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Two-dimensional, two-phase flows in a Laval nozzle 
with nonequilibrium phase transition 

M. BRATOS and G. E. A. MEIER (WARSZAWA, GOTTINGEN) 

IN THIS paper the two-dimensional, two-phase flows with nonequilibrium phase transition are 
calculated using two different models of condensation: multifractional one and ,surface-aver
aged" droplets model of condensation. The numerical results for the flows in the different nozzles 
are compared with experimental ones. 

W pracy wyznaczono dwuwymiarowe i dwufazowe przeplywy z nier6wnowagow~ przemian~ 
fazowll, stosuj~c dwa r6zne modele kondensacji: wielofrakcyjny model kondensacji oraz 
model Hilla ,srednich" kropel. Rezultaty numeryczne uzyskane dla przeplyw6w w r6znych 
dyszach por6wnano z eksperymentem. 

B pa6oTe onpe~eJieabi ~B~'XMepahie H ~ayx<f>a3Hhie Teqeau~ c aepaaaosecahiM <f>a30BhiM ne
pexo~oM, npHMeH~~ ~Be pa3l{ble MO~eJIH KO~eHcaQHH: Ml{Oro<f>paKI.UfOl{HYJO MO~e.Jlb KOl{
~eHCaQHH H MO~eJib XuJIJia ,cpeAaHX" KaneJih. t.IHcJiel{Hhie pe3YJibTaTbi, noJiyqel{Hbie ~JI~ 
Teqeallli B pa3l{hiX coUJiax, cpasael{bi c 3KcnepHMel{ToM. 

Notations 

we mass fraction of a new phase, 
w 0 specific initial humidity, 

ffJ relative humidity, 
a surface tension, 

ed density of water (ice), 
11 molecular weight, 
y ratio of specific heats, 

&l universal gas constant, 
&l 

R = - specific gas constant, 
f.l 
p gas pressure, 
T gas temperature, 
e gas density, 
u velocity in x-direction, 
v velocity in y-direction, 
V [u, v]- velocity vector of the flow, 
s coordinate along a streamline, 
h specific enthalpy, 
r droplet radius, 
r "surface-averaged" droplet radius, 

r* critical droplet radius (r0 ~ r*), 
dr 

droplet growth rate, 
dt 

I nucleation rate. 
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Subscripts 

1. Introduction 

M. BRATOS AND G. E. A. MEIER 

air, 
k onset of condensation, 
m gas mixture of air and water vapour with suspended droplets, 
o stagnation condition, 
v vapour. 

IN OUR previous work [1-4] the analysis of steady, two-dimensional, two-phase flow in 
a Laval nozzle was presented. The aim of these papers was to clarify the role of two-dimen
sional treatment and only a very simple model of condensation was considered. In this 
paper we extend our previous analysis by introducing a more refined model of condensation. 
The physics of the considered flow can be described in a manner as outlined below (see 
Fig. 1). 

P/Po 
0.6r----------.--------~r---------~--------~ 
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02~0~----~~--------~~-------~4-------~w~.o~ x~mJ 
10 15 2.0 x/Ax 

Nozzle 
throat 

5=1 

Two-phase Flow 

Nozzle axrs 

FIG. 1. The dimensionless pressure distribution along the axis (curve 1) and along the wall of nozzle I 
(curve 2); <flo = 58%, To = 290.8°K. Po = 753.1 Torr. 
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The moist air enters the plane nozzle from the left. Somewhere behind the throat, in the 
supersonic part of the nozzle flow, saturation is attained as a result of cooling the gas by 
its expansion. Downstream from the saturation line there is a rather extended zone in which 
the water vapour is supersaturated and does not condense. In this region nucleation 
takes place but the nucleation rate is not enough to compensate the rate of cooling due 
to the expansion or, to put it in other words, the relaxation time of the phase transition 
does not keep pace with the characteristic time of the change of the flow parameters. 
Hence, the flow is nearly isentropic. 

With increasing supersaturation the condensation is intensified and reaches the maximal 
value at the so-called Wilson line, the position of which depends on the state of the entering 
gas and on the expansion rate. 

The so-called condensation zone is defined here as a region of an intensive phase tran-
sition from the point of the maximal supersaturation to the point of thermodynamic equili
brium. The condensation zone is characterized by pressure increase in comparison with 
a pressure distribution for the isentropic flow. 

