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Monte Carlo simulation of a homogeneous dissociating diatomic gas

P.S. LARSEN (LYNGBY)

THE 1SOTROPIC relaxation of a homogeneous diatomic gas at constant volume including contin-
nuous internal energy modes and dissociation-recombination reactions is treated by the direct
simulation technique suitable to rarefied gas flows. The simulation includes five collision types
two of which are inelastic and all of which be reactive. The successive selection of collision type
is governed by time counters. Collision dynamics is hard-sphere for elastic collisions and hard-
sphere statistical for inelastic and reactive collisions. The dissociation reaction occurs in a one step
bimolecular collision while recombination occurs in a termolecular collision simulated by two
successive bimolecular collisions. Typical CPU-times IBM 370/165 range from 0.75 to 5 seconds
for 1000 collisions. Results include the transient approach to equilibrium, the degree of dissocia-
tion at equilibrium for various values of density and temperature, and the effect of activation
energy on reaction delay for recombination transients.

Problem izotropowej relaksacji dwuatomowego gazu w stalej objgtosci, przy ciaglych postaciach
energii wewnetrznej i przy wystgpowaniu reakcji dysocjacji i rekombinacji zostal rozwigzany
bezposrednia technika symulacji stosowana w teorii przeplywow gazdéw rozrzedzonych. Modelo-
wanych jest pie¢ roznych typdw zderzen, z ktorych wszystkie sa reaktywne prowadzace do
reakcji chemicznych a dwa z nich niesprezyste. Wyboru kolejnego typu zderzenia dokonuja
liczniki czasu. W zderzeniach dynamicznych czastki modelowane sg sztywnymi kulami dla zde-
rzen sprezystych i statystycznie sztywnymi kulami dla zderzen niesprezystych i reaktywowanych.
Rekacja dysocjacji zachodzi w jednym kroku zderzen biczastek, podczas gdy rekombinacja ma
miejsce przy zderzeniu termomolekularnym modelowanym przez dwa kolejne zderzenia biczastek.
Typowe jednostkowe czasy zderzenn IBM 370/165 obejmuja zakres od 0.75 do 5 sekund na
1000 zderzeri. Wyniki dotycza chwilowego osiagniecia stanu réwnowagi, stopnia dysocjacji
w stanie rownowagi dla réznych gestosci i temperatury oraz wplywu energii aktywacji na op6z-
nienie chwilowych reakcji rekombinacji.

3agaua M30TPOMHOI peslaKcallMH ABYXaTOMHOTO rasa B IOCTOAHHOM oObeMme, NPH HeNpepbiB-
HBIX BH/IaX BHYTpeHHell 93HEPrUH | IIPH BLICTYIIAHHH PeaKIHil JHCCOIHAIMA H peKOMOMHAIIHH,
pelileHa HenoCpe/ICTBEHHOM TeXHMKON MOMEMPOBAHHA, MPHMEHAEMOH B TEOPHUH TeUYeHHH pa3-
pAXKeHHBIX raszoB. Mojgennpyercs nATE pasHBIX THIIOB CTOJIKHOBEHMH, M3 KOTOPBIX Bce
peakTHBHbIe (NPHBOAMLIME K XHMHYECKHM peaKlusM), a aBa H3 HUX Heynpyrue. BriGop
MOCeJOBATeJILHOTO THIA CTOJIKHOBEHHI IIPOM3BOAAT CHYETUMKH BpemeHM. B muHamHuecKHX
CTOJIKHOBEHHAX MOJIEKY/Ibl MOJENHPYIOTCA YKECTKHMM IUapaMM [UIA YIPYTHX CTOJKHOBEHHM
M CTATHCTMYECKH YKECTKHMMH IIAPAMH [IJI HEYNPYTHX M PeaKTHBHEIX CTONIKHOBeHHI. Peaimsa
JHCCOLMAUMH IMPOMCXOAMT B OJ[HOM LIATY CTOJIKHOBEHMII OMMOJIEKYJ, B TO Bpems, Koraa
PeKOMOHHALIMA MMEeT MECTO TIPH TEPMOMOJIEKYIAPHOM CTOJIKHOBEHHH MOJIE/IMPOBAHHOM Yepes
ABa MOC/IEAOBATEbHBIX CTOJIKHOBEHUA OUMOJleKyN. THIHUHbIE eqUHHYHbIE BPEMEHAa CTOMK-
HoBeHuit (IBM 370/165) oxsareiBator uutepsan ot 0,75 go 5 cekynnx Ha 1000 cTronKHOBeHHI.
PesymbTaThl KacaloTCA MTHOBEHHOTO JOCTHMKEHHMS COCTOSHHMA PABHOBECHA, CTENEHM JMCCO-
LHALMH B COCTOSAHHMM PaBHOBECHS /TSI Pa3HbIX IUIOTHOCTEH M TEMNIEPATYPhI, & TAK)KE BIMAHMA
JHEPrHH aKTHBALMH Ha 3ara3JbIBaHMe MTHOBEHHBIX peakimii pexomOHHALMW.

