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Low-frequency transonic flows past a thin airfoil 

B. K. SHIV AMOGGI (PRINCETON) 

Low-FREQUENCY transonic flows past oscillating thin airfoils are considered. Three methods 
of analysis: 1) method of perturbations, 2) method of local mean invariation, 3) method of 
reduction to a constant-coefficient equation, are developed and illustrated. 

Rozwaiono nisko-cz<(stotliwosciowy oplyw przydzwi<(kowy cienkich plat6w. Rozwini<(to 
i zastosowano trzy metody analizy problemu: 1) metod(( perturbacji, 2) metod(( lokalnej inwa
riacji i 3) metod<( redukcji do r6wnan r6zniczkowych ze stalymi wsp61czynnikami. 

PaccMoTpeHo HH3I<oqacromoe OI<OJI03BYI<OBoe o6Tei<aHHe TOHI<HX I<pbiJn.eB. Pa3BHThi H npH
MeHeHhi TpH MeTOAa aHaJIH3a npo6JieMbi: 1) MeTOA neplJ'p6ai.UIH, 2) MeTOA JIOI<aJibHOH HHBap
HaH~HH H 3) MeTOA CBeAeHHH I< AHcPcPepeH~HaJibHbiM ypaBHeHHHM C llOCTOHHHbiMH I<03cPcPH
~HeHTaMH. 

1. Introduction 

ONE AREA of applicability of unsteady transonic flow is the possibility of transonic 
supercritical airfoils with which a shockless mixed subsonic and supersonic flow may be 
realised. A few versions of the original "local linearisation" concept have been given by 
STAHARA and SPREITER [1], DowELL [2], among others, to treat unsteady flows. In the 
present paper three methods of analysis: 

I) method of perturbations, 
2) method of local mean invariation, 
3) method of reduction to a constant-coefficient equation, are developed and illustra

ted to treat a harmonically oscillating thin airfoil in transonic flow. The restriction is 
made to the low-frequency limit which is of relevance, for instance, in one-degree-of-free
dom torsional flutter instability. Since the experimental works of NIEWLAND [3] and 
HoLDER [4] revealed the existence of shock-free transonic flows, in the following a shock
free case is treated. 

2. Statement of the problem 

For simplicity wing sections that are symmetric about the x -axis are considered. One 
has for two-dimensional potential flows past a thin airfoil 

(2.1) e(~ z- {J 2C/>xx-2M~f/>xr- eM~ (/);i) = M~ [(y -I)(fl>x+ ef/>,)(fl>xx+ ef/>zz) 

+2fl>xfl>xx+2e~ C/>x;, +2(ef/>x(/>xi + e2 fl>-; ~i )], 
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6 B. K. SmvAMOGGI 

(2.2) - ve (])- ( a a ) -
z = f(x, t): 1 +cP:x: = ax-+ e ai f(x, t); 

upstream: 

(2.3) 

where 

.z = y'ez, t = et, p2 = M~- 1 = 0( 1) 
e ' 

e ~ 1, 

(]) is the velocity potential, Moo the free-stream Mach number, y the ratio of specific heats, 
and z = f(x, t) the airfoil surface. All quantities have been nondimensionalised using 
the chord length c, and free-stream velocity V~. The spatial scalings are motivated by the 
fact that in the limit M 00 --.1, the linearised supersonic-flow theory (LIEPMAN'N and PucKETT 

[5]) indicates that the disturbances are propagated almost undiminished to infinity in 
the z-direction but are confined to a small width in the x-direction. The physical signifi
cance of E will become apparent when it is related to the thickness ratio T. 

The pressure coefficient is given by 

(2.4) CP = -2{]>x-2Ef/>o; + eP2(])i- e(])i +2eM~ (]):x:fl>t, + M~ e2</>f. 

3. Method of perturbations 

Let 

(3.1) 

Seek a solution of the form 

(3.2) (])(x, Z, t; e)= e 3 1 2~(X, z)+ [e2iP(x, z)+ e5 '2iP'(X, Z)]eikt+o(e512). 

