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Approximate path independent integrals in the
plane problems of cracks and associated
antiplane shear problems

H. D. BUI (PARIS)

THE paper discusses the path independence property of generalized integrals in the plane problems
of cracks J; and I, the problem of a branched crack and approximation of path integrals utilizing
the bounds of the potential energy. Upper and lower bounds for the potential energy are furnished
by the two antiplane shear problems associated with the plane strain problem, which are solved
experimentally by standard methods of potential flow fields.

W pracy przedyskutowano szczegblowo wlasnoéé niezaleznosci od drogi calek uogblnionych
Jx 1 Iy wystepujacych w plaskich zagadnieniach szczelin, problem rozgalezionej szczeliny oraz
aproksymacj¢ calek wykorzystujgc oszacowania energii potencjalnej. Gornego i dolnego osza-
cowania energii potencjalnej dostarczajg dwa zagadnienia antyplaskiego fcinania stowarzyszone
z zagadnieniem plaskiego stanu odksztalcenia, ktore zostaly rozwiazane do§wiadczalnie metodami
standardowym dla przeplywéw w polach potencjalnych.

B pabore oGcy:xaens! nogpofHO CBOHACTEO HE3aBHCHMOCTH OT IYTH OGOCIICHHBIX HHTEIPANIOB
Ji B I, BHICTYDAIONMX B IUIOCKHMX 38[8YaX TPEIMH, Opob/eMa PasBETBJICHHON TpEIIHHEI,
& TAKOKe aNNpPOKCHMALHAA MHTCIPAJiOB, HCTIONB3YA OUEHKY MOTCHIMANLHON SHeprud. Bepxme
H HIDKHell OlleHKH NOTEHUMAMLHON SHEPTHH NOCTABIAIOT ABE 38/]a4H SHTHIUIOCKOTO CHBHTR
4CCOLMMPOBAHHBIE C 3aJadell IUTOCKOrO Ae(OPMALMOHHOTO COCTOAHHMA, KOTOphIC ObLIH
pellieHbl SKCHEPHMEHTAILHO CTAHAAPTHHIMH METOJAMH [UIA TEUCHHA B NOTCHUHALHBIX
HOJIAX.,

1. Introduction

THE J-integral is extensively used in fracture mechanics as a new method of getting stress-
intensity factors and energy release rate [1, 2]. This paper discusses the path independence
property of certain generalized integrals J, introduced by BupIanskY and RICE [3], as
well as the significance of the J-integral use in the case of branched cracks.

Path independence property is not satisfied when approximate fields are introduced,
as shown in papers [4, 5] dealing with the dual formulation of the J theory. The dual
integral I is first introduced in [4]. Its generalization I, is given in [6] and also in paper [7]
by CARLSSON, but not in connection with the problem of duality between two independent
kinematic and static fields. The use of such fields as an approximation yields upper
and lower bounds for the potential energy. In this paper another set of bounds
is given for a plane strain case, based on the two associated antiplane shear
problems.

Analogous methods for getting the stress intensity factor Kj,; are also given.
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2. Path-integrals J, and I;
The integrals J; and J; (k = 1, 2) are defined as follows:

Ji = f {W(e)n—oynju, i} ds,

.0) %

IE = — f {U(U)ﬂ**ugnjﬂu_k}df,
c

where C is an open path joining two arbitrary points on opposite sides of the crack’s surface
while going around the tip; n is a unit outward normal to C; the comma means partial
derivative. In the brackets we have the elastic strain energy density Wi(¢) and'its' Legendre
transform U(¢) which give stress-strain laws in the alternative forms:

ow ou
(2'2) gy = —as': ’ &y = —a—&-;;- 3
In this paragraph, compatibility and equilibrium are supposed to be verified:
(2.3) &y = (u;_J +u_,-,;);’2, Gij,j = Q.

