), 

where ~ab is the Kronecker delta, hab equals (Zab- 1)/Zab for an elastic and 1/Zab for an 
inelastic collision, v denotes the volume, n the density, g = lub-ual the relative velocity 
and aab = (aa+ab)/2 the distance between centers. For an approximate estimate we put 
a a "' m~/3. 

Selecting collision type MC with minimum time counter a pair of appropriate particles 
are picked at random until they satisfy the collision criterion, g ~ ~gmax for hard-spheres, 
where we take arbitrarily gmax = 4C0 , C0 = (2kT0 /mA 2 ) 112 , T0 being a reference tempera­
ture. If, after adding the time increment Eq. (3.2) to the time counter, the resulting 
updated value does not exceed the time at the end of the current time increment, say an 
integer number of collision times, the collision is included. Otherwise, it is included only 
on a probabilistic basis in proportion to the remaining time, and in any event the time 
counter is then advanced to the end of the current time increment. 

The calculation of elastic collisions needs no elaboration (see HA VILAND 1965 or 
DERZKO 1 972). Inelastic collisions are treated by the statistical model (BORGNAKKE and 
LARSEN 1975) which here amounts to the steps stated below. The relative translational 

energy of the collision pair is e, =--} ,Uabg2
, where ,Uab = mambf(ma+mb) denotes the re­

duced mass. Then, the available pair energy for exchange, 

(3.3) 

is first distributed on pair translational and pair internal energies. The probability distri­
bution for this step, normalized to unit maximum value, is 

(3.4) e;e; = p(e;!e; = e-e;) = (X+'Y}-1) 11 (J+~-l)x-l(e;)11 ( 1 - e;)x-l' 
Pmax 'YJ X 1 e e 

where 'YJ = 1 for hard-sphere collision dynamics. 
For the case of an A 2 -A 2 -collision and x = 2 for each particle, Eq. (3.4) becomes 

(3.5) f!IJe; = 4(e;je) (1-e;je), 

and the pair translational energy is assigned by the implicit rejection method by satisfying 

(3.6) 

Subsequently ei = e- e; is divided on the two particles according to the normalized 
probability density 

(3.7) 

For X = 2, Eq. (3.7) yields f!IJe~a = 1 which is readily inverted to the explicit form 

(3.8) e;a = ~e~, 
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For the case of an A-A2-collision eia = 0 and pair energy e is distributed one; and e;b 

directly by Eq. (3.4) in which e; is replaced by e;b and x by x/2. For x = 2 and 'YJ = 1 this 
yields &'e; = e;je which is readily inverted to the explicit form 

(3.9) 

4. Reactive collisions 

4.1. Recombination 

The recombination reaction, conceived as a hard-sphere three-body collision, is mod­
elled as two successive binary collisions, that is, type 1 of Eq. (3.1) followed by 

(4.1) la: (A+ A)+ M~ A2 +M (recombination), 

where the third particle M (of type A or A2 ) plays the role as excess energy carrier. Re­
combination similarly may occur during a type 2 or a type 3 collision provided the third 
particle M is of type A. Such collisions are treated as the previous one. In each case the 
dissociation energy ed is added to the product particles. 

The occurrence of reaction la of Eq. ( 4.1) is determined by the probability that a sec­
ond collision takes place within the estimated collision duration of the first collision, 
assumed to be given by 

(4.2) 

In spite of an obvious oversimplification of the matter it is beyond the scope of the present 
study to employ more realistic models, such as those discussed by LIGHT et al. (1969). 
A three-particle collision is then assumed to occur with probability Prec if the probable 
time ! 3 to the next collision is less than tlire 

(4.3) 

Otherwise the A- A-collision is considered to be elastic. 
Treating the colliding A -A-complex as an A2-particle, the collision frequency for one 

such particle with all other particles is 

(4.4) 'VA2-M = }; hA2MnM J J fMgf(g,k)dkduM, 
M=A .A2 

where g is the relative velocity between M and the A-A-complex, which moves with the 
known center of mass velocity of the original A- A-collision. Ignoring such specifics, 
we replace the integral by the product of the hard-sphere cross section and the expectation 
value of g evaluated at the tempearure T M of particle type M. Furthermore, combining 
elastic and inelastic collisions we recover, to within the constant 3n/2y2, the expression 
for hard-sphere bimolecular collision frequency per A2-particle 

(4.5) 'V3 = (3n/2v2) 2; (2/(1 + <5A 2M)]nMa~ 2 M (2nkTMfftM) 112
• 

M=A.A2 
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Denoting by Pc(t) the probability that collision takes place at ?3 < t then (CHAPMANN 
and CowLING 1960, § 5.41) Pc(t) = 1-exp( -tv3 ); the complementary probability of no 
collision exp(- tv3 ) determines the distribution of times to the next collision. Inverting 
the latter expression, the time to the next collision is selected at random by 

(4.6) 

and Eq. (4.3) is employed to ascertain whether recombination takes place. Although v3 

changes as new collisions are calculated, it is satisfactory to re-evaluate v3 only when mo­
ments are calculated, say once every reference collision time. 