1. Introduction

BECAUSE of the complexity and for the sake of obtaining “exact” solutions, at least for
some canonical problems, kinetic gas formulations merit the use of numerical schemes
for their solution, such as the direct Monte Carlo simulation technique originally intro-
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duced by BIRD (1963) for a monatomic gas. This scheme has more recently been extended
to polyatomic gas mixtures by BORGNAKKE and LARSEN (1975) employing a statistical
collision model for inelastic energy exchanges. The continued interest in chemically-
reacting gas flows at rarefied conditions warrants further exploration of the simulation
techniques.

In one of the early Monte Carlo simulations of chemically reacting gases, YOSHIZAWA
(1967) considered the irreversible recombination reaction in a homogeneous diatomic gas.
The test particle method (HAVILAND 1965) was used and collisions and reactions were
treated by the reactive hard-sphere collision model. The recombination reaction was
modelled by two successive binary collisions involving an intermediate activated
molecule 4% whose concentration was always low. Dissociation reactions were not consi-
dered, therefore, only the temperature rise associated with the complete recombination
of an initial monatomic gas could be studied. CPU-times (HITAC 5020) was given to 100 sec
per 1000 collisions.

Birp (1970) studied the dissociation-recombination relaxation in a homogeneous
diatomic gas initially in the molecular state at chemical non-equilibrium. Employing the
direct simulation method and hard-sphere particles without internal energy, recombi-
nation was modelled by three body collisions. The probability of these was taken to be
proportional to the number of particles in a cube with sides equal to the mean free path.
Dissociation occurred in binary collisions with a steric probability whenever pair transla-
tional energy exeeded the dissociation energy. The case of constant steric probability
leads to B = 0 in the following expression for the equilibrium dissociation

(1.1) @?/(1—a) ~ (I" o) exp (—es/kT),

where o denotes the degree of dissociation, ¢ the density and e, the dissociation energy.
Equation (1.1) corresponds to the reactive hard-sphere model with a constant cross section.
A similar result applies to the ideal dissociating gas of LIGHTHILL (1957). Bird also consi-
dered the reactive hard-sphere model with a steric probability proportional to the amount
by which the relative translational energy exeeds ¢, leading to f = 3/2 in Eq. (1.1), which
agrees with the law of mass action for a translational gas.

Koura (1974) studied velocity distributions and reaction rates for fast one-step exoth-
ermic chemical reaction in a homogeneous gas using the reactive hard-sphere model for
particles without internal energy. The Monte Carlo calculations included forward and
backward reactions and corresponding rates during the approach to equilibrium which
was established in 15-25 mean collision times.

Using a moment method and the sphero-cylinder molecular model PAr and Rama-
CHANDRA (1974) calculated the shock structure in a dissociating diatomic gas for M, < 30,
where ionization and photo-dissociation is unimportant. A part of the integrations in the
evaluation of the collision integral was solved by Monte Carlo techniques.

The purpose of the present study is to show how the internal molecular energy may
be accounted for in the simulation of a reacting gas by using a previously developed sta-
tistical model for inelastic collisions. The procedure is illustrated for the simulation pro-
blem considered by BIRD (1970), the gas now possessing continuous internal energy modes.
The initial state is a homogeneous molecular or atomic gas at thermal but not chemical
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equilibrium. The constant-volume and adiabatic transient approach to dissociation equilib-
rium as well as the equilibrium state is simulated by samples of up to 500 molecules
(1000 atoms) for different initial states of temperature and density and for different activ-
ation energies. Analytical expressions for reaction rates and dissociation equilibrium
are derived for the model and compared to the results of the simulation.

