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Behaviour of stationary singular points
in one-dimensional materials with memory

E. MATSUMOTO (KYOTO)

It 1s sHOWN that in one-dimensional materials with memory there can exist stationary singular
points at which the second deformation gradients are discontinuous. An external force which
is discontinuous at a material point gives rise to such a discontinuity. The variation of the
discontinuity is governed by a Volterra’s integral equation. The stress relaxation function can
be determined by observing the behaviour of the discontinuity induced by a certain discontinuous
external force.

Wykazano, ze w jednowymiarowych materialach z pamiecia moga istnieé takie punkty osobliwe,
w ktérych drugie gradienty deformacji sa nieciagle. Obcigzenie zewnetrzne nieciagle w punkcie
materialnym prowadzi do takiej nieciaglosci. Zmiana takiej nieciggloéci rzadzi rownanie catkowe
Volterry. Funkcje relaksacji naprezen mozna wyznaczy¢é droga obserwacji zachowania si¢ tej
nieciggloéci pod wplywem pewnego niecigglego obciazenia zewngtrznego.

TTokasaHo, YTO B OJHOMEPHBEIX MAaTEPHAJaX C MaMATHIO MOTYT CYLIECTBOBATh TAKHE OCOOBIE
TOYKHM, B KOTOPBIX BTOpble rpaaueHThbl nNedopmaimii umeroT paspbiB. BHewHsAs Harpyska
pPa3pbIBHAA B MaTePHAJIBHONM TOUKE NPHBOAMT K TaKOMY pa3phiBy. FlameHenmem rtakoro pas-
PhbIBa YIIpaBJIsieT MHTETPAbHOE ypaBHeHMe BonbTeppa. PYHKIMIO peNaKCAllMH HANpsKeHuk
MOXKHO ONpPEJENINTh MyTeM HaOMIoAeHul NMOBEJICHAA 3TON0 PasphIBa IOA BIMAHHEM HEKOTOpOH
PaspbIBHOH BHEILHEH HarpysKH.

1. Introduction

THERE HAVE BEEN many works on wave propagation in materials with memory and materials
with internal variables. Shock waves in materials with memory were investigated in [1, 2],
while acceleration waves were studied in [1, 3-8]. Exact solutions of steady flows, which
admit both shock and acceleration waves, were obtained in [9, 10]. On the other hand,
shock waves in materials with internal variables were investigated in [11, 12], while ac-
celeration waves were studied in [11, 13-17]. All the waves considered above are defined by
propagating singularities.

Recently, the author [18-20] showed that there may exist stationary singular points or
surfaces in materials with internal variables. According to [21, 22], 'such materials with
internal variables can be regarded as special materials with memory. Thus there is the
possibility that stationary singular points or surfaces exist in familiar classes of materials
with memory.}

This paper considers a one-dimensional material with fading memory, and the consti-
tutive assumptions are given in the next section. Across a stationary singular point in such
a material, the spatial derivative of the history of the deformation gradient has a discon-
tinuity. Since the history of the deformation gradient belongs to a functional space, the
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stationary singular point is also a discontinuity point with respect to a mapping whose
range is the functional space. In the next section we obtain a kinematical compatibility
condition for such a discontinuous mapping. Using the result, we prove in Sect. 3 that
there may exist stationary singular points of the second order. In [18-20] it has not been
discussed how the stationary singularities are generated: In this section we show that a sta-
tionary singular point is induced by an external force which is discontinuous across a fixed
material point. In Sect. 4 it is shown that the amplitude of a stationary singular point,
i.e. the jump of the second deformation gradient, is governed by a Volterra’s integral
equation. In Sect. 5, by applying the result to the material with an unknown response func-
tional, we propose a method for determining the stress relaxation function by observing
the behaviour of the stationary singular point.

2. Constitutive equation and generalized kinematical compatibility condition

Let us consider a one-dimensional material with memory defined as follows: Let u
denote the deformation, X the coordinate in the reference configuration, v the velocity,
and F the deformation gradient. Then F?, the past history of the deformatlon gradient at
time ¢, is a function on (0, o0) defined by

2.1 Fi(s) = F(t—s), se(0, ).

Suppose that the space of all past histories of deformation gradients is a Hilbert space ¥
with the inner product: for y, ze Y

00

(22) ,2) = [ y5)z(s)h*(s)ds,
0

where 4 is a positive, monotone-decreasing, smooth function on [0, c©) decaying to zero

fast enough. Suppose further that ¥ has a complete system of orthogonal smooth functions

{l(s)}. The pair (F(¢), F}) is called the history of the deformation gradient at time ¢.
The stress ¢ is given by a functional of the history of the deformation gradient:

@.3) o(t) = ¢ (F(1), FE).

