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Descriptions of disparate-mass gases 

E. A. JOHNSON (SURREY) 

IT IS known that one needs generalized Navier-Stokes equations to describe a gas mixture with 
a large disparity in species masses, in order to allow for the possibility of different temperatures 
for the different species. Various ways of obtaining such descriptions have been proposed. 
The set of thirteen-moment equations for a binary mixture of Maxwell molecules provides a set 
of governing equations which is completely explicit. These equations are used to demonstrate 
how different descriptions at the Navier-Stokes level, in terms of one temperature or two, are 
relevant, depending upon the magnitude of species mass-ratio and upon properties of physical 
situations of interest. The relation of the present treatment to previous descriptions is also dis­
cussed. 

Wiadomo, ze uog6lnione r6wnania Naviera-Stokesa S<! potrzebne do opisu mieszanin gazowych 
cechuj'lcych si~ dui:'! r6znorodnosci'l mas poszczeg6lnych gatunk6w gaz6w, co pozwala na przy­
porZ<Idkowanie r6znych temperatur r6znym gatunkom. Dot<Id proponowane byly r6zne spo­
spoby wyprowadzenia takich opis6w. Uklad trzynastu r6wnan momentowych dla dwuatomowej 
mieszaniny CZ<!Stek Maxwella prowadzi do ukladu r6wnan konstytutywnych w calkowicie jawnej 
postaci. R6wnania te poslui:yly do wykazan:a, jak r6zne opisy na poziomie r6wnan Naviera­
Stokesa, zawieraj'lce jedn<Ilub dwie temperatury, S'l mozliwe do przyj~ia w zaleznosci od sto­
sunku mas gaz6w i wlasnosci rozwai:anego zjawiska fizycznego. Przedyskutowano r6wniez 
zwi<Izek niniejszego podejscia z opisami poprzednimi. 

l13BeCTHO, "liTO o6o6I.QeHHbie ypaaHeHHH Haabe-CToKca HY>KHbi ~mi ormcaHHH ra30BbiX cMe­

ceii:, XapaKTepH3yiOI.QHXCH 60JibliiOH pa3HOpO~HOCTbiO MaCC OT~eJibHbiX COpTOB ra30B, "liTO 

ll03BOJIHeT COllOCTaBHTb pa3Hble TeMnepaTypbi pa3HbiM COpTOM ra330B. ,Uo CHX nop npe~a­
ra.JIHCb pa3H:bie cnoco6hi BbiBo~a TaKHX onHcaHHii:. CHCTeMa TpHHa~u;aTH MOMeHTHbiX ypaaHe­

HHH ~JIH ~ayxaTOMHOH cMecH MOJieKyn Mai<CBeJIJia npHBO.rtHT K CHCTeMe onpe~eJIHIOI.QHX 
ypaBHeHHH BDOJIB;e HBHOM B~e. 3TH ypaaHeHHH llOCJIY>f<HJIH ~JIH llOKa3aHHH, KaK pa3Hble 

onHCaHHH Ha ypoaHe ypaBH:eHHH Haabe-CToKca, co~epll<aaume o~HY HJIH ~ae TeMnepaTyphi, 

B03MO>KHO llpHH:HTb B 3aBHCHMOCTH OT OTHOllleHHH MaCC ra30B H CBOHCTB pacCMaTpHBaeMoro 

<l>H3HqeCKOrO HBJieHHH. 06cy~eHa TO>«e CBH3b HaCTOHI.Qero llO~O~a C npe~bi~YI.QHMH OllH­

CaHHHMH. 

1. Introduction 

THE PROBLEM under discussion is the proper description of a gas which is composed of 
a mixture of very heavy particles with very light particles, in the simple case in which 
gradients are assumed fairly small, and in which number densities, and intermolecular 
forces, are assumed of similar magnitudes to each other. For simplicity, the particles are 
assumed to interact as Maxwell molecules, but this assumption may be easily generalized 
to include any inverse-power force law. 

As is well known, the Navier-Stokes equations for a gas can be derived from the Boltz­
mann equation, for instance by the method of CHAPMAN and ENSKOG [1]. They can also 
be obtained from Grad's thirteen-moment approximation [2]. Mathematically, these 
derivations make use of the presence of a small parameter e in the equations. Phys-
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ically, in order for c to be small, it is necessary for macroscopic lengths of interest to be 
large compared to the mean free path in the gas, and for macroscopic times to be long 
compared to the mean collision time. 

For the Boltzmann equation itself, the starting point for the Chapman-Enskog so­
lution is the nondimensional equation 

(;, +v. V )t ~ +J(f,f). 

