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Behaviour of stationary singular points 
in one-dimensional materials with memoey 

·' 

E. MATSUMOTO (KYOTO) 

IT IS SHOWN that in one>dimensional materials with memory there can exist stationary singular 
points at which the second deformation gradients are discontinuous. An external · force which 
is discontinuous at a material point gives rise· to such a discontinuity. The variation of the 
discontinuity is governed by a Volterra's integral equation. The stress relaxation function can 
be determined by observing the behaviour of the discontinuity induced by a certain discontinuous 
external force. 

Wykazano, 2:e w jednowymiarowych materialach z pami~i~ mog~ istniee takie punkty osobliwe, 
w kt6rych drugie gradienty deformacji q nieci~gle. Obci~nie zewncttrzne nieci~gle w punkcie 
materialnym prowadzi do takiej nieci~gloSci. Zmian~ takiej nieci~glo8ci CZlldzi r6wnanie calkowe 
Volterry. Funkcjct relaksacji napr~n mo:Zna wyznaczyc dro~ obserwacji zachowania sict tej 
nieci~glosci pod wplywem pewnego nieci~glego obci~nia zewncttrznego. 

Tioi<a3aHo, trro B O):UIOMepHbiX Marepuanax c naMHTLIO Moryr cyii.lecTBOBaTL T81<Be oco6hie 
TOtn<B, B KOTOpbiX BTOpbiC rpll,ltHCHTbi ~e$opM&I.ndt HMCIOT paaphm. BHCIIIHIDI H8rpY3Ka 
pa3phiBHIUI B MaTepBam.HOH TOtU<e DpBBO~ .K T8KOMY paapbiBY. lhMeHeHBeM TaKOro paa­
pbiBa ynpaBJIHeT BHTerpam.Hoe ypaBHeHBe Bom.reppa. <I>}'HI<QBIO peJiaKcaUHB Hanp.ameHHit 
MO>KHO onpe~eJIBTL nyTeM Ha6JUO~CHBH DOBC~CHIDI 3TOro p&apbiB~ DO~ BJIIDIHBCM HCKOTOpoit 
paapbiBHOH BHCDEBCH Harpy3KB. 

1. Introduction 

THERE HAVE BEEN' many works on wave propagation in materials with memory and materials 
with internal variables. Shockwaves in materials with memory were investigated in [1, 2]t 
while acceleration waves were studied in [1, 3-8]. Exact solutions of steady flows, which 
admit both shock and acceleration waves, were obtained in [9, 10]. On the other handt 
shock waves ~n materials with internal variables were investigated in [II, 12], while ac­
celeration waves were studied in [11, 13-17]. All the waves considered above are defined by 
propagating singularities. 

Recently, the author [18-20] showed that there may exist stationary singular points or 
surfaces in materials with internal variables. According to [21, 22], )uch materials with 
internal variables can be regarded as special materials with memory. Thus there is the 
possibility that stationary singular points or surfaces exist in familiar classes of materials 
with memory.~ 

This paper considers a one-dimensional material with fading memory, and the consti­
tutive assumptions are given in the next section. Across a stationary singular point in such 
a material, the spatial derivative ·of the history of the deformation gradient has a discon­
tinuity. Since the history of _the deformation gradient belongs to a functional space, the 
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stationary singular point is also a discontinuity point with respect to a mapping whose 
range is the functional space. In the next section we obtain a kinematical compatibility 
condition for such a discontinuous mapping. Using the result, we prove in Sect. 3 that 
there may exist stationary singular points of the second order. In [18-20] it has not been 
discussed how the stationary singularities are generated: In this section we show that a sta­
tionary singular point is induced by a'n external force which is discontinuous across a fixed 
material point. In Seot. 4 it is shown that the amplitude of a stationary singular point, 
i.e. the jump of the second deformation gradient, is governed by a Volterra's integral 
equation. In Sect. 5, by applying the result to the material with an unknown response func­
tional, we propose a method for determining the stress relaxation function by observing 
the behaviour of the stationary singular point. 

2. Constitutive equation and generalized kinematical compatibility condition 

Let us consider a one-dimensional material with memory defined as follows: Let u 
denote the deformation, X the coordinate in t~e reference configuration,. v the velocity, 
and F the deformation gradient. Then F:, the past history of the deformation gradient at 
time t, is a function · on (0, oo) defined by 

(2.1) F:(s) = F{t-s), s E (0, oo). 