We assume that ¢ is continuously differentiable with respect to.both arguments. Here it
should be noted that the deformation gradient together with its past history depends on
the coordinate also. Henceforth for simplicity we omit all the arguments of functions or
functionals unless there is any danger of ambiguity. The past history of the deformation
gradient F is denoted by F,. Let y be a smooth function of f e (—<0, ), and define
a smooth curve in (X—1t) space by

24) £ =U@(,.1).

te(—o0, ®)

We call a point y(¢) a second-order singular point if the following conditions are satisfied:
i) 4, v, F, and F, are continuous everywhere in (X—1¢) space.
ii) v, F, and F, are continuously differentiable with respect to X" and ¢ everywhere else
except on X, where their first derivatives suffer finite jump discontinuities.



BEHAVIOUR OF STATIONARY SINGULAR POINTS IN ON_E-DIMENSIONAL MATERIALS 387

Here the continuity and the differentiability of F, with respect to X and ¢, respectively,
are those of the mapping (X, t) — F'(:, X) from R? into Y.

The velocity of the singular point is given by

= dy
2.5 _ U= a3
If U vanishes identically, the singular point is called stationary,

Our conditions of the second-order singular point are weaker than those of the acceler-
ation wave given by COLEMAN, GURTIN and HERRERA [1]. They assumed, in addition
to i) and ii), that F, is continuously differentiable everywhere with respect to X. It will
be shown in the next section that under their assumption no stationary singular point of
second order can exist.

Let us next derive a kinematic compatibility condition for a discontinuous mapping 3
from (X —1t) space into Y. Suppose that y is continuously differentiable everywhere except
on X, and that p and its first derivatives suffer finite jump discontinuities across Z. In
view of the properties of ¥, y(X,t) for any point except on X' can be expressed as

(26) 110(/‘,9 t) = cl(X’ t)lh
where ‘
(27) Ci(X; t) = (W(‘X\’! t)! lt)r

and where the summation is carried over all /;. The mapping & — (&, [;): Y = R is linear
and continuous, and hence it is also smooth, cf. [23]. Since for every i ¢; is the composi-
tion of the mappings y and £— (&, /), it is smooth everywhere except on X, and it as well
as its first derivatives suffer finite jump discontinuities across X. It follows then that
(2.8) [v] = [cill:, [Oxy] = [Oxeldly, [O,w] = [0y,

where [ ] denotes the jump of a quantity within it across X, and 8x and g, the partial differ-
entiations with respect to X and ¢, respectively. The first-order kinematic compatibility
condition for ¢; is given by

@9 o led = (e + Ulaxel,

where 8/dt means differentiation with respect to ¢ along the path ¢ — (y(?), t) in (X—1)
space. Taking the inner product of Eq. (2.9) with /; in Y for every i, and then adding the
results, by use of Eq. (2.8) we obtain the kinematic compatibility condition for p:

210 5 1] = (0] + Uloey.

‘3. Existence of stationary singular points of second order

The first-order kinematic compatibility conditions for 2, F, and F, across a second-order
singular point are given by
3.1 [8,v]+ U[dxv] = 0,
(3.2 [0, F1+ Ulox F] = 0,
3.3 [6.F]+UloxF] = 0,
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where we have made use of Eq. (2.10) for Eq. (3.3). Note that ¢, F, and dx F, are the tem-
poral and the spatial derivatives of the mapping (X, t) - F*(-, X) from R? into Y, and that

they also belong to Y.
Substituting the constitutive equation into the balance law of linear momentum, we

have
(3.4) O Ox F+ Op,p Ox Fr = 00,0,
where the external forces are assumed to be absent. The derivative of ¢ with respect to

F,€Y, dr,¢, is a continuous linear functional on Y. The jump of Eq. (3.4) across &
ig :

(3.5) Irpl0x F1+ O, ¢[0x Fr] = 0l ,2].
Eliminating [8,7] from Eq. (3.5) by use of Egs. (3.1) and (3.2), we get
(3.6) (0r¢ —0U)[Ox Fl+ 0, ¢ [0x Fr] = 0.

