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Approximate analytical solution of the steady axisymmetric supersonic
free jet of a reacting gas

G. GRABITZ (GOTTINGEN)

THIS PAPER presents a theoretical investigation of a steady axisymmetric free jet of
a gas in which the thermodynamic state depends got only on pressure and density but also on
an additional state variable which indicates the degree of deviation from local equilibrium (e.g.,
the degree of dissociation). An integral method is used and by linearizing the obtained
approximate equations, an analytical solution can be found without specifying the equations
of caloric-state and rate. The interaction of the flow and the reaction is demonstrated by some
examples.

Niniejsza praca zawiera teoretyczna analiz¢ ustalonego, osiowo-symetrycznego swobodnego,
przeplywu gazu, w ktérym stan termodynamiczny zalezy nie tylko od ciénienia i temperatury,
lecz réwniez od dodatkowej zmiennej stanu okreslajacej stopieni odchylenia od lokalnego stanu
réwnowagi (np. rzad dysocjacji). Rozwigzujac réwnania wyjéciowe zastosowano metode cal-
kowita. Po zlinearyzowaniu otrzymanych przyblizonych réwnan znaleziono rozwiazanie
analityczne bez specyfikacji réwnania kalorycznego i rOwnania opisujacego proces relaksacji.
Wzajemne oddzialywanie przeplywu i procesu relaksacji pokazano na kilku przykladach.

B pafote mpeacTaBneH TEOpeTHUECKHIl aHANMM3 CTALMOHAPHOIO OCECHMMETPHUHOTO HCTEYEHHMT
rasa, TEpMOJHHAMHYECKOE COCTOAHHE HOTOPOro 3aBHCHT HE TOJIBKO OT OABJICHHA H TEMIepa-
TYPbI, HO TaKXKe OT JONOJIHMTEIEHOrO [apaMeTpa, ONpPENeIIAIOUIEr0 OTKIOHEHHE OT JIOKaslb-
HOT'0 PaBHOBECHA (IIPHMEPOM TaKOIO MapamMeTpa MoxeT ObITh MOPAMOK AMccouMalym). Peine-
Hue (QyHOaMEHTANBHBIX YPaBHEHMH HalfieHo MeTofoM HHTerpaioB. IlyTem imHeapmaarpmm
IMOJIyYEHHBIX NPUOIDKEHHBIX YPABHEHMI MOXKHO HaiTH aHATMTHYecKoe pellleHue 0e3 ompe-
JieNIeHUA KaopH4ecKoro ypaGHEHMs M pellaKCallHOHHOTO, ypaBHeHus. Ha HecKONBKHX npu-
Mepax MoKasaHO B3aMMHOE BO3[eHCTBHE TEUCHHA H IPOLECCA peflaKCallHH.

1. Introduction

THE WAVE structure of a supersonic free jet causes a non-monotonic variation of the flow
variables along the axis of such a jet. Therefore, the supersonic jet is well-suited for the study
of non-equilibrium effects under the conditions of both expansion and compression.

This paper presents a theoretical investigation of steady axisymmetric free jet of a gas
in which the thermodynamic state depends not only on pressure p and density p but also
on an additional variable « (e.g., the degree of dissociation) which may deviate from its
local equilibrium value. Approximate formulas will be given which possess the same (rough)
accuracy as the well-known Prandtl-formula in the case of a perfect gas [1].

2. Approximate differential equation

The basic equations in integral form are applied to finite parts of the jet. The equations
of mass and momentum of a sectional part of the jet as shown in Fig. 1 are given as follows:
R

.1 fgwcosz?rdr =ity
0
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X and r are the axisymmetric coordinates (Fig. 1); w is the velocity and  the angle between

the axis and the vector of velocity. R is the distance between the axis and the boundary

of the jet. The subscripts N and R refer to the values at the exit of the nozzle and at the

boundary of the jet. ¢,, ¢,, c; are constants.

X . F1c. 1. Control surface.