·Suppose that the space of all past histories of deformation gradients is a Hilbert space Y 
with the inner product: for y, z E Y 

(2.2) 
00 

(y, z) = J y(s)z(s)h 2 (s)ds, 
0 

where h is a positive, monotone-decreasing, stpooth function on [0, oo) decaying to zero 
fast enough. Suppose further that Y has a complete system of orthogonal smooth functions 
{/1(s) }. The pair (F(t), ?,.) is called the history of the deformation gradient at time t. 

The stress (J is given by a functional of the history of the deformation gradient: 

(2.3) (J(t) = 4> (F(t), £:). 

We assume that 4> is continu~usly differentiable with respect to. both arguments. Here it 
should be noted that the deformation gradient together with its past history depends on 
the coordinate also. · Henceforth for simplicity we omit all the arguments of functions or 
functionals unless there is any danger of ambiguity. The past history of the deformation 
gradient F is denoted by F,. Let y be a smooth function of t E (- ·OO , oo ), and define 
a smooth curve in (X-: t) space by 

. (2.4) E = U (y(t), t) . 
te(-oo, oo) 

We call a point y(t) a second-order singular point if the following conditions are satisfied: 
i) u, v, F, and F, are continuous everywhere in (X...,. t) space. 
ii) v, F, and F, are continuously differentiable with respect to X and t everywhere else 

except on E, where their first derivatives suffer finite jump discontinuities. 
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Here the continuity and the differentiability ofF, with respect to X and t, respectively, 
are those of the mapping (X, t) -4Ft(·, X) from R 2 into Y. 

The velocity of the singular point is given by 

(2.5) U= dy. 
dt 

If U vanishes identically, the singular point is called stationary. 
Our conditions of.the second-order singular point are weaker than those of the acceler­

ation wave given by CoLEMAN', GURTIN and HERRERA [1]. They assumed, in addition 
to i) and ii), that F, is continuously differentiable everywhere with respect to X. It will 
be shown in the next section that under their assumption no stationary singular point of 
second order can exist. 

· Let us next derive a kinematic compatibility condition for a discontinuous mapping tp 

from (X- t) space into Y. Suppose that tp is continuously differentiable everywh~re except 
on .E, and that tp and its first derivatives suffer finite jump discontinuities across .E. In 
view of the properties of Y, tp(X, t) for any point except on .E can be expressed as 

(2.6) tp{X, t) = c1(X, t)l" 

where 

(2.7) c1(X, t) = (tp(~, t), 11), 

and where the summation is carried over all 11• The mapping ~ -4 (~, 11): Y -4 R is linear 
and continuous, and hence it is also smooth, cf. [23]. Since for every i c1 is the composi­
tion of the mappings tp and ~-4(~, 11), it is smooth everywhere except on .E, and it as well 
as its first derivatives suffer finite jump discontinuiti~s across .E. It follows then that 

(2.8) 

where []denotes the jump of a quantity within it across .E, and ox and a, the partial differ­
entiations with respect to X and t, respectively. The first-order kinematic compatibility 
condition for c1 is given by 

(2.9) 

where ~/M means differentiation with respect tot along the path t -4 (y(t), t) in (X-t) 
space. Taki!lg the inner product of Eq. (2.9) with 11 in Y for every i, and then adding the 
results, by use of Eq. (2.8) we obtain the kinematic compatibility condition for tP: 

~ 
""'(2.10) ~~ [tp] = [at"Pl+ U[oxtp]. 

· 3. Existence of stationary singular points of second order 

The first-order kinematic compatibility conditions for v, F, and F, across a second-order . 
singular point are given by 

(3.1) 

(3.2) 

(3.3) 

[atv] + uraxv] = 0, 

(at F)+ U[oxFJ = o, 
[o,F,]+ U[oxF,] = o, 
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where we have made use of Eq. (2.10) for Eq. (3 .3). Note that OtF,. and oxF,. are the tem­

poral and the spatial derivatives of the mapping (X, t) ~ pt ( · , X) from R2 into Y, and that 

they also belong to Y. 
Substituting the constitutive equation into the balance law of linear momentum, we 

have 

(3.4) 

where the external forces are assumed to be absent. The derivative of ¢ with respect to 

F,. E Y, ih.¢, is a continuous linear functional on Y. The jump of Eq. (3.4) across }; 

is 

(3.5) 