In case of recombination a new A2-particle is created with a speed equal to the center 
of mass velocity of the two A-particles, which are then scratched, and with an internal 
energy equal to the sum of pair translational energy and dissociation energy. The type 
of the third particle M is then selected at random according to relative densities of A­
and A2 -particles. The subsequent A2-M-collision is handled as an inelastic collision which 
ensures that a part, but not necessarily all, of the dissociation energy is immediately 
transferred to translational energy. 

The flow diagram in Fig. 2 summarizes the foregoing strategy HSPCV, HSPE12 and 
HSPE22 denoting subroutines for calculating, respectively, hard-sphere post-collision 
velocities, inelastic energy exchange between the A-A2 pair, and between the A2-A2 

pair. 

FLOW DIAGRAM FOR A-A-COLLISION 

l.1elastrc collision 
Call HSPE12 or HSPE22 
Call HSPCV 
Store post-collrsron paran1eters 

FIG. 2. Flow diagram for A-A-collision. 
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4.2. Dissociation 

The dissociation reaction is assumed to take place in a single-step bimolecular collision, 

(4.7) 2a: A2 +M ~ A+A+M (dissociation). 

The reaction occurs with probability Pdlss in either of the collisions of type 2-5 of Eq. (3.1 ), 
provided the energy available in the collision exceeds the sum of an activation energy 
ea and the dissociation energy ed, 

(4.8) 

in which case ed is subtracted from the energy of the product particles. In general the 
exact form of Eq. (4.8) is not known and various models have been proposed. In the re­
active hard-sphere model, for example, only the pair translational energy along the line 
of centers is considered to be available. Assuming the scattering angle to be uniformly 

FIG. 3. Flow diagram for A-A 2-collision. 
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distributed over the interval 0- 2n, we have et. avail = ~et. Statistically this represents 
two degrees of freedom (two square terms). In a rough-sphere model it is conceivable 
that a portion of et greater than f!.le1 becomes available. The portion of internal energy 
modes e;a and e;b available depends on the type of particles involved in the collision and 
must be determined from experiment. Thus, the total number of degrees of freedom 1p' 

which are statistically' available and associated with both translational and internal ener­
gies may be deduced from the temperature dependence of the forward rate constant k1 
for the reaction. Written in the standard form 

(4.9) 

we have 1p' = 3-2rJ1 . Experimental values for 1p' are 4-7 for diatomic gases such as oxy­
gen and nitrogen. Including all translational and rotational modes we have 1p' = 6 and 8, 
respectively, for A-A2 and A 2-A2 encounters. These values have been used in the pre­
sent study along with the assumption that Prec = Pdiss = 1. 

In the case of dissociation the pair energy is reduced by the dissociation energy ed and 
an inelastic collision is executed. The resulting post-collision parameters for the partici­
pating M-particle are stored. The A2-particle, having post-collision velocity u;, and inter­
nal energy e;b, is then dissociated into two A-particles with the center of mass velocity 

G' = u~ and the pair translational energy e: = ~-#AA g' 2
• The Arparticle is scratched from 

storage and two A-particles are created. On the assumption of post-dissociation isotropy 
the direction of the relative velocity g', say measured relative to the direction of G', is 
assigned at random by cosO = 1-2~. Then, the speeds ua and ub of the two dissociated 
A-particles are calculated in the usual way. The flow diagram of Fig. 3 summarizes the 
foregoing strategy. 

5. Results 

The reactive collision model including internal energy has been employed in the study 
of two cases of chemical relaxation in a homogeneous gas at constant volume. That is, 
in the dissociation transient of an initially diatomic gas, and the recombination transient 
of an initially monatomic gas. 

In all simulations the initial temperature T0 was employed as the reference tempera­
ture. Times are made dimensionless with respect to the hard-sphere collision time t0 , coli = 

= (2n)112 /(4n0n0'~ 1 C0) of A2-molecules at density n0 and most probable speed C0 • Mass 
density, which enters in the strategy for recombination, is measured relative to a reference 
density erer introduced into Eq. (4.2) by rewriting it in dimensionless form as 

(5.1) Tme = 4J/ 2n ( 0'3n)rer(D'ab/g) ( 0' Az/O'rer) 3 ((! I erer), 

where D-ab= O'ab/O'Ap g = gfco and e/erer = n0 /nrer· Employing p = nkT at Prer = 1 
atm and Tree= 298 K, and selecting O'rer = O'A 1 = 3.55 · IO-lo m gives (a3n),er = 1.1 · 10- 3

• 

Hence, for a given gas of specified e4 each value of e4 = e4 /kT0 = 04 /To determines 
the absolute initial temperature T0 which, along with a specified density ratio e/erer, 
fixes the initial state. 
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5.1. Dissociation transient 

Each simulation is started with a sample of 500 A2 -particles at thermal equilibrium 
at T 0 , and the increment for updating time counters is t 0 , coli· 

Figure 4 shows a typical approach to dissociation equilibrium and the associated de­
crease in total temperature for the case of ed = 2 and ea= 0. The total temperature of 
the mixture is calculated from 

(5.2) 

where cc1 = (3 + x)(l- cc)/2cc, Yr. A is the translational temperature of A-particles, and 
Ttot,A2 = (3T,,A2+ xTi,A2)/(3+ x) the total temperature, 1'r.A2 and 1i.A2 respectively 
the translational and internal temperatures of A2 -particles evaluated in the usual way 
from the particle sample. 