The energy equation is used in the form

w2
——+h = const,
3 -+

h is the enthalpy per unit mass. We assume that the state equation is of the form

h = h(p, e, ®).
The rate equation
wgrade = L(p, 0, @)
gives the production velocity of that gas portion which is characterized by the relaxation

variable o.
R
In the conservation equations (2.1) there are integrals of the form [ f(X, r)rdr. We solve
0

these integrals using the linear approach

(2.2) SX, r) = fa(X)+ [fo(X) —fAX)l-——R{X) .

In this way we obtain approximate equations involving R, which is the distance between
the axis and boundary, and flow variables along the axis (indicated by index A4) and along
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the boundary (indicated by index R) as unknown functions of the coordinate in the direction
of the axis.

R*(04w4+20gwreosdy) = ¢y,

(23) R*(0 w4 +Ppa+20rWrcos*Pr—pr) = 3c;—3pr R,
X
Rexwisin29x+3 [ R(pr—pa)dX = 3cs.
0

The energy equation, state equation and rate equation

wl
-5 +h = const,
(24) h = h(g, a, p),

wgrada = L(o, p, ®)

are valid both along the axis and the boundary of the jet.

By mearms of the simple relationship between the distance, between the axis and boundary
and the inclination of the boundary of the jet
@) IR gt
one can deduce an ordinary differential equation system which can be solved by well-
known numerical methods. In earlier papers [2, 3] some examples were calculated in
this way.

In the present investigation the system (2.3), (2.4), (2.5) is solved through linearization.

We assume that the pressure pg on the boundary of the jet is only slightly smaller than
the pressure py at the exit of the nozzle; in special cases pg equals py.

We adopt for pressure, density, velocity, relaxation variable and distance between the
axis and boundary of the jet the perturbation variables y, o, u, £ and %; x is the dimensionless
coordinate in the direction of the axis.

S T % .
W:TQN - "Mﬁ #s On = l+o,
(2.6) i AR & =g,
Wy Oy
R s _X
Ry TRy

The index N refers to the undisturbed uniform flow in the nozzle. My is the Mach-number,
# is the ratio of specific heats. ay is the value of the relaxation variable in the nozzle, it need
not be the equilibrium value. £ and its derivative in the x-direction can be small, both near
the equilibrium and near the frozen state.

By introducing the perturbation approach (2.6) in the system (2.3), (2.4), (2.5) and
neglecting terms of the 2nd and higher order in the perturbation variables and their deriv-

14+
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atives, one obtains an equation system for the values of the perturbation variables both
along the axis (indicated by index A4) and along the boundary (indicated by index R):

Gatuy+20r+6n = —2MFug,

Ha = Uy,
d*ny 3 3
e R
diy oL aL) aL)
2.7 % = Ly+ —a) Eqt 2 04— 5 N“m

oh 0h
“4*(35),,“** [Fe),2 =

[l"(gﬁ) ] “*(22) Ga+(%)NsR »

The constant disturbance velocity at the boundary ug is calculated from the given
pressure at the boundary. The value of the rate function and the values of its partial deriv-
atives and those of the enthalpy at the end of the nozzle are assumed to be dimensionless
and are defined in a manner analogous to the variables.

We consider the relationship for the Mach-number (with frozen speed of sound)

(%)
1_ T
Mf} PN

(see, e.g., [4]) and introduce the following abbreviations:
(a"‘)
oL dL
. - ‘*( 39) (%),

_{aL . (oL
- ‘(6){”“ (ﬁa)

The equations (2.7)s and (2.7), can be treated separately and one can obtain a solution
along the boundary of the jet:

cug+Ly

ér = f(l—e_u).
2.9)
Op = AER—M;‘;,NR.
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This solution means: At the boundary of the jet the disturbances of the relaxation
variable and the density are not influenced by the processes in the inner jet; they tend
exponentially towards their equilibrium values. It may be easily shown that in the case
of non-linear exact equations, the relaxation variable and the density along the boundary
can also be treated separately from the inner jet.

Now, from the other equations of the set (2.7) we can extract a single differential
equation for the disturbance of the radius of the jet #. Using the abbreviation k =

= 3yM2—1, we get

2 2 2
(2.10) n”'+[v+ A';k ]n"+k2n’+vk2q = uRI:—g-v+ A‘:‘ ] AI‘;" .