The solution procedure applies directly to the collision phase for one cell of constant
volume in the direct simulation technique of a rarefied flow in which physical space is
divided into many cells. For flow problems the procedure need be suplemented by the
phase of particle motion.

2. Flow diagram and initial conditions

Figure 1 shows the oveiall flow diagram for simulating the reaction
2.1 A, = A+ A.

FLOW DIAGRAM FOR MAIN PROGRAN
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FI1G. 1. Flow diagram for main program.
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The set-up of the initial particle sample at some temperature 7 consists in assigning to
each particle a speed u according to the isotropic Maxwell-Boltzmann distribution,

32
2.2 f°{u)du_4x( 2’"”) u?exp( ZkT)du,

where a denotes the particle type (4 or A,), and assigning to each A,-particle an internal
energy e; according to the Boltzmann distribution,

2 eH2=1
% (kTy'? exp (—e;/kT)de;,

where y denotes the number of internal energy modes, assumed to be continuous. The
procedure is well-known (HAVILAND 1965 or DErzko 1972) for employing random num-
bers & from a rectangular distribution, # € [0.1], and the implicit rejection technique
of von Neumann (HAMMERSLEY and HANDscomB 1964, Ch. 3).

The internal energy of atoms is set to zero. The dissociation energy e, is not included
into the internal energy of molecules, but is added or subtracted when calculating recom-
bination or dissociation reactions resepectively. For the present isotropic problem only
the speed and the internal energy need be stored for each particle. The direction of veloci-
ties, required for calculating collisions, are assigned at random whenever needed.

The composition of the two-component mixture of a dissociating diatomic gas is con-
veniently expressed by the degree of dissociation « defined by

(2.4) a = NyN3,

where N§ = N, + 2N, denotes the total number of atoms in the sample. It follows that
N ING = (1=a)/2.

The initial state is prescribed by the degree of dissociation, temperature and density,
where the latter is specified through the probability of a three-particle collision.

The gas is specified by the following quantities: the hard-sphere atomic and molecular
diameters o, and o,,, the particle masses m, and my;,, the inelastic collision number Z
the number of molecular degrees of internal energy x, the activation energy e, and the
energy of dissociation e,.

(2.3) fi(e)de; =

3. Non-reactive collisions

To account for the exchange of internal energy, non-reactive collisions are treated as
being either elastic or fully inelastic. Their relative frequency is sepcified by the inelastic
collision number Z, the ratio of inelastic to total collision time. There are then five types
of collisions, MC = 1... 5,

A+A4 - A +A4 (elastic),
A +A4;, > A +4, (elastic),

A +A, > A +A, (inelastic),
A2+A2 =¥ A2+A2 (e]astic),
A,+A, > A,+A, (inelastic).

(3.1)

v B W
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To ensure that the correct collision frequency is maintained a time counter is kept
for each collision type. As shown elsewhere (BORGNAKKE and LARSEN 1975, Eq. A8) the
time increment for a hard-sphere collision is

(32) arﬂb = [(1 + 6-1&)”?0&!]({"”4 n;,nafbg) )

where 8, is the Kronecker delta, h,, equals (Z,,—1)/Z,, for an elastic and 1/Z,, for an
inelastic collision, v denotes the volume, n the density, g = |u,—u,| the relative velocity
and o, = (0,+03)/2 the distance between centers. For an approximate estimate we put
a, ~ mii3,

Selecting collision type MC with minimum time counter a pair of appropriate particles
are picked at random until they satisfy the collision criterion, g = Zgm.x for hard-spheres,
where we take arbitrarily gn.x = 4Co, Co = (2kTo/m43)"'?, T, being a reference tempera-
ture, If, after adding the time increment Eq. (3.2) to the time counter, the resulting
updated value does not exceed the time at the end of the current time increment, say an
integer number of collision times, the collision is included. Otherwise, it is included only
on a probabilistic basis in proportion to the remaining time, and in any event the time
counter is then advanced to the end of the current time increment.

