Archives of Mechanics ® Archiwum Mechaniki Stosowanej e 28, 5-6, pp. 803-808, Warszawa 1976

Descriptions of disparate-mass gases

E. A. JOHNSON (SURREY)

IT 1s known that one needs generalized Navier-Stokes equations to describe a gas mixture with
a large disparity in species masses, in order to allow for the possibility of different temperatures
for the different species. Various ways of obtaining such descriptions have been proposed.
The set of thirteen-moment equations for a binary mixture of Maxwell molecules provides a set
of governing equations which is completely explicit. These equations are used to demonstrate
how different descriptions at the Navier-Stokes level, in terms of one temperature or two, are
relevant, depending upon the magnitude of species mass-ratio and upon properties of physical
situations of interest. The relation of the present treatment to previous descriptions is also dis-
cussed.

Wiadomo, Ze uogélnione rownania Naviera-Stokesa sa potrzebne do opisu mieszanin gazowych
cechujacych sie duza roznorodnoscia mas poszczegdinych gatunkéw gazow, co pozwala na przy-
porzadkowanie roznych temperatur réznym gatunkom. Dotad proponowane byly rdézne spo-
spoby wyprowadzenia takich opiséw. Uklad trzynastu réwnai momentowych dla dwuatomowej
mieszaniny czastek Maxwella prowadzi do ukladu réwnan konstytutywnych w catkowicie jawnej
postaci. Rownania te postuzyly do wykazania, jak rézne opisy na poznomte roéwnan Naviera-
Stokesa, zawierajace jedna lub dwie temperatury, sa mozliwe do przyjecia w zaleznosci od sto-
sunku mas gazéw i wilasnoéci rozwazanego zjawiska fizycznego. Przedyskutowano rowniez
zwiazek niniejszego podejécia z opisami poprzednimi.

HasectHO, yTo 0600IIEeHHEIe YpaBHeHnAa Haebe-CToOKCa HY)KHBI IS OIMCAHHMA Ta30BLIX CMe-
ceil, XapaKTepH3YIOUMXCA GONMbIIOH pPasHOPOAHOCTEIY MacC OTAeNIbHBIX COPTOB 330B, 4TO
MO3BOJIACT CONMOCTABHTh PasHble TEMMEpPaTyphbl PasHbIM COPTOM ras3oB. [lo cux mop mpegna-
rajgucek pasHble CnocoObl BRIBOAA TaKMX onucaHmid. CucTeMa TPHHAUATH MOMEHTHBIX YpaBHe-
HHil 1A QBYXaTOMHON cMecH Molekyn Makcpesula MPHBOMMT K CHCTEMe ONpeneNsiolHx
YpaBHeHHWil BIOJHE ABHOM BHIe. 3TH YPaBHEHUA NMOCTY)KWIH [JIA IOKa3aHHA, KaK pasHble
ONHMCcaHMA Ha YpoBHe ypaBHerui Hapwe-Crokca, coflepikaBlUMe OHY HJIM [BE TeMIEpPaTyphl,
BO3MOXKHO NPHHATE B 3aBHCHMOCTH OT OTHOLLIEHHMA MacC rasoB H CBOJNCTB paCCManKBRCMOI'O
tusnueckoro Arnenusa. OGCy/IeHa TOXe CBA3b HACTOALIETO MOAXOMAA C NpeAblAYLIHMH OIH-
CAHMAMH.

1. Introduction

THE PROBLEM under discussion is the proper description of a gas which is composed of
a mixture of very heavy particles with very light particles, in the simple case in which
gradients are assumed fairly small, and in which number densities, and intermolecular
forces, are assumed of similar magnitudes to each other. For simplicity, the particles are
assumed to interact as Maxwell molecules, but this assumption may be easily generalized
to include any inverse-power force law.

As is well known, the Navier-Stokes equations for a gas can be derived from the Boltz-
mann equation, for instance by the method of CHAPMAN and ENnskoG [1]. They can also
be obtained from Grad’s thirteen-moment approximation [2]. Mathematically, these
derivations make use of the presence of a small parameter ¢ in the equations. Phys-
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ically, in order for & to be small, it is necessary for macroscopic lengths of interest to be
large compared to the mean free path in the gas, and for macroscopic times to be long
compared to the mean collision time.