The initial conditions are

ne) =0,
, 3

(2.11) n'(0) = % YR
3

??”(O) = -E'HR.

The second condition determines the inclination of the boundary of the jet at the edge
of the nozzle exit due to a Prandtl-Meyer-expansion. The third initial condition results
from Eq. (2.7); and u,(0) = 0.

3. Solution in general terms

The solution of the ordinary differential equation (2.10) is in principle very simple.
The solution of the inhomogeneous equation is

A 3 Ac ALy
3.1 = e —— dint—
(EN)) n u3(2k2+ 2v)+ 5 "

In order to obtain the solution of the homogeneous equation one has to solve the
characteristic algebraic equation of third order,

2
(3.2) e+ [v+ i;k_]£2+k,€ +vk? = 0.

The discriminant of this equation

Ac Ack? A%kt ( v Ac 9
= (k2 )2 2 2 I Bl i R = 1 (I Wicterly o ot B
D = (k2 +v¥)*+k 9[3v(v+ 9 )+ 81 k 2+36k +29):|

is difficult to analyse. We assume that D is positive. However, in the case of a negative
discriminant (D < 0) a free jet without wave structure could evolve. Whether such a flow
could be physically possible, and under what conditions, has not yet been examined.
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If D is greater than zero, then the characteristic equation has one real solution and two
conjugate complex solutions. These solutions have the form

1 Ack?
& = "V—T '5"+'——"9—' -
&
& = ______( Ack )+ﬁ

2
e Lt

y and f are real constants and are given by cubic roots of expressions involving the
coefficients of the differential equation.
Thus we arrive at the following solution of the differential equation (1.10):

N
(3) 5= ”"( 240 +i‘r“—”+cle s o Faeatls (sin fx+ C5 cos fx),
2 \k 2
: i Ack? 3 v s
N is the abbreviation for N = v+ 5 The constants C are given by the initial conditions
@.11)
3uR 3N ALN
Cit GG = ?(1“‘2‘7)‘7’

N N 3u
(”'T)C’ ‘(%*T)Czcﬁm -

N\? ) N 3
@“?%*{@*?)44QQ44%*ﬂQ=5%

From the solution (3.3) for the disturbance of the boundary of the jet, the solution for the
other flow variables can be derived. Thus, the solution for the disturbance of the
relaxation variable is given:

60 to=—efa (e [-¥]) N5

(3 ) [Blslnﬁx+B;COSﬁx]}

Cz([};—-}-g] +2,8€3[%+¥]—62+k’),
Bz=cz(ca[% T Zﬁ[ X+ ew-p).

It is difficult to discuss the solutions (3.3), (3.4) in general terms. For instance, ¥ and 8
are cubic roots of the expressions of coefficients of the differential equation. If one of the

L‘H'L" (14279

with

]

B,
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three exponents in Eqs. (3.3), (3.4) is positive, one obtains an instable solution. The
question under what physical conditions this is going to happen cannot be answered.
Instead of discussing our solution in general we shall consider special cases.

4. Special cases

4.1, Perfect gas

As a simple case of the differential equation (2.1) we consider the equation for the
flow of a perfect gas. The rate function in the nozzle equals zero and the relaxation length

tends to zero; this implies that » tends to infinity. Since (%) = 0, then 4 = 0. So we
N

get the simple differential equation
rH 3
n +k2?? = E Ug.

With the initial conditions (2.11) the solution is

4.1) Ul =%:—§(25inkx+l—coskx).
The jet boundary is a harmonic function with the wavelength
4.2) A=%=L:VM§—1.

For comparison the Prandtl-formula is given: Ap = %]/Mﬁ—l (x, = 2405 is
1

the first zero of the Bessel function of zero order).

In an earlier paper of the author [5] it is shown that the distances between the extreme
values of the boundary of an axisymmetric free jet are different from each other. The
first wavelength is 4 = 2.43)/MZ—1 [5, 6], but the mean wavelength which can be cal-

culated exactly is 4 = %]/Mf,-l [5). Hence, our solution (4.2) has the same rough accu-

racy as the Prandtl-formula.