Eliminating [o1v] from Eq. (3.5) by use of Eqs. (3.1) and (3.2), we get 

(3 .6) (oF¢ - eU2)[oxFl + oF,¢ [oxF,.] = o. 
In order to show the existence of stationary singular points, we calculate at any point 

in (X- t) space except on E, 

00 00 

(3.7) (l" OrF,.) = J l1(s) o1F(t- s)h 2 (s)ds = l1(0)h 2 (0)F(t) + J F(t - s) 05 {l1(s)h 2 (s) }ds , 
0 0 

where OtF,. may be identified with the past history of o1 F as an element of Y, and where 

we have assumed that los {li(s)h2 (s) } I is decaying to zero fast enough. We note further­

more that 

(3. 8) lim {l 1(s) F(t - s)h 2 (s)} = 0 , 
S-+ CO 

because li(s)F(t - s)h2 (s) is integrable on (0 , oo) with respect to s. Since F is continuous 

everywhere, so is the right hand side of Eq. (3.7). Hence, by taking the jump of Eq. (3.7) 

across E, we have 

(3.9) 

Since {/d is a complete system on Y, Eq. (3.9) implies that 

(3.10) 

which, when combined with Eq. (3.3), yields 

(3.11) U[ oxF,.] = 0 . 

Thus there are two possibilities : If [oxF,] = 0, the first derivatives ofF, are continuous 

across E. Then for y (t) to be a second-order singular point, [oxF] should not vanish be­

cause otherwise the condition (ii) is not satisfied in view of Eqs. (3.1) and (3.2). Equation 

(3.6) implies then that 

(3.12) 

Here and henceforth we assume that oF¢ > 0, so that the singular point is a usual acceler­

ation wave. Thus we see that if we assume a priori the continuity of oxF, across L as 

done in [1] , no stationary singular point can exist. 
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. In the second case when U = 0, y(t) is a stationary singular point, and Eqs. (3.1), (3.2) 
and (3.6) become, respectively, 

(3.13) 

(3.14) 

[otv] = [otFJ = o, 
oFcf>[oxF]+oFrcf>[oxF,] = 0. 

Henceforth we shall be concerned with stationary singular points only. So far we have 
assumed that external forces do not exist. If there is an external force which is continuous · 
with respect to X, all the above jump relations remain valid. We next consider the case 
when the material is subject to a time-dependent external force f which is discontinuous 
across a fixed material point. We simply call such a force a discontinuous external force. 
The jump of the balance l,aw of linear momentum across the fixed point is then 
given by 

(3.15) 

Since U1 =F 0 in Eq. (3.15), either [oxF] or [oxF,] or both do not vanish. Hence we conclude 
that ·a discontinuous external force induces a stationary singular point. 

4. Integral equation for amplitude of stationary singular point 

Let us call [oxFJ the amplitude of the stationary singular point, and write 

(4.1) a= [oxFJ. 

We assume that F is a known function of time at the stationary singular point, so that F, 
is also known in time. Then the derivatives of cf>, oFcf> and aFrcf>, are also known in time 
at the singular point. We write 

(4.2) E(t) =: oFcf> (F(t), F,), 

which is called the instantaneous tangent modulus. By the Riesz representation theorem for 
the inner product space Y, for the prescribed F(t) and P,. the continuous linear f11;nctional 
cFrcP on Y may be expressed as 

00 00 

(4.3) oFrcf> (F(t), P,.)p = J K(s; F(t), F:)p(s)h 2 (s)ds = f G'(S'; t)p(s)ds 
0 0 

for every p E Y, cf. [1]. By use of Eqs. (4.1), (4.2) and (4.3h, Eq. (3.14) may be written as 

(4.4) 
00 

E(t)a(t)+ J G'(s;_t)a(t-s)ds = 0. 
0 

Introducing the new variable of integration T = t-s in place of sin Eq. (4.4) and then 
dividing the result by E(t), we obtain 

t 

(4.5) J 
.. G'(t- -r; t) 

a(t)+ E(t) a( T)dT = 0, 
-oo 

en 
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where recall that E(t) > 0. Thus we see that if no discontinuous external force has been 
applied in the entire past, the amplitude a is governed by a singular, homogeneous Vol­
terra's integral equation of the second kind. When a discontinuous external force was 
applied to the material and is removed at time t0 , and when the value of a is prescribed prior 
to the time t0 , Eq. (4.5) leads to an inhomogeneous integral equation: for t ~ t0 

to 

(4.6) f G'(t- r· t) 
a(t)+g(t)+ E(t)' a(r)dr = 0, 

t 

(II) 

where g is a given function of t ~ t0 defined by 

to 

(4.7) f G'(t- r; t) . 
g(t) = E(t) a( r)dr. 

-<X> 

By a similar process, when a discontinuous external force is applied to the material, Eq. 
(3.15) yields another inhomogeneous integral equation: 

t 

(4.8) [f](t) j'" G'(t- r; t) 
a(t)+ E(t) + E(t) a(r)dr = 0. 