From (2.2), (2.3) it follows that
f{W(S)HI—UuHJu[J}dS' = 0,

2.9
f {U(a)me—uymyayy 4} ds = 0,

FiG. 1. Path integration for a curved crack in an

Su elastic body.

for all closed paths not including holes or singularities. Hence, it follows from the conser-
vation’s laws (2.4), that if the integrands vanish along the crack’s surface, then J, and I
are independent of the path’s end points (Fig. 1). This is a strong condition which restricts
considerably the applicability of the path independence theorem to particular cases. Consid+
er a straight crack along the x axis, then J, and I, are known to be path independent.
If the geometry and loading are such that W+ = W~ on the crack’s surface, then, Jy is
path independent, but the two end points must be opposite to each other.

For any curved crack which is tangent to Ox like that shown in Fig. 1, there is no path
independence. Consider now two particular path-integrals: Jg along the outer contour §
and JY along a zero circuit C,, around the tip. Then,

2.5) i+ X
and similar inequality for the dual integral Z;. This may be interpreted by energy consider-
ations. It is worthwhile dwelling on the physical significance of these path integrals,
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3. Energy considerations

The interpretation of J; and I, as “generalized crack extension forces” is based on their
equivalence with the potential energy release rate. Let the potential energy of the body
be P and its complementary Q:

P(e) = [ W(e)dd~ [ Tiuas,
Q sy

G.1)
0() = — [ Ule)dd+ [Toymas,
ﬂ sl

where T; is the prescribed traction on Sy and %, the prescribed displacement on S,

Let the crack be translated with the unit velocity / while the exterior boundary remains
fixed and the boundary conditions remain unchanged; the derivative of the potentials with
respect to a time like parameter ¢ is given by [1, 3, 4, 14]

3.2 %?= - JE, % = —LI.

Thus, the integrals J§ and I§ with signs reversed are considered as generalized crack
extension forces. They are associated with a translation of the whole crack, which generally
is not the same as that growing at the tip by the same amount, like in the case of straight
crack moving in its plane. Generally, the virtual velocity field defined on the crack does
not correspond to any physical process. Clearly, any velocity field for a virtual growth
of a crack of any form must have vanishing normal component on the main part of the
crack but not near the tip. If the crack grows smoothly, i.e., tangently at the tip, the energy
release rate is given by. Irwin formulas or by the integrals J? or I? associated with the
Zero circuit:

(33 19 = 19 = % (K KR,

# = 3—4y in plane strain, x = (3—)/(1 +v) in plane stress case, K; and K, are the stress-
intensity factors.
For a straight crack, a virtual translation in the y-direction normal to the crack leads to
x+1

(3-4) JI? = I)? = = 4# KIKI!

(cf. BERGEZ [8], CARLSSON [7]).
While (3.3) has been interpreted physically as the energy release rate for extension in
the x-direction, Eq. (3.4) has not.
The concept of a virtual motion given by a variable velocity fleld v,(s) used by Bu-
DIANSKY and RICE for a cavity [3] can be extended for a crack as follows:
dP

(3.5 == (Wny—0n;u;,4) 0y ds
[od
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with the path C in Fig. 2 consisting of the cracks’ faces C* C~ and the zero circuit C,
around the tip. The particular integrals J§ and J} are then related to Eq. (3.5) through
the velocity fields: For v,(s) = /i Eq. (3.5) gives the energy release rate —/,J¢; the path
C can be replaced by S. For v;(s) = 7x(s), where 7 is the unit vector tangent to the crack,
Eq. (3.5) gives the energy release rate — 7,(0)Jy.

A

c C, Fic. 2. Path integration along the crack.