In both the supersaturated region and in the condensation zone the thermodynamical 
equilibrium is lost and it is restored downstream in the region of two-phase flow. 

The aim of the previous work [1-4] was to investigate the role of two-dimensional 
treatment. It is clear that such an approach will be in better agreement with experimental 
data than the one-dimensional analysis. 

a 

b 

FIG. 2. The distribution of the constant density lines in the flow: a) numerical results, b) experimental 
ones (nozzle In; q;0 = 48.6%, To = 292.7°K, P0 = 752 Torr. 
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Figure 2 shows the theoretical distributions of the lines of constant density in the nozzle 
obtained by numerical computations. The calculated lines of the constant density can be 
compared directly with the interference fringes of Mach-Zehnder interferogram. One can 
see that this picture cannot be obtained in a one-dimensional treatment. In particular, the 
two-dimensional pattern is most pronounced in the condensation zone. 

Two effects contribute to this. First, the local expansion rate at the nozzle axis is lower 
than that near the wall. This leads to the more marked influence of a phase transition 
upon the flow near the axis than near the wall. Second, the phase transition close to the wall 
leads to local changes of gas state and these propagate along characteristics and reach 
the axis in the region where condensation takes place. As was already mentioned we used 
a very simple model of condensation, namely the so-called "surface averaged" droplets 
model of condensation. Here we would like to answer the two .questions. To what extent 
does a more realistic model of condensation influence the obtained picture of a flow? Is it 
possible to bypass a two-dimensional analysis with such a model of condensation? Or, in 
other words, is it possible to get a sufficiently precise description of a flow through a one
dimensional approach by introducing a more refined theory of condensation? 

The answer to these questions can be summarized as follows - a more reliable theory 
of condensation does not practically influence the results obtained with the one-dimensional 
approach. In contrast, the results of two-dimensional computations significantly depend 
on the chosen model of condensation and thus, for the testing of different model of conden
sation, the two-dimensional approach should be used. 

2. Basic model assumptions 

As in the previous papers we consider a steady, two-dimensional flow of an iviscid, 
non-heat conducting gas (moist air) which obeys the perfect gas equation of state. 

The following assumptions are used: 
The mass fraction of the condensated, incompressible phase is small; the condensated 

phase is in the form of spherical ice clusters with uniform temperature; the ice clusters 
do not interact with each other and have the same speed as the bulk flow. Further, we as
sume that mass and energy exchange between the two phases obeys the Herz-Knudsen 
theory. This theory can be applied if the mean molecular free path is appreciably higher 
than the size of the ice clusters or water droplets. 

Finally, it is assumed that full accommodation takes place. This means that the value 
of the thermal accommodation coefficients for the carrier gas (air) and for the water vapour 
are equal to 1. 

In the paper mentioned earlier the Hill theory of the droplets growth was adopted. 
In this theory the "surface-averaged" sizes of droplets are introduced and thus the rate 
of growth for all droplets in a given point of the flow is the same [5-7]. 

In the present paper a so-called multifractional model of condensation is used and 
instead of averaging the size of the droplets it is assumed that their rate of growth is the 
function of the radius of the droplet. As nucleation takes place along the whole stream, 

http://rcin.org.pl



TWO-DIMENSIONAL, TWQ-PHASE FLOWS IN A LAY AL NOZZLE 1029 

then, at each point of the stream droplets of different sizes can be found. Thus, for a proper 
description of the phenomenon the distribution function of droplet radii must be employed. 

It should be mentioned that in both mode~, Hill's and multi-fractional ones, the Fren
kel-Zeldovitch theory of nucleation is used [8-1 0]. 

3. Governing equations 

Two-dimensional, steady, two-phase flow is described by the mass, momentum and 
energy conservation equations for a gas-solid mixture [1-3]: 

(3.1) div(em V) = 0, 

(3.2) em(VV)V = - Vp, 

(3.3) 

where 

(3.4) e 
em= -1--. 

-We 

To complete the system of equations an equation of state is required 

(3.5) 

where 

(3.6) 

and 

p = eRT, 

R = [1Afft. 

(3.7) I=wo = 1-w0 + (w0 -wc). 
fl fti flu 

Moreover, we need an expression for the rate of formation of a new phase, i.e., equations 
describing nucleation and the rate of droplet growth. Droplet (cluster) growth is described 
by the mass and energy conservation equations for the growing qroplet in the Herz-Knudsen 
model [3, 5, 7]. 