4.2. Frozen flow

The frozen case is also simple. When the relaxation length is very long as compared
to the radius of the nozzle, the dimensionless representation of the rate function and its
derivatives equal zero

»=0, Ly=0,

_ (oL oL\ _
‘f—“‘(a—p)ﬁ ”N(TQ)N—"-

We then obtain the differential equation
n.rn_l_kznf _— 0.
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With the initial conditions for the shape of the jet (2.11) the same solution is obtained
as in the case of the perfect gas flow (4.1). Of course, another pressure distribution appears
due to the different adiabatic coefficient.

4.3. Non-equilibrium state in the nozzle

It is interesting tc study the special case which results when the pressure on the jet
boundary is made equal to the pressure in the nozzle, but it is assumed that a non-equilib-
rium state exists in the nozzle, that is Ly is not equal to zero. In addition, we assume that
the rate function depends only on the relaxation variable.

Pr=py, L=L(a).
The differential equation is then
kL
??u.r +vnu+k2n:+vkgn = A 2 N
with the initial conditions
7(0) = 7'(0) = ”(0) = 0.
The characteristic equation has the roots
& = —V, €a,.3 = ifk.

Hence we get the solution

T "R |
= 20+ [k*(1—e™"*)+v*(1 —coskx) +vksinkx],

fo= (1),

After a flow length, after which the relaxation variable approaches its equilibrium value,
a jet remains, the boundary of which is given by a harmonic function and which has the
same wavelength as the jet of a perfect gas. In example (4.1) the amplitude of the boundary
disturbance is determinied by the pressure disturbance and the Mach-number, whereas
in the present example the non-equilibrium state in the nozzle produces a wave
structure of the jet.

4.4. Ideal dissociating gas

The last example deals with the case of an ideal dissociating gas. For this example our
general solution is applied without any restrictions.
The gas is defined by the state equations [7]

o |

= (1+0) AT,

44a p
h = e E+aQT,
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and the rate function [8] for the degree of dissociation &

0./ Ta Ty -* 0
L=K,— —‘: l—a)— +K a“ l—a)e T «——fxz},
1 g‘ T ( ) T 2 ( ) 9‘

T is the temperature and 2 is the gas constant of the undissociated gas. The constants
are chosen such that the formulas apply to oxygen (7 = 59,000°K, g; = 150 g/cm?,
K, = 6.26-10**sec™!, K, = 69.1). For our example we use the following values of the
undisturbed reference state in the nozzle and of the pressure along the boundary of the jet:

Ry =01m, py=11-10°N,wy=1500m/s, Ty = 3000°K, pg = 10°N.

It is assumed that an equilibrium state exists in the nozzle: this means that the degree of
dissociation in the nozzle is oy = 0.0552.

For the reciprocal relaxation length » and the constants ¢ and 4, the following values
are obtained

v=142, c=—218, A= —0229.

After solving the characteristic equation of third order (3.2) one can get from Eqgs. (3.3)
and (3.4) the solutions

4.3) 7 = 0.0115-0.00317 ¢~ *-52% +-0.00951 ¢~ %123 [sin (2.86x) —0.875 cos (2.86x)],
(44) &, = 0.105¢~1-52% 4 ¢=0-193%[0,00858 sin (2.86 X)
+0.0477 cos (2.86x)] —0.0509(1 +2e~1-42%),

1 [ a
003

002 /’_“ /_.\ /

0,01 T
) N N
0 1 2 3 4 X
A b
015 : N
Aeq/ \
N \ .
010 —* E e

/ \ §A / \ ]
\ £ i
005 ;'* / ‘ 7 215 p

FI1G. 2. a) Disturbance of the boundary of the jet 7 (Eq. (4.3)). b) Disturbance of the degree of dissociation
along the axis of the jet £,(Eq. (4.4)).
& joq 18 the corresponding equilibrium value.
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As one may expect, the boundary of the jet (Fig. 2a) shows the damping effect of the
ralaxation. In Fig. 2b the disturbance of the degree of dissociation, Eq. (4.4), is compared
with its corresponding local equilibrium value. The actual values of the degree of dis-

S

ociation differ from the equilibrium values by a phase shift and a damping effect.
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