For binary mixtures, the usual generalization is 

(j_+v·v)+- = I_[J .. +J.] Ot Ji c 11 IJ ' 

with an entirely similar generalization in the thirteen moment equations for the mixture. 
From these, one obtains the standard Navier-Stokes equations for the mixture, and in 
particular a description in terms of a single temperature for the gas. Physically, however, 
one knows that in gas mixtures in which the constituent masses are very different (for 
instance, in plasmas ), two-temperature effects can be important. Mathematically, in a dis­
parate-mass mixture one has a problem with the possibility of two small parameters, 
c and c5 = (m 1 /m2 )

112
, m1 ~ m2 • Thus, it should not be surprising that the usual mix­

ture Navier-Stokes equations should not apply [3], since their derivation involves the 
assumption of a single small parameter only, eg., a single characteristic relaxation time 
for initial transients. 

2. Review of previous treatments 

To get a description suitable for the particular case of a disparate-mass gas, people 
have therefore tried reordering the relevant coupled Boltzmann equations so as to obtain 
solutions of a Navier-Stokes type which would nevertheless apply to a disparate-mass 
gas, and contain the possibility of separate species temperatures. 

The first such suggestion was that of GRAn [4]: 

This does indeed give zero-order distribution functions which are locally Maxwellian 
about independent species temperatures Ti and species flow velocities Vi. It has been 
shown, however [5], that other consequences of these equations give unphysical predic­
tions, at least if applied to disparate-mass gases. 
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A different reordering suggestion was made by CHMIELESKI and FERZIGER [6], and 
independently by GALKIN [7]: 

(:t +•. v)!, = + [Ju +ll"zl+ [J,2-Jf,], 

{:
1 

+•· v}!2 = 12, ++J22. 

where JU, is the collision term one would obtain if m-;'~\ in a straightforward gener­
alization of the early treatment of LORENTZ [8J. This reordering gives zero-order distri­
bution functions which are local Maxwellians about separate temperatures (but a com­
mon flow velocity). It seems to be a correct reordering for the collision terms, and to con­
tain the potentiality for giving good results for transport coefficients. 

Recently, PETIT and DARROZES [3] have considered the problem again. These authors 
suggest that the correct equations for a disparate-mass mixture are best found, first by 
explicitly non-dimensionalizing the relevant Boltzmann equations, and then by making 
a "composite expansion" [9] in e and ~ so as to make explicit all consequences follow­
ing from the possibility that ~ can be of the same order as e. When one explicitly non­
dimensionalizes the Boltzmann equations, it becomes obvious that the left-hand-sides 
of these equations have different dependences on ~. Thus, Petit and Darrozes have been 
the first to point out what should, perhaps, have been obvious: that for a proper treat­
ment of disparate-mass gases it is necessary to reorder the left-hand sides, as well as the 
right-hand sides, of the Boltzmann equations. 

A different approach, more closely related to the thirteen-moment approach to be 
presented here, is the two-fluid treatment of Gor • .oMAN and SIROVICH [10]. The justifica­
tion for this approach is not straightforward. The results of the present work, however, 
suggest that the treatment of Goldman and Sirovich gives transport coefficients correctly 
{that is, correct in an approximate sense, as the correct first-order approximations to 
the exact results obtainable from a correct reordering procedure). Our results also suggest 
that the governing equations, and equations of change, derived by Goldman and Sirov­
ich are potentially correct, but that some specific conclusions, obtained by speciali­
zation to disparate-mass gases or to the Chapman-Enskog regime, are not correct. 

3. Thirteen moment approach 

The present work has been done in association with GoEBEL and HARRIS [11]. General 
thirteen-moment equations have been obtained for a binary mixture of Maxwell molecu­
les, for arbitrary masses, number densities, and intermolecular force constants. This 
has been done by choosing approximate distribution functions of the form 

r - JC 0 ) [ 1 2 
Qi qi · V ( 5 V 2 ) Qi {P } · {V V }] 

Ji - i - S- p'f i 2 -IX; i + 2pf i · i i , 

with _!}0
) taken for generality to be locally Maxwellian about independent species temper­

atures 1i and flow velocities Ui. Here Vi is the peculia-r velocity with respect to Vi, 
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and the species pressure deviators and heat fluxes (calculated with respect to Vi) are 
{Pi} and qi respectively. This choice was expected to provide the most flexibility for 
various uses. 

3.1. Ordinary mixtures 

For ordinary gas mixtures, with a single small parameter e, the thirteen moment equa­
tions so obtained describe the relaxation of initial transients on a time scale of order e 
of a macroscopic time. Thereafter, they give back the familiar Navier-Stokes equations 
for a mixture. The diffusion velocity W = U2 - U 1 , {Pi}, and qi are small effects in 
this regime, of order e of suitable reference quantities, as one must expect. There is 
also an additional equation for the temperature difference between the species, Ll T = T 2 -

- T1 • Ll T appears as a second order effect, "" e2 T0 (T0 a reference temperature). Thus, 
as expected, only a single temperature appears to first order, just as in the Chapman­
Enskog development. The regime is a normal one describable in terms of species number 
densities ni, overall flow velocity U, and common temeprature T. 