The calculation of elastic collisions needs no elaboration (see HAVILAND 1965 or
Derzko 1972). Inelastic collisions are treated by the statistical model (BORGNAKKE and
LArseN 1975) which here amounts to the steps stated below. The relative translational
energy of the collision pair is e, = —;- Hapg?, where u,, = m,m,[(m,+m;) denotes the re-
duced mass. Then, the available pair energy for exchange,

(3.3) e = e+e,tep,

is first distributed on pair translational and pair internal energies. The probability distri-
bution for this step, normalized to unit maximum value, is

G4 P = plele; =e—e) _ ('I'*'_?_?_—_ l_)ﬂ(!_'i'nu_l.)x_l(e_:)n(l _e_:);—l
% Prmax i Y= 1 2 e B

where n = 1 for hard-sphere collision dynamics.
For the case of an A4, —A4,-collision and y = 2 for each particle, Eq. (3.4) becomes

3.5 Py = 4(erfe) (1-eife),
and the pair translational energy is assigned by the implicit rejection method by satisfying
(3.6) Pe(er = Re) > R.

Subsequently e; = e—e¢; is divided on the two particles according to the normalized
probability density

3.7 ety = 272 [(elafe) (1 = elafe)]e21.
For y = 2, Eq. (3.7) yields P, = 1 which is readily inverted to the explicit form

(3'8) e;a = @e:-, e:b = 8:-——(3‘;‘.
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For the case of an 4 — 4,-collision ¢;, = 0 and pair energy e is distributed on e; and e},
directly by Eq. (3.4) in which ¢; is replaced by e, and y by x/2. For x = 2 and # = 1 this
yields 2Z.; = e;/e which is readily inverted to the explicit form

(3.9 e, = R, e =e—e.

4. Reactive collisions

4.1. Recombination

The recombination reaction, conceived as a hard-sphere three-body collision, is mod-
elled as two successive binary collisions, that is, type 1 of Eq. (3.1) followed by

4.1) la: (A+A)+M —> A,+M  (recombination),

where the third particle M (of type 4 or 4,) plays the role as excess energy carrier. Re-
combination similarly may occur during a type 2 or a type 3 collision provided the third
particle M is of type A. Such collisions are treated as the previous one. In each case the
dissociation energy ¢, is added to the product particles.

The occurrence of reaction la of Eq. (4.1) is determined by the probability that a sec-
ond collision takes place within the estimated collision duration of the first collision,
assumed to be given by

4.2 lire =~ 20,/8.

In spite of an obvious oversimplification of the matter it is beyond the scope of the present
study to employ more realistic models, such as those discussed by LIGHT et al. (1969).
A three-particle collision is then assumed to occur with probability p,.. if the probable
time 75 to the next collision is less than 7.

@.3) I3 < lige-

Otherwise the A — A-collision is considered to be elastic.
Treating the colliding A — A-complex as an A,-particle, the collision frequency for one
such particle with all other particles is

(4.4) var= Y haneny [ [ Foegl@ K)dkduy,
M=A4,4;

where g is the relative velocity between M and the 4 — A-complex, which moves with the
known center of mass velocity of the original A— A-collision. Ignoring such specifics,
we replace the integral by the product of the hard-sphere cross section and the expectation
value of g evaluated at the tempearure T, of particle type M. Furthermore, combining
elastic and inelastic collisions we recover, to within the constant 3::,!’2;/2_, the expression
for hard-sphere bimolecular collision frequency per A,-particle

@.5) v = (3n/2Y2) D) [2/(1+ Oaum)lnng O br ek T [pg)'2.

M=A,A;
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Denoting by p.(¢) the probability that collision takes place at 73 < ¢ then (CHAPMANN
and CowLING 1960, § 5.41) p.(f) = 1 —exp(—1t»;); the complementary probability of no
collision exp(—1tvs) determines the distribution of times to the next collision. Inverting
the latter expression, the time to the next collision is selected at random by

(4.6) ty = —(In#)rs,

and Eq. (4.3) is employed to ascertain whether recombination takes place. Although »;
changes as new collisions are calculated, it is satisfactory to re-evaluate v; only when mo-
ments are calculated, say once every reference collision time.

In case of recombination a new A,-particle is created with a speed equal to the center
of mass velocity of the two A-particles, which are then scratched, and with an internal
energy equal to the sum of pair translational energy and dissociation energy. The type
of the third particle M is then selected at random according to relative densities of A4-
and A,-particles. The subsequent A4,-M-collision is handled as an inelastic collision which
ensures that a part, but not necessarily all, of the dissociation energy is immediately
transferred to translational energy.