Then, from Eqs. (2.1), (2.2), and (2.4), one obtains 

(3.3) 

(3.4) 

(3.5) 

~-z z-P2i>xx = o, 
z- O· ~-- g · - •'f':;- :x;, 

iP: :-P2</Jxx-2M~ikiPx = 0, 

Z = 0: lPi = h X; 

iPi-z -P2lP:x-2M~ikiP~ = (y+ l)M~(~xlP:x:)x, 
Z = 0: lP'-; = -~:x:hx-lP:x:Kx; 

(3.6) CP = e3f2( -2i>x)+ e2( -2</J:x:)eiki+ eSf2( -2iP:)eiki +o(eSf2). 

From Eq. (3.3) 

(3.7) 
A 1 
iP(x, .i) = - 7f g(x- pZ). 
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LoW·FREQUENCY TRANSONIC FLOWS PAST A THIN AIRFOIL 7 

From Eq. (3.4) 

ln being the Bessel function of order n. 
Putting 

(3.9) 
M~k 

-1--x.., 
</>'(x, Z) = e fJl rp'(x, i) 

and taking the Laplace transform 

00 

(310) !t'[~'] = ¢' = J e-sx4>'(x, Z)dx, 
0 

Eq. (3.5) becomes 

(3.11) 

from which, 

(3.12) - .., [ y+ 1 ] -¢'(s' Z) = A(s)e-flsz + 2fJ2 M~(gxc/Jx) ze-flsz. 

Upon inverting 

(3.13) ~'(x, f)= A(x-{JZ)+ Y
2
; 2

1 M~z[g(x-{JZ)]x[<J>(x-{Jz, O)lx· 

Using Eq. (3.5), one obtains 

- ": 
1 M~Z{g(x-pi)}. {</>(x- Pi, 0)}.]. 

The pressure coefficient on the airfoil is given by 

Consider a parabolic arc airfoil in pitching oscillation so that 

(3.16) g(x) = x(l-x), h(x) = x 
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8 B. K. SmvAMoooi 

one obtains for the lift coefficient 

(3.17) 
2 l o M~k , [ 2 ] 

C, = 4 ~ eiki .fe _, __ pT- (1- x ) Jo -~~ k (1-x') dx' 

0 

[ [; ( I M 2 
k I I M2 k I M2 k 

0 M~k ' l tXJ , IX) , tXJ -r - 2- (;-x ) 
x I+. -iJ0 pi ___ (~-x) +J1 fJ2 (;-x) ----p2 e f3 dx 

0 

x (I- 2~)d~ + o( e512
). 

VAN DYKE [6] gave a calculation for the supersonic counterpart of this problem where 
M oo is fixed and r-+ 0, i.e. f3 is large. The present result is shown along with that of Van 
Dyke in Fig. 1. 

The present result, as well as that of Van Dyke, breaks down for M IX) = 1. Next, 
therefore, methods that are capable of yielding better results at M IX) = I are developed . 

1000 

100 

10 

Parabolic arc airfoil 
T• 0.06, /<•001 

Shivamogqi (method of 
local . mean invari'ation) 

FIG. 1. 
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4. Method of local mean invariation 

Let 

(4. 1) 

seek a solution of the form 

'(4.2) 

then, one obtains from Eqs. (2.1 ), (2.2), and (2.3) 

(4.3) 

(4.4) 

(4.5) 

~% -;-{J2~xx-M~(y+l)~x~xx = 0, 
A 

Z = 0: l/J% = gx; 

l/J; -z-{J2l/Jxx-2M~ikl/Jx-M~(y+ 1)(~xl/Jx)x = 0, 

Z = 0: l/Jz~ = hx; 

Cp = e( -2~x)+ e2
( -2lf>x)eiki+o(e2

). 

9 

Equation ( 4.3) is solved by using the method of local linearisation due to SPREITER 

and ALKSNE [7]. In this method ~xx is held constant in the nqnlinear term only until a for

mal solution is obtained, but lf>~x is then allowed to vary with x. 
Let, 

(4.6) 

so that, from Eq. (4.3) 

(4.7) 

Now one assumes that). varies slowly enough so that it can be considered as a con
stant in the initial stages of the calculations. Thus one obtains from Eq. (4.7) 

(4.8) ~x(x, 0) = 
gx 

-T 
from which 

(4.9) 
A gxx 
lf>xx(x, 0) = - --;_-- ' 

so that upon replacing ). by Eq. (4.6) and solving for ~x' 

(4.10) ;. = _ 1 {{33 _ [ _ 3M~(y + 1)gx_ c]2

'

3

\ 

'Yx M~(y+ 1) 2 + ' 
where ·c is a constant of integration. In order to determine C, let 

A 

(4.11) X= 0: l/Jx = 0. 