4. The problem of the branched crack

The problem of crack growth due to an abrupt change of direction (Fig. 3), has been
studied by many authors [9, 10, 12]. However, the applicability of path integrals for this
problem is not clear. This is a typical case of path dependence of the integral. Consider
two paths C,, C, for the branched crack and the cases where the length of the branch
shrinks to zero as well as the paths radius, / - 0, C; - 0. Those limits must certainly be
taken in suitable order if it is to influence the final result. The results obtained may vary
according to path dependency and difference in the limiting singular fields by a change
of the polar coordinate. When / = 0, the zero path C, goes around the tip 4 of the original
crack OA, so that the integral J§” is computed from the initial field of the main crack or
from the stress-intensity factors Kj, K;;. Now, the second integral should be defined as
4.1 J§? = lim lim J§3.

10 €30

New singular fields at the tip B are needed to compute (4.1). For example, consider
the branch crack (Fig. 3) under remote uniform traction T at the angle 8 to the main crack.
Exact values of K;, Kj; at the tip A of the initial crack 04 (I = 0) yields cf. [7]:

@42 o = i‘%‘f naT?sin? B(cos a—sin2 fsina).

This integral should be interpreted as a generalized force associated with the translation
of the crack in the direction making an angle o with Ox. Attemps to solve analytically
the problem of the branched crack are found in [9, 10]. For our purpose we take the new
stress-intensity factors K7, Kj; given by HussAaN, Pu, UNDErRwooD [9]. These factors

at the tip B are associated with the new polar coordinates g, .
The limiting values for / = 0 are:

3+cosla \1+m

mj2
K? = T(ma)'? 8 (l—m) (cosasin’ﬁ+isinaoosﬁsinﬂ).

4.3 g 4 [—m\™? 1
- 12 v L) 2
Ky = T(ma) 3Fcosa (l+m) (cosamnﬁoosﬁ 3 sinesin ﬂ)
The J® integral is given by (m = a/n)
@ _ j@» @i *+1 4 ) X
44 J J:cosa+JyPsina = 2 (1+m) (3+oos*

x ((1+3cos? @)sin* B+ 8sin acos asin® fcos B + (9 — Scos? a)sin? fcos? f)
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which can be put in the familiar form
(4.5) I = (K}" 2+ Ki7).

Therefore, the integral (4.4) is interpreted as the energy release rate in the extension of the
crack in the a-direction which is different from the original x-direction. Equations (4.4)
and (4.2) clearly show the path dependence of the J-integral.

2a

FiG. 3. Branched crack.

Without referring to the path-integral, the energy release rate can be defined directly
as the work required to close the branch ABC

4.6) G = lim —- f w (1 +dl) T,(0)ds
a0 24l
ABC
which is equivalent to
1 aT,
@ G‘TI(T‘ ar a:)“’

where the integral is taken over any closed curve enclosing the crack. Formulas (4.6) and
‘(4.7) apply to linear elastic materials only. Equation (4.5) shows the equivalence between
the J{» integral and the energy release rate G.

DupUKALENKO and ROMALIS [10] have computed G for I = 0. Their result is reproduced
here:

48) G = w(x+1)aT? (

S ) ((sm’ﬂ-f— —— sinacos(2f— a)( —log i_{_:)

1-m 1 in?a 3  4m o 1-m
T+m) " 1627 2 T i—m? B1tm

| 8m
+ 3. sta:(l_mz +3log

i I 34— (1 '“"‘)z+ LIRS e
T +my 31+ 2a—m)\ B1am) T @amp ~ CTem))
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It can be seen that results (4.4) and (4.8) are different. Without explaining this disagreement,
it turns out that the growth directions predicted according to the greatest energy released
are very close to each other (Fig. 4).

Propagation direction

T
80° 2 T
Jx-Theory
70 (Hussain, Pu, Underwood)
o P A&
60 G[.Theory SN
Dudukalenk
50 | Romalae
40L
30} J&-Theory l
20¢
10k
Load direction

0 10 20 30 40 50 60 '?b Bb 90°
F1G. 4. Crack growth direction versus loading angle according to the greatest energy released.