In order to show the existence of stationary singular points, we calculate at any point
in (X—t) space except on 2,

0 [ee]

B U, 8F) = [ L2 Ft—)h(s)ds = LOWOFW)+ [ F(t—s)a,{()h*(s)}ds,
0

0
where 9, F, may be identified with the past history of ¢, F as an element of Y, and where
we have assumed that |3, {/;(s)h*(s)}| is decaying to zero fast enough. We note further-
more that
(3.8) lim {I,(s) F(t—s)h*(s)} = 0,

S—= 0

because /;(s) F(t—s)h%(s) is integrable on (0, co) with respect to s. Since F is continuous
everywhere, so is the right hand side of Eq. (3.7). Hence, by taking the jump of Eq. (3.7)
across X, we have

(3.9 (i, &, F)] = (I, [6:.F]) = 0.
Since {/;} is a complete system on Y, Eq. (3.9) implies that
(.10} [0.F] = 0,

which, when combined with Eq. (3.3), yields
(3.1D UloyF,] = 0.

Thus there are two possibilities: If [0y F,] = 0, the first derivatives of F, are continuous
across 2. Then for y(¢) to be a second-order singular point, [dx F] should not vanish be-
cause otherwise the condition (ii) is not satisfied in view of Egs. (3.1) and (3.2). Equation
(3.6) implies then that

(3.12) oU? = 0pd.
Here and henceforth we assume that dp¢ > 0, so that the singular point is a usual acceler-

ation wave. Thus we see that if we assume a priori the continuity of ¢xF, across X' as
done in [1], no stationary singular point can exist.
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. In the second case when U = 0, y(¢f) is a stationary singular point, and Egs. (3.1), (3.2)
and (3.6) become, respectively,

(3.13) [0:v] = [0, F] = 0,

(3.19) Or¢[0x F1+ 0r, ¢ [0xF] = 0.

Henceforth we shall be concerned with stationary singular points only. So far we have
assumed that external forces do not exist. If there is an external force which is continuous
with respect to X, all the above jump relations remain valid. We next consider the case
when the material is subject to a time-dependent external force f which is discontinuous
across a fixed material point. We simply call such a force a discontinuous external force.
The jump of the balance law of linear momentum across the fixed point is then
given by

(3.15) Or¢ [0xF1+ 0r, ¢ [ox F]+ [f] = O.

Since [f] # 0in Eq. (3.15), either [2x F] or [dx F,] or both do not vanish. Hence we conclude
that a discontinuous external force induces a stationary singular point.

4. Integral equation for amplitude of stationary singular point

Let us call [04F] the amplitude of the stationary singular point, and write
(4.]) a= [axF].

We assume that F is a known function of time at the stationary singular point, so that F,
is also known in time. Then the derivatives of ¢, dz¢ and dy,¢, are also known in time
at the singular point. We write

*.2) E(t) = 2r (Ft), FY),

which is called the instantaneous tangent modulus. By the Riesz representation theorem for
the inner product space ¥, for the prescribed F(¢) and F} the continuous linear functional
Jdr,¢ on Y may be expressed as

@43) 2r,d (F(0), Fo)p = [ K(s; Ft), FE)p()h*(s)ds = [ G'(s; 1)p(s)ds

0 0
for every p € Y, cf. [1]. By use of Egs. (4.1), (4.2) and (4.3),, Eq. (3.14) may be written as
4.4) E@M)a(t)+ | G'(s; t)a(t—s)ds = 0.

i 0

Introducing the new variable of integration v = ¢—s in place of s in Eq. (4.4) and then
dividing the result by E(z), we obtain

t
CG(t—73t)

F50) a(rydr=0, (D

.5) a(t)+ j
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where recall that E(z) > 0. Thus we see that if no discontinuous external force has been
applied in the entire past, the amplitude a is governed by a singular, homogeneous Vol-
terra’s integral equation of the second kind. When a discontinuous external force was
applied to the material and is removed at time ¢,, and when the value of a is prescribed prior
to the time #,, Eq. (4.5) leads to an inhomogeneous integral equation: for ¢ > ¢,

t

(4.6) a()+g(t)+ G—(;."(t;”) a(d)dr =0, (I

where g is a given function of ¢ > ¢, defined by

* @u—ri)
G'(t—t;t .

4.7 g(t) = EQ) a(t)dz.