This amounts to modelling the steady flow as shown in Fig. 2. The subsonic region ahead 
of the sonic point poses difficulties in analytical approaches, and similar steps have been 
taken by STAHARA and SPREITER [1], DowEL [2] to get around this difficulty. 
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10 B. K. SHIVAMOGGI 

Cp 
Modeled disfry 

\Actual distribution 

Or---~~----------------~ 
X 

FIG. 2. 

In analogy with the local linearisation hypothesis, a local mean invariation hypothesis 
is now introduced to solve Eq. (4.4). Thus Eq. (4.4) is replaced in a small region by an 
equation with constant coefficients, and then introducing for the latter different values 
for different points in the field. Mathematically, <$" and <$xx are considered constant until 
a formal solution for 4> is obtained, but are then allowed to vary with x. Hence one obtains 

x- YP2 +M~(y+1)txi:' 
(4.12) J dx'hx,(x') e- iC<x-x'>J 0 [~(x- x')], 

0 

where 

Using Eqs. (4.5) and (4.12), one obtains for a parabolic-arc airfoil in pitching oscillations, 
Eq. (3.16), 

1 

(4.13) - C 482 f -iJ}(l-x'>J [ (1 ')]d ' 
L= [p2+ 3M~(y+l)Jlfl e o'Y) -X X, 

0 

where 

-n(y) = M~[k-i(y+l){3M~(y+l)y+P3}- 113 

., [3M~(y+l)y+P3J2'3 y. 
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The present result is shown Fig. 1 as CL vs. Moo fork = 0.1, T = 0.06. In Fig. 3 the 
present result C L vs. k for Moo = 1, T = 0.06 is shown along with those of the linearised 
supersonic-flow theory, and DoWELL [2]. "' 

Parabolic arc airFoil · 
i•0.06 1 M00 a1 

FIG. 3. 

Shivamoggi (method or 
reduction to constant
coefficient uation) 

5. Method of. reduction to a constant-coefHcient equation 

Putting 

(5.1) 

in Eq. (2.1), one obtains to O(e) 

(5.2) 

Reverting to the unstretched variables 

(5.3) 

Let 

(5.4) 

(5.5) 

f(x, t) = g(x)+h(x)eikt, k ~ 1, 

$(x, z, t) = ~(x, z)+cp(x, z)eikt 
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12 B. K. SHIVAMOGGI 

so that upon neglecting the higher harmonics, one obtains 

(5.6) 
(1-M!J~xx+~u-M!{y+ 1)t$xt$xx = 0, 

(5.7) Z = 0: l/>z = hx• 

It turns out in the following that the solution to Eq. (5.6), given by Eq. (4.10), is not 
proper to use for Moo = 1. Note from Eq. (4.9) that, for Moo= 1, ~xx is infinite at a point 
where ~x = 0 (sonic point), if Kxx does not vanish rapidly enough at the same point (and 
for the parabolic-arc airforl it does not). This did not pose any problem in- the evaluation 
of Eq. (4.12) but a different method of constructing a solution to Eq. (5.6) is necessary 
if a physically realistic value for ~xx at the sonic point is needed per se. 

For Moo = 1, following SPREITER and ALKSENE [7], let 

(5.8) 

so that from Eq. (5.6) 

(5.9) 

Again one assumes that A varies slowly enough so that it can be considered as a con
stant in the initial stages of the calculations. Thus one obtains from Eq. (5.9) 

(5.10) ¢,(x, O) ~ - Jf~A [ :x ! Yxg~E dEl 

Upon replacing A by Eq. (5.8) and solving for ~x' 

(5.11) 

where 

[ 
3 IX{.!!____ fx' - g; a;}2 dx']l/3 

n(y+ I) x• dx 
0 

y--x-e' ' 