For comparison curves are plotted in the same figure of values obtained from the J{"
theory:
4.9) sina+sin2fcosa = 0
and from the maximum stress-theory, cf. [11]

cosf
sinf b

For small 8, Eq. (4.9) gives for the crack growth direction a value not far from zero,
while other curves give —« not far from 70°. CHATTERJEE [12] gives a numerical solution
for the same problem but for //2a higher than 103, Inserting the K7 and K7, values given
by him in Eq. (4.5), we find values different from (4.4) and (4.8) (Table 1).

(4.10) sina— (3cosa—1)

Table 1.
4uG|(x+1)aT? (I==[2)
Ref. 9 Ref. 10 Ref. 12
a=m2 023 1.13 0.34

a=0 nf2 nf2

The la_ck of accuracy of the numerical solution and the fact that the branch length is
not zero in [12] undoubtedly make the comparison difficult.
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5. Dual. variational method

Equations (2.1), (3.2) show the symmetry between the theories of the J and I integrals
and the equality between integrals which follows from
(5.1) P(e) = Q(0)
whenever stress and strain fields are actual solutions of the boundary-value problem [5].
Paper [5] discusses approximate solutions in relation with the dual variational method.
Accordingly, approximate fields are components of two independent ones: kinematic
¢* and static o**. The results of [5] are summed up as follows: for approximations, the
integrals in (2.1); and (2.1), are path dependent and (3.2); and (3.2), themselves are not
valid. What remains is the so-called bound-theorem
(5.2) —P(e*) < —P(e) = —Q(0) < —Q(c**)
which holds for any material, the energy density of which is a convex function of the
strain (for W). Starting with approximate potentials P* = P(¢*) and Q** = Q(o**)
approximate values of integrals JS amd I° are defined by
OPY e 90T

al ’ al

We consider here only the case of a straight crack growing in its plane. As pointed out
in [5], the gradients (5.3) are not respectively lower and upper bounds for the integrals
J or I, neither are they values of the integrals as given by direct calculations according
to their definitions (2.1) from the approximate fields. This limitation should be observed
seriously together with the fact that no information is yet available besides that given by
(5.3). Equation (5.3), is usual in the finite element method which deals with the kinematic
fields. It is found that the calculated value of the J integral by Eq. (5.3), is generally under-
estimated just like the value of —P. If examples of bounding the J-integral by means of
Eqs. (5.3) can be given, cf. [5], unfortunately there is no analytical criterion which would
give inequalities similar to (5.2) for the gradients of the potentials. Of course, J* < I**
is necessary but not sufficient.

In the following paragraph bounds for the potential P will be presented by associated
antiplane shear problems.

(5.3) J* = —

6. Associated antiplane problems
Let a linear elastic body be subjected to tractions T, T, with no body forces. Equilib-
rium in the x-direction gives
Oxx,xt 05y =0 in 2,
Oxxx+0xn, =T, on S,

To get a first static field o**(T) for the antiplane loading by the longitudinal shear 7 = Ty,
the following field is used:

*1) _ k(1) _
d::\ = Oxx, -qty = Oxy.
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Similarly, a second static field is derived from the remaining equation of equilibrium and
boundary condition
D ze,, oD =09,.

The corresponding stress potentials are
ot = - 5 [ (htat)ad,
6.1) “
1
3= - Ep—f(a;,w;,)d,i.
Q
We return to the plane strain problem for which we want to bound the potential Q(o)
as follows
1—
0w <52 [ - 2i (02 +20%,+0%)dA.
3 (o

According to (6.1) the potential Q is bounded by

62) 00) <52 (@1 +0".

By (5.2) we can replace Q¥*Q%* by their exact values without changing inequality (6.2).
Hence, the exact stress potentials of the associated antiplane problems give upper bounds
to Q(o).