-ex> 

(III) 

5. Application. Determination of stress relaxation function 

In this section we present a method how to determine the stress relaxation function for 
an unknown response functional .by use of the result in the previous section. The stress 
relaxation function for the history of the deformation gradient (F(t), F:) is defined by the 
solution of 

d 
-d G(s; t) = K(s; F(t), F:)h 2 (s), s / 

(5.1) 
G(O; t) = E(t) = oplj> (F(t), F), 

where cf. Eqs. (4.2) and (4.3). The stress relaxation function is useful in the analysis of the 
mechanical behaviour of the material with memory, e.g. by using it the equation of 
motion (3.4) may be reduced to an integra-differential equation. If the response functional 
is linear, the stress relaxation function does not depend on the history of the deformation 
gradient, and the material may be regarded as a viscoelastic material of the integral type. 
In this. case the stress relaxation function can be determined by the stress as a function of 
time which gives rise to the strain of the unit function of time. The method cannot be 
applied to the case when the response functional is nonlinear. 

We consider a stationary singular point induced by a discontinuous external force, and 
we suppose that the history of the deformation gradient at the point is known in time. If 
we put 

(5.2) a(r) = H(-r-to) 
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in the corresponding integral equation (I'll), we have 

(5.3) G(t-t0 ; t)+[f](t) = 0 

fort ~. t0 , where H( ·)is the unit function and we have made use of Eq. (5.1h. Hence, to 

determine the stress relaxation fuaction, we may measure the discontinuous external force 

which induces the discontinuity a given by Eq. (5.2) for each t0 E (- oo, t]. 

In pratice it may be difficult to control the external discontinuous force so as to obtain 

such a desired discontinuity a. We next present a method to determine the stress relaxation 

function by measuring a induced by a discontinuous external force. Equation (Ill) may be 

written as 

(5.4) 

where 

(5.5) 

(5.6) 

t 

a(t) = g(t)+ J L(t, r)a(r)dr, 
-00 

[f](t) 
g(t) = - E(t) ' 

L( ) 
= _ G'(t-~; t) 

t' r -,-- E(t) • 

We suppose that g(t) and L(t, r) are continuous and bounded with respect to each argu­

ment, and that there exists a t0 such that for every t < t0 

t 

(5.7) j IL(t , r)ldr < M < 1, 
-00 

where M is a positive constant. Then Eq. (5.4) can be solved as 

t 

(5.8) a(t) = g(t)+ J R(t,r)g(r)dr, 
-00 

where R(t, r) is the resolvent of the kernel L(t, r). If we put 

(5.9) g(r) = H(r-t0), 

in Eq. (5.8), we have for t ~ t0 

t 

(5.10) .a(t; t0 ) = I+ J R(t, r)dr. 
to 

By differentiating Eq. (5.10) with respect to t0 , we get 

(5.11) 
0 
~ a(t; t0 ) = -R(t, t 0). 
ut0 

Thus _the resolvent R(t, r) can be determined by measuring the discontinuity a which is 

induced by the discontinuous external force given by Eqs. (5.5) and (5.9) for each 

toE (-co, t]. The function L(t, r) can be calculated by use of R(t, t). If we regard Eq. 
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(5.8) as an integral equation for g(t) and Eq. (5.4) as its solution, then - L(t, t") becomes 
the resolvent of the . kernel - R(t, -r). Thus it turns out that 

00 

L(t, T) = -2 Sn(t, T), 
n=1 

(5.12) 
t 

Sn+l(t, T) = J Sn(t, ~)Sl(~, -r)d~ (n = 1, 2, ... ), 
T 

where we have assumed that R(t, -r) satisfies similar conditions to those for L(t, -r). From 
Eq. (5.-6) we can obtain the stress relaxaton function by integrating -E(t)L(t, t-s) with 
respect to s with Eq. (5.1h. 

When the deformation gradient at the stationary singular point is constant in time, 
the stress relaxation function can be determined more easily than the above. In this ca_se 'F, 
at the point is also a constant element of Y, and hence E(t) becomes a positive constant 
and G(s; t) does not depend on t. In view of Eq. (5.6), L(t, -r) reduces then to a function 
L(t- -r) of the difference t""""" T. By substituting Eq. (5.9) with t0 ' = 0 into Eq. (5.4) and by 
applying the Laplace transformation to the result, we obtain 

(5.13) - 1 {- 11 L(s) = a(s) a(s)- s , 
where [and a are the Laplace transformations of L and a, respectively. From Eq. (5.5) 
the discontinuous external force is then a scalar multiple of the unit function of time. To 
determine the kernel L; it is enough that we observe one discontinuity a induced by this 
discontinuous external force and apply the inverse transformation to the right hand side 
of Eq. (5.13). · 
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