For the Boltzmann equation itself, the starting point for the Chapman-Enskog so-
lution is the nondimensional equation

) 1

For binary mixtures, the usual generalization is

(& +v-9)si= Lpwra,
with an entirely similar generalization in the thirteen moment equations for the mixture.
From these, one obtains the standard Navier-Stokes equations for the mixture, and in
particular a description in terms of a single temperature for the gas. Physically, however,
one knows that in gas mixtures in which the constituent masses are very different (for
instance, in plasmas), two-temperature effects can be important. Mathematically, in a dis-
parate-mass mixture one has a problem with the possibility of two small parameters,
g and 6 = (m,[my)""%, m; € m,. Thus, it should not be surprising that the usual mix-
ture Navier-Stokes equations should not apply [3], since their derivation involves the
assumption of a single small parameter only, eg., a single characteristic relaxation time
for initial transients.

2. Review of previous treatments

To get a description suitable for the particular case of a disparate-mass gas, people
have therefore tried reordering the relevant coupled Boltzmann equations so as to obtain
solutions of a Navier-Stokes type which would nevertheless apply to a disparate-mass
gas, and contain the possibility of separate species temperatures.

The first such suggestion was that of GRAD [4]:

i, 1
(‘g;"‘“"v)fl = ‘é}“-}il‘i‘-}:zs

] 1
(E +v: V)fz =Jay +—£—122-

This does indeed give zero-order distribution functions which are locally Maxwellian
about independent species temperatures T; and species flow velocities U;. It has been
shown, however [5], that other consequences of these equations give unphysical predic-
tions, at least if applied to disparate-mass gases.
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A different reordering suggestion was made by CHMIELESKI and FERZIGER [6], and
independently by GALKIN [7]:

) 1
('“a}“ +v: V)fl = ';[fu +J5]1+ V12— 5],

d 1
(E +v: V)fz =Ju+ ‘S"Jzz,

where J{5 is the collision term one would obtain if m7®, in a straightforward gener-
alization of the early treatment of LorenTz [8]. This reordering gives zero-order distri-
bution functions which are local Maxwellians about separate temperatures (but a com-
mon flow velocity). It seems to be a correct reordering for the collision terms, and to con-
tain the potentiality for giving good results for transport coefficients.

Recently, PETIT and DARROZES [3] have considered the problem again. These authors
suggest that the correct equations for a disparate-mass mixture are best found, first by
explicitly non-dimensionalizing the relevant Boltzmann equations, and then by making
a “composite expansion” [9] in € and 6 so as to make explicit all consequences follow-
ing from the possibility that d can be of the same order as &. When one explicitly non-
dimensionalizes the Boltzmann equations, it becomes obvious that the left-hand-sides
of these equations have different dependences on é. Thus, Petit and Darrozes have been
the first to point out what should, perhaps, have been obvious: that for a proper treat-
ment of disparate-mass gases it is necessary to reorder the left-hand sides, as well as the
right-hand sides, of the Boltzmann equations.

A different approach, more closely related to the thirteen-moment approach to be
presented here, is the two-fluid treatment of GoLpMAN and SirovicH [10]. The justifica-
tion for this approach is not straightforward. The results of the present work, however,
suggest that the treatment of Goldman and Sirovich gives transport coefficients correctly
(that is, correct in an approximate sense, as the correct first-order approximations to
the exact results obtainable from a correct reordering procedure). Our results also suggest
that the governing equations, and equations of change, derived by Goldman and Sirov-
ich are potentially correct, but that some specific conclusions, obtained by speciali-
zation to disparate-mass gases or to the Chapman-Enskog regime, are not correct.

3. Thirteen moment approach

The present work has been done in association with GoeBeL and HARRIS [11]. General
thirteen-moment equations have been obtained for a binary mixture of Maxwell molecu-
les, for arbitrary masses, number densities, and intermolecular force constants. This
has been done by choosing approximate distribution functions of the form

fi= EOJ[I"’i'%'Vi(—;‘—G{.‘ViZ)'F ZE‘:; {Pi}i{VjVi}]s

[}
with f{® taken for generality to be locally Maxwellian about independent species temper-
atures T; and flow velocities U;. Here V; is the peculiar velocity with respect to U;,
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and the species pressure deviators and heat fluxes (calculated with respect to U;) are
{P:} and q; respectively. This choice was expected to provide the most flexibility for
various uses.