3.2. Disparate-mass mixtures 

One may next consider disparate-mass mixtures, for which l5 ~ I (but force con­
stants and number densities are comparable). A small value of l5 implies the presence 
of multiple relaxation times: initial transients in W, {P 1 }, and q1 relax in times of the 
order of the light species self-collision time T 1 ; those in {P 2 } and q2 relax in times of 
the order of the heavy species self-collision time T 2 "" ( T 1 I l5); and those in L1 T relax 
over a time TAT which is longer still, TAT "" ( T 2 I l5). This is the epochal relaxation pre­
dicted by GRAD [4]. A second consequence of small l5 is some simplification of the full 
equations, for instance some decoupling of the equations for {Pi} and for qi, and simpler 
expressions for transport coefficients. A third consequence of small l5 is the different des­
criptions found necessary depending upon the regime under consideration. 

i) Normal regime 

In those situations in which all characteristic times of the system are much longer 
than T..1T (the regime l5 ~ e), one is dealing with an asymptotic solution in a single small 
parameter e. The description obtained is a normal one, of Chapman-Enskog type, with 
the simplifications noted above. A typical simplification is the relation obtained for the 
diffusion velocity, 

W = -DVlnp1 , 

where p 1 = n1 kT, the light species pressure. (GoLDMAN and SIROVICH [10], in contrast, 
have asserted that when r ..1T ~ r 2 , no normal solution is possible). 

ii) "Near-normal" regime 

In situations in which a characteristic time in the system can be of the order of TAT, 

one is in a regime in which l5 "" e. In this case, the thirteen moment equations can 
be reordered in the same way as that used by PETIT and DARROZES [3] on the Boltzmann 
equations themselves. When this is done, one finds that the nondimensional diffusion 
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velocity W and light species heat flux q 1 are terms of order ( e I~) ,..._ 1, and that the (non­
dimensional) temperature difference is a ·term of order (el~)2 ,..., 1. Thus these effects, which 
are small effects, of first and second order, respectively, in usual mixtures, must appear 
as zero-order effects in a disparate-mass gas in this regime. One also finds that the nondi­
mensional parameters {P 2 } and q2 are of order e, while {P 1 } is in effect smaller still, 
of order (~e). 

The second point to be made about the present regime is that (LJ T) has not yet rela­
xed to normal behavior. Thus T1 and T2 (or, equivalently, T and LIT) are still inde­
pendent parameters, still dependent upon their initial conditions. All other parameters 
W, {Pi}, and qi will depend upon initial conditions, and thus be non-normal, by virtue 
of their dependence on T1 and T2 • 

Finally, in this regime the governing equations for the system will be different from 
the usual mixture equations. From the conservation equations for mass, momentum, 
and energy, one has respectively 

1. [zero order = first order]: 

Dr.h 
---nf+e1V· U-V· e1W = 0, 

De2 ---nf +e2V ·V= 0. 

2. [zero order]: 

[first order]: 
DV I e2 Dt + V(n1kT1 +n2kT2) = O. 

+V· {P2 } 

3. [zero order]: 

~~ ( ~ nkT) + ~ nkTV · U +V· q10 I = 
0

. 

+ V · q2 o + {P 2} : VU 

[first order]: 

Here D I Dt = (a I at+ V . V), and qiO are the heat fluxes taken with respect to the overall 
flow velocity V: 

in this regime. 
For the equations of change, one finds 

W = -DV1np1 (p1 = n1kT1) 

for the diffusion velocity. This is the usual classical equation for W, when ~ ~ 1, plus 
an additional term in L1 T. This relation has already been derived by GOLD MAN and 
SIROVICH [10]. For {P 2 } one obtains 

{P2 } = -2,u2 (T2){VU}, 
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and for the heat fluxes, 

Q; = - l;(T;) VT;. 

The equation governing the temperature separation L1 T seems to have been derived previ­
ously only by GOLDMAN and SIROVICH [10], who have neglected terms which must ne­
cessarily be included. When these inclusions are made, the expression for L1 T simplifies 
considerably, and one obtains 

D
D (L1T)+ 

2
3 

(L1T)V · U-
3

k
2 

V· q10 - ~V· (n1 W) = -R(LIT). 
t n1 n1 

In these equations, all transport coefficients are known explicitly [11]. The results obtained 
here are found to agree with those derivable from the work of PETIT and DARROZES [3], 
to lowest order, once account is taken of the difference between the Maxwell gas treated 
here and the Coulomb case considered by those authors. 
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