The flow diagram in Fig. 2 summarizes the foregoing strategy HSPCV, HSPE12 and
HSPE22 denoting subroutines for calculating, respectively, hard-sphere post-collision
velocities, inelastic energy exchange between the 4—A, pair, and between the 4,—A4,
pair. :

FLOW DIAGRAM FOR A-A-COLLISION
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Fi1G. 2. Flow diagram for A-A-collision.
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4.2. Dissociation

The dissociation reaction is assumed to take place in a single-step bimolecular collision,
4.7 2a: A,+M > A+ A+ M  (dissociation).

The reaction occurs with probability pg;. in either of the collisions of type 2-5 of Eq. (3.1),
provided the energy available in the collision exceeds the sum of an activation energy
e, and the dissociation energy e,

(4 8) (er + €iq i eib)ava il 2 €4 + €a,

in which case e, is subtracted from the energy of the product particles. In general the
exact form of Eq. (4.8) is not known and various models have been proposed. In the re-
active hard-sphere model, for example, only the pair translational energy along the line
of centers is considered to be available. Assuming the scattering angle to be uniformly

lr Pre-Collision parameters 1

Check for dissociation
o E-eyre(A) < g

[
Check for 3-particle collision
o Select M-particle TipeN'= A )
yES

Mm

yes

M= Inelastic collision

Call HSPEI2

Call HSPCV

Store post-collision parameters

{ end collisioa }— -—

L——l Recombination reaclion ]

end collision

Dissociation reaction
NDIS = NDIS - 1
|
Reduce pair energy by ey ]
=
Inelastic "’AZ - collision
Call HSPELZ
Call HSPCV
Store A-particle parameters

I

Scrach A, - particie

Create two A-particles with

G=u(Ag) andey - g (Aj
|

Select direction of g for A- A
Compute and store post collision parameters

t end collision .r

FiG. 3. Flow diagram for A-A,-collision.
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distributed over the interval 0—2n, we have e, .1 = Ze,. Statistically this represents
two degrees of freedom (two square terms). In a rough-sphere model it is conceivable
that a portion of e, greater than %e, becomes available. The portion of internal energy
modes ¢;, and e;, available depends on the type of particles involved in the collision and
must be determined from experiment. Thus, the total number of degrees of freedom o’
which are statistically' available and associated with both translational and internal ener-
gies may be deduced from the temperature dependence of the forward rate constant k,
for the reaction. Written in the standard form

4.9) k; = C; Trexp(—es/kT)

we have ' = 3—2n,. Experimental values for ¢’ are 4-7 for diatomic gases such as oxy-
gen and nitrogen. Including all translational and rotational modes we have " = 6 and 8,
respectively, for A—A4, and A,—A, encounters. These values have been used in the pre-
sent study along with the assumption that p,.c = paiss = 1.

In the case of dissociation the pair energy is reduced by the dissociation energy e, and
an inelastic collision is executed. The resulting post-collision parameters for the partici-
pating M-particle are stored. The A,-particle, having post-collision velocity u;, and inter-
nal energy e, is then dissociated into two A-particles with the center of mass velocity
G’ = uy and the pair translational energy e, = —;'— a4 8% The A,-particle is scratched from
storage and two A-particles are created. On the assumption of post-dissociation isotropy
the direction of the relative velocity g’, say measured relative to the direction of G/, is
assigned at random by cos@ = 1—24. Then, the speeds u, and u, of the two dissociated
A-particles are calculated in the usual way. The flow diagram of Fig. 3 summarizes the
foregoing strategy.

5. Results

The reactive collision model including internal energy has been employed in the study
of two cases of chemical relaxation in a homogeneous gas at constant volume. That is,
in the dissociation transient of an initially diatomic gas, and the recombination transient
of an initially monatomic gas.

In all simulations the initial temperature T, was employed as the reference tempera-
ture. Times are made dimensionless with respect to the hard-sphere collision time 4, con =
= (2n)”3f(4nono’,2¢,Co) of A,-molecules at density n, and most probable speed C,. Mass
density, which enters in the strategy for recombination, is measured relative to a reference
density g, introduced into Eq. (4.2) by rewriting it in dimensionless form as