— 00

By a similar process, when a discontinuous external force is applied to the material, Eq.
(3.15) yields another inhomogeneous integral equation:

[f1(2)

(4.8) P{() FEL LA J Gl-z;1)

E(t)

50 a(r)dt =0. (III)

5. Application. Determination of stress relaxation function

In this section we present a method how to determine the stress relaxation function for
an unknown response functional by use of the result in the previous section. The stress
relaxation function for the history of the deformation gradient (F(¢), F}) is defined by the
solution of ‘

% G(s; t) = K(s; F(1), F})h(s),
5.1
GO;1) = EQt) = 254 (F(1), F),
where cf. Eqgs. (4.2) and (4.3). The stress relaxation function is useful in the analysis of the
mechanical behaviour of the material with memory, e.g. by using it the equation of
motion (3.4) may be reduced to an integro-differential equation. If the response functional
is linear, the stress relaxation function does not depend on the history of the deformation
gradient, and the material may be regarded as a viscoelastic material of the integral type.
In this case the stress relaxation function can be determined by the stress as a function of
time which gives rise to the strain of the unit function of time. The method cannot be
applied to the case when the response functional is nonlinear.
We consider a stationary singular point induced by a discontinuous external force, and
we suppose that the history of the deformation gradient at the point is known in time. If
we put

(5.2) a(r) = H(t—tg)
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in the corresponding integral equation (HI), we have
(5.3) G(t—to; )+ [fl1) =0

for t > t,, where H( ) is the unit function and we have made use of Eq. (5.1),. Hence, to
determine the stress relaxation fuaction, we may measure the discontinuous external force
which induces the discontinuity a given by Eq. (5.2) for each ty € (— o0, 1].

In pratice it may be difficult to control the external discontinuous force so as to obtain
such a desired discontinuity . We next present a method to determine the stress relaxation
function by measuring a induced by a discontinuous external force. Equation (III) may be
written as

(5.4) a(t) = g()+ J: L(t, 7)a(7)dz,
where

5.5) s=-L0,

(5.6) L(t,?) = — ﬂtf_(;)—') .

We suppose that g(¢) and L(z, 7) are continuous and bounded with respect to each argu-
ment, and that thére exists a ¢, such that for every ¢ < ¢,

(5.7) [1La, oldv < M < 1,

—0

where M is A positive constant. Then Eq. (5.4) can be solved as

(5.8) a(t) = g+ [ R(t,Dg(v)dr,

where R(¢, 7) is the resolvent of the kernel L(z, 7). If we put
(5.9 g(7) = H(r—1y),

in Eq. (5.8), we have for ¢ = 2,
t
(5.10) at;to) = 1+ [ R(t, D).
to
By differentiating Eq. (5.10) with respect to z,, we get
.11) 0 a(t;10) = —R(t, 10).
oty
Thus the resolvent R(z, 7) can be determined by measuring the discontinuity @ which is

induced by the discontinuous external force given by Egs. (5.5) and (5.9) for each
to € (— 00, t]. The function L(¢, 7) can be calculated by use of R(z, 7). If we regard Eq.
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(5.8) as an integral equation for g(¢) and Eq. (5.4) as its solution, then — L(#, ) becomes
the resolvent of the kernel — R(¢, 7). Thus it turns out that

Lit, 1) = — D) S,(t, 9,
n=1
(5'12) Sl(t5 T) = —R(tst)’

Susr(t, D = [ S, OS1(E, DdE (n=1,2,..),

where we have assumed that R(z, ) satisfies similar conditions to those for L(¢, 7). From
Eq. (5¢6) we can obtain the stress relaxaton function by integrating — E(¢) L(z, t—s) with
respect to s with Eq. (5.1),.

When the deformation gradient at the stationary singular point is constant in time,
the stress relaxation function can be determined more easily than the above. In this case F;
at the point is also a constant element of ¥, and hence E(?) becomes a positive constant
and G(s; t) does not depend on ¢. In view of Eq. (5.6), L(z, 7) reduces then to a function
L(t— ) of the difference ¢ — 7. By substituting Eq. (5.9) with #,'= 0 into Eq. (5.4) and by
applying the Laplace transformation to the result, we obtain

(5.13) L(s) = _5—(15 {E(s)— %} ,

where L and a are the Laplace transformations of L and a, respectively. From Eq. (5.5)
the discontinuous external force is then a scalar multiple of the unit function of time. To
determine the kernel L, it is enough that we observe one discontinuity a induced by this
discontinuous external force and apply the inverse transformation to the right hand side
of Eq. (5.13).
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