To get a lower bound for Q or P, the potential P(e) is written in the form

P(e) = o [2W(e)dd—p? [ Tyuds
Q 5

with f%2—a? = 1/2 so that the value of P(e) is unchanged. The first integral is bounded
according to Korn's inequality

IZW(B)M > ko fu;_;u.,,,dA
o

where k, is a constant. A possible one is k, = u though it is not the best one. Choosing
B = 2%k, 0

g {*g' f Uy, ity dA — f Tluld‘f, < P(2).
o 5
From straightforward calculation it follows that the bracket is the sum of the strain poten-
tial energies P} and P# of the associated antiplane problems
(6.3) B*(Pt+P%) < P(e).
The kinematic fields of the associated problems are

w¥l) = Uy w2 = Uy.
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The approximate potentials P¥ P¥ can be replaced by their exact values and the inequal-
ity (6.3) remains valid. In conclusion, the plane strain potential energy can be bounded
on both sides by using the associated antiplane problems. The bounds are not good enough
for an estimation of the J integral but they give useful indications as to the potential P.
They are easier to calculate in antiplane shear condition than in plane strain condition.
Moreover, the associated antiplane problems give roughly the same stress-intensity factors
as in plane strain condition for problems which have similar boundary values. This will
be illustrated by two examples.

Example 1. An infinite body is subjected to a remote uniform traction T perpendicular
to a crack with the length 2a. The stress intensity factor normalized by T(wa)!/? is K; = 1.
The antiplane problem associated with this boundary condition gives Kj;; = 1.

Example 2. An edge-crack with the length g, the crack being parallel to Ox, the boundary
condition being a traction T at infinity in the y-direction. The stress-intensity factor is
K; = 1.12 while the corresponding antiplane problem gives K;;; = 1. That is a difference
of 127, which is small when compared to the uncertainty of the experimental critical value.

At the moment no analytical treatment is available for finding boundary conditions
for plane strain problems the stress-intensity factors of which come within a given range
of those of the corresponding antiplane deformation problems.

7. Fluid analogy

For antiplane shear loading, stresses o,.,0;, and displacement w can be given by one
analytical function f(Z) of the complex variable Z = x+iy

Ozx— ia:r = f iI(z):

w=Ref(2), Ju—il, = i2uf(f)dZ.
Similar relations are known for two-dimensional irrotational flows of incompressible
non-viscous fluid with the velocity V = V¢
Ve-iV, =f'(Z), ¢ =RefiZ), Fu—iF, = iol2f (f)dZ.

In this analogy the complex J-integral appears to be equal to the hydrodynamic force
acting on the tip of a thin plate. For boundary conditions, the normal velocity is made
equal to the shear. Of course, disturbing effects like viscosity and separation of the bound-
ary layer must be estimated.

Another simple method uses the analogy between the I-integral and the kinetic energy
variations of the fluid with respect to the plate length. Another analogy is possible, namely,
the flow of an electric current j on a graphite-coated paper having a straight slit (length a)
simulating the crack while normal current j, is maintained on the boundary, cf. [13]

= c(u‘,,n,-}-o,,n,),
c is a suitable dimensional constant. The power dissipated I by Joule’s effect is related
to the IFintegral

dil
o -1
I= QuRe)™ ——,
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R is the specific resistivity of the paper. Results of experiments on a finite strip having
an edge crack are reported in [13] and agree well with calculations from an infinite strip
(for a height greater than twice the width it is better than 1% Fig. 5).

The analogy is even more valuable in the case of many cracks or holes of any shape,
for which no analytical approach is possible. Rigid inclusions can also be represented by
highly conductive areas (R = 0), for example, by using conductive paint coatings.

Etectrlc power Qlo)-Qla)

{Stress potential Q) ~ Qfo) ‘
presciibed
current

L_0.05

—AW{nI

/:/( 1 l a/W

0 0.1 0.2 a3
FiG. 5. Edge-crack in a finite strip simulated by a two-dimensional flow of electric current on a graphite
coated paper.
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