The initial rate of dissociation of A2 -particles may be calculated from 

(5.3) (dnA 2 /dt)0 = -VA 2 P {e ~ ed+ eal coli }Pdisp 

where the bimolecular collision rate VA
2 

is n~ 2 a~ 2 (2n)112C0 and the probability that the 
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FIG. 4. Dissociation transient for initially diatomic gas; ea = 0, Z = 1.2, X = 2, N~ = 1000. 
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10~--------~--------~ 

D01L-----~----~--~_L~ 

01 10 

Initial temperMure Ta!Bd 

FIG. 5. Initial rate of dissociation of diatomic 
gas versus initial temperature. Hard-sphere sta­
tistical collision model; ea= 0, Z = 1.2, X = 2, 

N~ = 1000. 

01 0.2 04 

Temperature T..o/Bd 

FIG. 6. Equilibrium dissociation versus tempera­
ture for selected values of density. Hard-sphere 
statistical collision model; ea= 0, z = 1.2, 

X = 2, N~ = 1000. 

00 

available energy e in collision exceeds ed+ea at equilibrium equals J_ f~,Ce)de. Here 
ea+ ed 

e = efkT0 and f~,(e) is the equilibrium distribution of 1p' available degrees of freedom, 
of the form given by Eq. · (2.3) replacing x by 1p' and ei by e. Taking ea = 0, Pdiss = 1 and 
1p' = 8 the dimensionless form of Eq. (5.3) becomes 

(5.4) (d\l.fdr:)o = - (1 /12)(eJ + 3eJ + 6ed + 6) exp ( -ed). 

Figure 5 shows Eq. (5.4) compared to results of simulations. The scatter represents 
the use of increments from 0.1 to 1.0 times t 0 , coli for updating time counters in order to 
approach the limit r: --+ 0. 

Figure. 6 shows equilibrium dissociation versus temperature for three values of mass 
density. The theoretical relation is of the form of Eq. (1.1), but more involved. The tem­
perature dependence corresponds approximately to fJ = - 3/2. 

5.2. Recombination transient 

The simulations in this case are started with 500 A-particles at thermal equilibrium 
at temperature T0 • To accelerate the recombination only the case of high density e/erer = 
= 10 is studied. 
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Figure 7 shows the typical approach to dissociation equilibrium with the associated 
increase in total temperature for the case of e4 = ea = 6.0. Figures 8 and 9 show a para­
metric study of temperature and degree of dissociation, respectively, for the recombina­
tion transient at fixed dissociation energy ed = 6.0 and increasing values of activation 
energy from 0 to 10. As ea increases the characteristic reaction delay increases from zero 
to more than forty fo,coll· Non-zero activation energy has been included to illustrate the 
simulation of characteristic features of simple exothermic one-step chemical reactions. 

5.3. Computer times and storage requirement 

Typical CPU-times (IBM 370-165) in seconds per 1000 collisions range from 5 in the 
first t0 •coli to from 2.5 to 1.2 in the following 36 t 0 ,coll for the dissociation transient. The 
corresponding times are 1.8 and 1.3 to 0.75 for the recombination transient. These times 
include the calculation of moments and other book-keeping. The total time for simulating 
one curve of Fig. 6 is 150 seconds. The Fortran program comprises about 700 statements 
and is of size 19 k-bytes and is run within a 120 t-byte region with the Fastfort compiler. 

6. Conclusion 

The present study of chemical relaxation in a homogeneous gas illustrates the feasi­
biJ!ty of Monte Carlo simulation of rarefied gas flows with a simple chemical reaction, 
including the contribution of internal energy modes. A variety of reaction models may be 
constructed by choice of a central force inverse power law other than that of hard-spheres 
and through adjustment of the parameters x, Z, Pdiss and Prec- In addition, the statistical 
collision model may be used in a modified form in which all collisions are inelastic and 
the energy exchange is statistically restricted (LARSEN and BoRGNAKKE 1974). Actually, 
this model has a minor deficiency, as pointed out by PuLLIN (1975), in that the fraction 
of energy made available for correct statistical exchange during a collision is fixed and 
not selected statistically, hence micro-reversibility is not satisfied. Nevertheless, the model 
is able to reproduce satisfactory equilibrium distributions and the use of fixed fractions 
affords savings in computer time. Still, the model is more time consuming than the one 
described in the present study. 
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