In the Hill condensation model the relative rate of formation of a new phase is given 
[1-5] by one integrodifferential equation: 

.. /-2-2 ec {4 3 T( ) 
VU +v Wc,s = em 3nro.L'S,y 

The first term on the right-hand side is the condensation rate due to the formation 
of new droplets in a fluid element at (s, y). The second term describes the condensation 
rate due to the growth of all droplets which have been created somewhere before a fluid 
element at (s, y) along the same streamline. 
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It should also be mentioned that, according to this expression, the droplet growth 
rate does not depend upon droplet size. 

For the numerical integration of this equation, it is transformed into four simultaneous 
first-order differential equations [5-7]. 

In the multifractional model of condensation the relative rate of formation of a new 
phase is described by a more general formula 

From the mathematical point of view the determination of the two-dimensional, two
phase flow in a Laval nozzle is reduced to finding the solution of the mixed problem for 
the set of partial differential equations of hyperbolic type. 

The initial and boundary conditions for a mixed problem are formulated in the same 
manner as it was shown in previous papers [1-3]. Also the modified Lax scheme is used 
for finding the numerical solutions [1-3]. 

4. Results and conclusions 

The numerical calculations were performed for three nozzles. The contours of nozzles 
I and II are given by the following expressions: 

(4.1) 

(4.2) 

Y = ~vx2+h2 
b 

for x ~ -2a, 

- a I 2a ( 2 )l '4 z bz &- 2 y- b 1- 4az+bz x+ a V a + lOT x < - a. 

The third nozzle has for x < 0 the form (4.1), (4.2); for x > 0 the contour is described 
by y = 0.408x+24.5. 

The values of the parameters a and b for these nozzles are listed in Table 1. 

Table 1 

a[mm] b[mm] y*[mm] z[mm] 

nozzle I 25 93 50 100 
nozzle 11 25 125 50 100 
nozzle Ill 24.5 90 49 lOO 

y* is a vertex distance and z is a channel depth. 

The third nozzle has the most divergent wall contour. 
Figure 3 shows the results of experiments performed by M. JAESCHKE [13] and the 

results of numerical computations obtained using a model of condensation for the "surface
averaged" droplets. The curve of dimensionless density distribution along the nozzle axis,. 
obtained by numerical computation for two-dimensional flow, is situated between two 
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FIG. 3. The comparison of a gas density distribution for two-dimensional flow (curve 1) with experiment 
(curves 2, 3) (axis of the nozzle I) and with the numerical results for one-dimensional flow (curve 4); 

curve I -numerical re~ults (two-dimensional ffow,) curve 2- experimental results obtained from the Mach-Zehnder interfero
gram, curve 3- semi-experimental results for a density calculated from pressure measurement, curve 4- numerical results (one

dimensional flow}. 

density distribution curves obtained experimentally by means of different methods [3]. 
The distribution of the constant density lines is in good consistency with the distribution 
of the interference fringes (Fig. 2). 

Figure 4 shows a comparison between the numerical results obtained by a "surface
averaged "droplets model (curve 1) and the new set of values obtained using a multifract
ional model of condensation (curve 2) for nozzle I. 

The changes are of importance only in the condensation zone, especially along the nozzle 
axis. For both models the beginning of the intensive phase transition appears at the same 
point. The multifractional model of condensation gives, however, slower rise of the den
sity in the condensation zone. 

Also, the thermodynamical equilibrium is reached more downstream than in the case 
of a "surface-averaged" droplet model. This is due to the fact that for a "surface-averaged" 
droplet condensation model a higher percentage of larger clusters or droplets is taken 
into account than in a multifractional model. In a one-dimensional approach both models 
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FIG. 4. The comparison of the experimental results with numerical ones obtained for two different model 
of condensation; 

curve 1 -the dimensionless ga~ density distribution along the axis of nozzJe I (,surface-averaged" droplets model), curve 2 -the 
dimensionless gas density distribution along the axis of nozzle I (multifractional model of condensation), curve 3 - experimental 

results for the axis of nozzle I. 

give almost the same results. Therefore, the use of the more reliable condensation model 
can give additional information about droplets growth only if one uses two-dimensional 
analysis. 

The multifractional model of condensation gives also additional information about 
the distribution of droplets radii. These distributions for three points at the wall of nozzle I 
are shown in Fig. 5. The nonsymmetric character of the distribution is evident. 