A 

x = x*: 4>x = 0 or 

X 

.!!_J g; d~ = 0. 
dx 0 vx-~ 

For a parabolic-arc airfoil, Eq. (3.16), this gives 

(5.12) 
1 

x* =~ 4· 

Using Eqs. (3.16) and (5.12), one obtain,s 

(5.13) </>, ~ [-,.(/+I) (In4x-8x+8x2 + ; )]"
3

• 

In order to solve Eq. (5. 7), let 

(5.14) lj>(x,z) = 1p(x,z)+g(x,z), 
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LoW-FREQUENCY TRANSONIC . FLOWS PAST A THIN AIRFOIL 13 

where 

(5.15) 

so that 

(5.16) Ku = :x [{(M~-l)+M~(y+l)~x}Kx 

+2M~ ikg] + [M~(y + l)(~xV'x)x- kV'x] · 

Near the surface of the airfoil, as a first approximation, one drops the term on the 
left hand side (a similar step has been taken by HosOKAWA (8] for the steady problem) 
so that one obtains 

(5.17) 

where 

If, 

(5.18) 

X X 

J a(x')dx' 
x• Kx=- ----

b(x) 

2ik/(y+ 1) Jx xf a(x")dx" 

+ b(x) b(x') , 
x• 

a(x) = (~xV'x)x- M~~+ l) VJx, 

.... 1-M2 

b(x) = 4>x- M 2(y+ ~) . 

x = x1 : b(x) = 0, 

Kx. will not be well-behaved unless x 1 = x*, and a(x*) = 0. 
Thus 

(5.19) 

(5.20) X= x*: l/Jx = 1Jlx, 

x' f 2ik/(y+ 1) d II 

X b(x'') X d I e x, 

i.e. the sonic point corresponding to the steady flow is the same for 1p as for l/J. Therefore 
'P would be a valid approximation in the neighbourhood of x = x*, at least on the airfoil 
surface. 

Note that for Moo = 1, 

(5.21) 

which is the same as that obtained by HosOKAWA [8] for the steady case! Earlier MAEDER. 

and THOMMEN' [9] had advocated such a choice for the steady case on grounds of better 
correlation with experimental results. 

For Moo = 1, Eq. (5.15) gives 

(5.22) 
'Px = ~+hl> :x [f v:~~ d~l 
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For a pitching oscillation, h(x) = x, this gives 

(5.23) 

and 

(5.24) 

(5.25) 

(5.26) 

I I 
"Px = --=-

}/ n(K + 2ik) y' x 

CIJ = -21px, 

L1CIJ = c-;-c; = 2CIJ = -41JJx, 

1 
,. 8 

CL = J L1CIJdx = .. ! ==---· 
0 r n(K+2ik) 

B. K. SmvAMOGGI 

The present results - C L vs. k, for Moo = I, -r = 0.06, are shown, respectively, in 
Figs 3. and 4, along with those of STAHARA and SPREITER [I], DowEL [2]. Again the present 
result, being adequate for low frequencies, shows departures at high frequencies from 
that due to DOWEJ,.L [2]. 

8 

6 

4 

2 

0 

Parabolic arc airFoil 
T=0.06 1 Moo=1, k=0.1 

Stahara & Spreiter 

FIG. 4. 

Shivamoggi (methcx:J or 
reduction to constant
coeFFicient equation) 

For a Guderley airfoil 

(5.27) cf>x = 0.37(x-0.4) 

so that one obtains, upon including the correction term Kx this time, 

(5.28) c - -2( + ) - IJv4 [ 2 
IJ- "Px Kx - y'(K+2ik) I+ yx 
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where 

- X 
X= 0.4' 

fJ = 2ik/0.31 -. 
y+1 

15 

The present result ICPI vs. x, for Moo = 1, k = 0.5, ·r = 0.06 is shown in Fig. 5 along 
with that of STAHARA and SPREITER_ [1]. 

4 

2 

0 

6. Conclusions 

Guderley airFoil 
T=0.06, Moo= 1, k= 0.5 

Shivamoggi (meth~~ or reduct{on 
to constant-coemctent e uattan) 

0.2 0.4 0.6 0.8 

FIG. 5. 

1.0 X 

The method of perturbations gives better results than the supersonic theory due to 
VAN DYKE [6], but it fails at M 00 = 1 like the 1latter. The method of local mean invariation 
and the method of reduction to a constant-coefficient equation, on the other hand, yield 
meaningful results at M 00 = 1. The points in favour of the method of reduction to a con
stant-coefficient equation have 

(i) a more sound rationale, 
(ii) simplicity (only a slide-rule calculation required), 
(iii) greater accuracy. 
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