3.1. Ordinary mixtures

For ordinary gas mixtures, with a single small parameter &, the thirteen moment equa-
tions so obtained describe the relaxation of initial transients on a time scale of order &
of a macroscopic time. Thereafter, they give back the familiar Navier-Stokes equations
for a mixture. The diffusion velocity W = U,—U,, {P;}, and q; are small effects in
this regime, of order ¢ of suitable reference quantities, as one must expect. There is
also an additional equation for the temperature difference between the species, AT = T, —
—T,. AT appears as a second order effect, ~ &2T, (T, a reference temperature). Thus,
as expected, only a single temperature appears to first order, just as in the Chapman-
Enskog development. The regime is a normal one describable in terms of species number
densities n;, overall flow velocity U, and common temeprature 7.

3.2. Disparate-mass mixtures

One may next consider disparate-mass mixtures, for which é < 1 (but force con-
stants and number densities are comparable). A small value of § implies the presence
of multiple relaxation times: initial transients in W, {P,}, and q, relax in times of the
order of the light species self-collision time 7,; those in {P,} and g, relax in times of
the order of the heavy species self-collision time 7, ~ (7,/d); and those in AT relax
over a time v, which is longer still, t,r ~ (7;/d). This is the epochal relaxation pre-
dicted by GRrAD [4]. A second consequence of small & is some simplification of the full
equations, for instance some decoupling of the equations for {P;} and for gq;, and simpler
expressions for transport coefficients. A third consequence of small § is the different des-
criptions found necessary depending upon the regime under consideration.

i) Normal regime

In those situations in which all characteristic times of the system are much longer
than 74r (the regime 6 > &), one is dealing with an asymptotic solution in a single small
parameter &. The description obtained is a normal one, of Chapman-Enskog type, with
the simplifications noted above. A typical simplification is the relation obtained for the
diffusion velocity,

W = —DVinp,,
where p, = n, kT, the light species pressure. (GOLDMAN and SirovICH [10], in contrast,
have asserted that when ©,r > 7,, no normal solution is possible).
ii) “Near-normal” regime

In situations in which a characteristic time in the system can be of the order of 7,7,
one is in a regime in which & ~ &. In this case, the thirteen moment equations can
be reordered in the same way as that used by PeriT and DARROZES [3] on the Boltzmann
equations themselves. When this is done, one finds that the nondimensional diffusion
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velocity W and light species heat flux q, are terms of order (¢/d) ~ 1, and that the (non-
dimensional) temperature difference is a term of order (¢/8)? ~ 1. Thus these effects, which
are small effects, of first and second order, respectively, in usual mixtures, must appear
as zero-order effects in a disparate-mass gas in this regime. One also finds that the nondi-
mensional parameters {P,} and q, are of order ¢, while {P,} is in effect smaller still,
of order (de).

The second point to be made about the present regime is that (47T) has not yet rela-
xed to normal behavior. Thus 7y and T, (or, equivalently, T and AT) are still inde-
pendent parameters, still dependent upon their initial conditions. All other parameters
W, {P;}, and q; will depend upon initial conditions, and thus be non-normal, by virtue
of their dependence on 7; and T,.

Finally, in this regime the governing equations for the system will be different from
the usual mixture equations. From the conservation equations for mass, momentum,
and energy, one has respectively

1. [zero order = first order]:

Do,

D +0,V-U=-V:o,W =0,
Dg, )
-E +0,V U=0

2. [zero order]:

DU
S +V("IkT1 +ﬂsz2)

02 Dl‘ - 0
[first order]: o
+V- {Py}
3. [zero order]:
D (3 5
—ﬁt—(?nkT)+~2—nkTV U+V- q40

[first order]: =0

+V-ay+ {P,}: VU

Here D/Dt = (8/3t+VU V), and q;, are the heat fluxes taken with respect to the overall
flow velocity U:

5
90 = Q1 —?le‘ Q20 = 4z
in this regime.
For the equations of change, one finds
W = —DVinp, (p = nkTy)

for the diffusion velocity. This is the usual classical equation for W, when d < 1, plus
an additional term in AT. This relation has already been derived by GOLDMAN and
SirovicH [10]. For {P,} one obtains

{P2} = —2u,(T;) {VU},
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and for the heat fluxes,
q = = AL(T)VT,.

The equation governing the temperature separation AT seems to have been derived previ-
ously only by GoLpMAN and SirovicH [10], who have neglected terms which must ne-
cessarily be included. When these inclusions are made, the expression for AT simplifies
considerably, and one obtains

D 2 R . _

In these equations, all transport coefficients are known explicitly [11]. The results obtained
here are found to agree with those derivable from the work of PETIT and DARROZES [3],
to lowest order, once account is taken of the difference between the Maxwell gas treated
here and the Coulomb case considered by those authors.
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