Figure 6 shows the distributions of droplets radii at the axis and at the wall of the nozzle 
for the same cross section (x = 3.05 cm) of the nozzle I. 

They have the same character - nonsymmetric, but at the wall the number of smaller 
droplets is relatively greater than at the axis of the nozzle. The curve of the distribution 
of droplets sizes at the axis of the nozzle is characterized by a longer "tail" in the range 
of large droplets radii. This is due to the fact that along the nozzle wall the higher values 
o"r supersaturation are reached and that the condensation (nucleation) zone is wider along 
the axis of a nozzle than along the nozzle wall. 
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FIG. 5. The droplet sizes' distribution functions at the wall of nozzle I for: curve 1: x = 1.53 cm, curve 2: 
x = 2.05 cm, curve 3: x = 3,05 cm. 
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FIG. 6. The comparison between droplet sizes' distribution functions at the wall of nozzle I (curve 1) and 
at the axis of nozzle I (curve 2). 
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FIG. 7. The "surface-averaged" radius r distributions at the nozzle axis (curve J) and at the nozzle wall 
(curve 2) for two-dimensional, diabatic flow and the "surface-averaged" radius r distribution for one

dimensional flow (curve 3). 

The growth of the averaged values of droplets sizes in the flow is shown in Fig. 7 (noz
zle I). The difference between the averaged sizes of the droplets at the wall and at the axis 
is clearly marked behind the condensation zone. This difference is more pronounced 
for the flows with higher relative difference between the expansion rates at the nozzle 
wall and at the symmetry axis, at the points of maximal supersaturation. 

Figures 8 and 9 illustrate the results obtained using a "surface-averaged" droplet 
· model for the flow with condensation in nozzle Ill. 
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FIG. 8. The dimensionless gas density distributions along the nozzle wall (curves 1, 2) and along the nozzle 
axis (curves 5, 6) for two-dimensional flows in nozzle III. The dimensionless gas density distributions in 

one-dimensional flows for the same nozzle (curves 3, 4); 

curves :Z, 4, 6, 7- diabatic flows, curves 1, 3, 5 - isentropic flows, curve 7 - the experimental results for the axis of the 
nozzle ; 

(/Jo = 28.3%, r 0 = 297.6°K, Po = 751.95 Torr. 

Figure 8 shows the curves of dimensionless density distributions along the wall (curves 
1 and 2) and along the axis of the nozzle (curves 5 and 6). 

Curves 1 and 5 were obtained for an isentropic flow and curves 2, 6 for a diabatic flow. 
It is interesting to note that condensation begins at a smaller distance from the nozzle 

throat at the nozzle wall than at the nozzle axis (Fig. 8). 
For comparison purposes the dimensionless density distributions for isentropic and 

diabatic flows in a one-dimensional approach are also shown by curves 3, 4. 
The effect of the rise of a density due to the condensation is much more marked in 

two-dimensional flow than in the one-dimensional case. 
The comparison of the results of two-dimensional treatment and the experiment shows 

that this is even greater that this obtained numerically in the two-dimensional approach. 
This can be perhaps an indication that the condensation model should be improved. 

21 Arch. Mech. Stos. 5-6176 . 
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x[cm] 

FIG. 9. The comparison between the constant density lines obtained numerically and the interference fringes ' 
obtained from the experiment (nozzle HI). 

The comparison between the theoretical distribution of the lines of constant density 
obtained numerically for nozzle Ill and the distribution of the interference fringes is 
shown in Fig. 9. 

It is shown that we have a good qualitative agreement even in the case of such a highly 
divergent nozzle. Also, the quantitative agreement between the theory and experiment 
is good close to the throat of a nozzle (to about interference fringe number 35). This agree
ment is worse more downstream (from the interference fringe number 35). It can be 
attributed to several causes: first, that as it was mentioned earlier (Fig. 8) the conden
sation rate is greater in experiment; second, that in our calculations a uniform flow at the 
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throat of a nozzle is assumed, because of the presence of an angle of nozzle contour at 
x = 0; finally, the gas is treated as a perfect one. 

The method of solving two-dimensional flows with condensation using the multifrac
tional model of condensation gives satisfactory agreement with experiment. In this model 
a function of droplet radii distribution can be obtained. This type of analysis can be applied 
for testing different models of condensation. 
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