G.1) Tiiee = 4Y 270 (0°1),e((Gb/2) (04, /0eet)* (0/0rer),

where G, = 0,/04,, & = g/co and p/p.er = No/nec. Employing p = nkT at p. =1
atm and T, = 298 K, and selecting o,¢ = 04, = 3.55- 1071° m gives (0°n),; = 1.1-1073.
Hence, for a given gas of specified e; each value of &; = ¢;/kT, = 6,/T, determines
the absolute initial temperature T, which, along with a specified density ratio /o,
fixes the initial state.
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(Tt.A+ oy T:ot.Az),(l +ay),
T;, 4 is the translational temperature of A-particles, and

ix =

T

G+ (1-®)/2q,
Tior, 4, = 3Ty, 4,+ xTi. 4,)/(3+x) the total temperature, T, 4, and 7} 4, respectively

(dng,[dt)g = —v4,p{e > e+ e,/ coll} paiss,

Each simulation is started with a sample of 500 A,-particles at thermal equilibrium

at Ty, and the increment for updating time counters is Zo,con-
Figure 4 shows a typical approach to dissociation equilibrium and the associated de-

crease in total temperature for the case of ¢; =2 and e, = 0. The total temperature of

the mixture is calculated from

(5.2)
The initial rate of dissociation of A,-particles may be calculated from

(5.3)
where the bimolecular collision rate vy, is ni,O‘i,@n)] 2C, and the probability that the

the translational and internal temperatures of A,-particles evaluated in the usual way

from the particle sample.

5.1. Dissociation transient
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o0
available energy e in collision exceeds e;+e, at equilibrium equals f fﬁ_(é)dé. Here
’ fateq

¢ = e/kT, and f0.(2) is the equilibrium distribution of 4" available degrees of freedom,
of the form given by Eq. (2.3) replacing x by %' and e; by e. Taking e, = 0, ps; = 1 and
y' = 8 the dimensionless form of Eq. (5.3) becomes

(5.4 (dufdt)e = —(1/12) (&3 +3e3+6&,+6)exp(—ey).

Figure 5 shows Eq. (5.4) compared to results of simulations. The scatter represents
the use of increments from 0.1 to 1.0 times 7, for updating time counters in order to
approach the limit 7 — 0.

Figure. 6 shows equilibrium dissociation versus temperature for three values of mass
density. The theoretical relation is of the form of Eq. (1.1), but more involved. The tem-
perature dependence corresponds approximately to § = —3/2.

5.2. Recombination transient

The simulations in this case are started with 500 A-particles at thermal equilibrium
at temperature T;,. To accelerate the recombination only the case of high density /g =
= 10 is studied.
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Figure 7 shows the typical approach to dissociation equilibrium with the associated
increase in total temperature for the case of e; = g, = 6.0. Figures 8 and 9 show a para-
metric study of temperature and degree of dissociation, respectively, for the recombina-
tion transient at fixed dissociation energy &; = 6.0 and increasing values of activation
energy from 0 to 10. As g, increases the characteristic reaction delay increases from zero
to more than forty fg,..,. Non-zero activation energy has been included to illustrate the
simulation of characteristic features of simple exothermic one-step chemical reactions.

5.3. Computer times and storage requiremert

Typical CPU-times (IBM 370-165) in seconds per 1000 collisions range from 5 in the
first #g,con to from 2.5 to 1.2 in the following 36 fg,con for the dissociation transient. The
corresponding times are 1.8 and 1.3 to 0.75 for the recombination transient. These times
include the calculation of moments and other book-keeping. The total time for simulating
one curve of Fig. 6 is 150 seconds. The Fortran program comprises about 700 statements
and is of size 19 k-bytes and is run within a 120 t-byte region with the Fastfort compiler.

6. Conclusion

The present study of chemical relaxation in a homogeneous gas illustrates the feasi-
bility of Monte Carlo simulation of rarefied gas flows with a simple chemical reaction,
including the contribution of internal energy modes. A variety of reaction models may be
constructed by choice of a central force inverse power law other than that of hard-spheres
and through adjustment of the parameters g, Z, paiss and pe... In addition, the statistical
collision model may be used in a modified form in which all collisions are inelastic and
the energy exchange is statistically restricted (LARSEN and BORGNAKKE 1974). Actually,
this model has a minor deficiency, as pointed out by PULLIN (1975), in that the fraction
of energy made available for correct statistical exchange during a collision is fixed and
not selected statistically, hence micro-reversibility is not satisfied. Nevertheless, the model
is able to reproduce satisfactory equilibrium distributions and the use of fixed fractions
affords savings in computer time. Still, the model is more time consuming than the one
described in the present study.
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