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Some aspects of invariant theory in plasticity
Part I. New results relative to representation of isotropic and
anisotropic tensor functions

J.J. TELEGA (WARSZAWA)

STARTING from the general method of representation of tensor functions, new results have
been obtained in some specific cases. Particularly, more general than the ordinarily used repre-
sentation of the fourth-order isotropic tensor function of a second-order symmetric tensor has
been derived. It has been shown that list of generators proposed by SmiTH [27] for a second-
-order symmetric tensor function contains a redundant element. Some yield conditions for
initially orthotropic and transversely isotropic materials have been discussed.

Wychodzac z ogblnej metody reprezentacji funkeji tensorowych, otrzymano nowe rezultaty
dla pewnych przypadkdw szczegdlnych, 1 tak, podano ogblniejsza niz zwykle stosowana, re-
prezentacje izotropowej funkcji tensorowej czwartego rzedu zaleznej od symetrycznego tensora
drugiego rzedu, Wykazano, e lista generatoréw, zaproponowana przez SMITHA [27] dla sy-
metrycznej funkcji tensorowej drugiego rzedu, zawiera zbedny element, Podano pewne warunki
plastycznosci dla materiatéw pierwotnie ortotropowych i transwersalnie izotropowych.

Hcxons u3 obluero meroja mpeACTaBJICHHH TEH30PHBIX (YHKLMII, IOJIyYeHb! HOBLIE Pe3yJib-
TaThl JUIA HEKOTOPBLIX YacTHBIX ciyuaeB. HMraxk, npuneemeHo Gosce obliee, ueM nmpHMeHsEMoOe
00BLIYHO, TIpeACTaBJIeHHe H30TPOIHOM TEH30PHOH (DYHKIIHH YeTBEPTOro MOPSAKA, 3aBHCALICH
OT CHMMMETPHUHOrO TeH30pa BToporo mopsaxa. ITokasaHo, YTO CHMCOK Ie€HEepaTopoOB, Npel-
noenHblit CmutoM [27] s CHMMETPHUHON TeH30PHON (YHKUMH BTOPOro NMOpsiAKa, COAep-
HKUT JMiHUE onement. IlpuBefeHb! HEKOTOpble YCJIOBHA IUIACTHUHOCTH JUIA MaTepHAJIOB
NEPBUYHO OPTOTPONHBIX M TPAHCBEPCAIbHO M30TPONHBIX,

1. Introduction

THE CLASSICAL theory of invariants has penetrated many fields of continuum mechanics.
The essential aspects of this theory oriented towards applications in continuum mechanics
are presented by SPENCER [30]. Contemporaneous exposition of the invariant theory has
been dealt with in the books [13, 32], see also [34]. As the title of this paper suggests, we
are primarily concerned with applications of the invariant theory to plasticity. The in-
variant theory is here understood in the classical sense [30]. The review papers [5, 19, 31,
34] present essential aspects of the applications of the invariant theory to a description
of inelastic, particularly plastic, behaviour of metals, soils and rocks.

The origin of the developments presented in Part I is directly connected with the con-
tribution by DAFALIAS [11], cf. also [12]. This author derived the polynomial representation
of the orthotropic fourth-order tensor function of a second-order symmetric tensor.
Dafalias® derivation seems to me unduly complicated because he treats this particular
problem as a problem in itself, not related to the available simpler results. Therefore, in
Sect. 3 of Part I of the paper I shall demonstrate that the representation obtained by
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Dafalias readily follows as a consequence of the general theory of representation of tensor
functions. As one knows, such theory is well established, cf. Refs. [18, 23, 26, 30, 31].

The theory of representation of tensor functions suggests that the problem of repre-
sentation of isotropic and anisotropic tensor, particularly vector fucntions, can always
be reduced to the examination of suitable scalar functions. Thus representations of vector
and tensor functions are always available provided that bases of appropriate quantities
are known. These simple facts are often overlooked in papers on representation of specific
vector and tensor functions.

The plan of the first part of the paper is as follows. Instead of adducing the general
method of representation of tensor functions, given in [23, 30], in Subsect. 2.1 I shall
illustrate it by deriving the representations of some constant tensors. Next, the representation
of the isotropic tensor function of a second-order tensor is investigated. It is shown that
the list of generators proposed by Smith [27] for a symmetric tensor function contains
a redundant element. The representation of the isotropic fourth-order tensor function
of a symmetric tensor is reexamined. It is shown that the representation commonly used
as the most general [3, 25] is not such, see also Remark 2. Consequences for existing
applications are briefly discussed. Section 3 is concerned with some yield criterions for
initially orthotropic materials, compressibility being included. Here an essential role is
played by the representation of the orthotropic fourth-order tensor function of a sym-
metric second-order tensor (plastic strain). This representation is here readily obtained,
as a consequence of the available representation of a general orthotropic scalar function
of appropriate arguments. An inclusion of terms linear in stresses gives, in the case of
initial flow, yield criterions used for oriented polymeric materials [8-10, 21, 24] and rocks
[29]. In Sect. 4 some yield criterions for initially transversely isotropic materials are
studied.

2. New results relative to representation of some isotropic tensor functions

Before proceeding to the presentation of new results I shall first show, in subsection 2.1,
how the general method of representation of tensor functions [23, 30] operates in the
specific case of some constant isotropic and hemitropic tensors.

2.1. Some constant isotropic and hemitropic tensors

Isotropy is usually related to the full orthogonal group 0(3), while hemitropy is de-
scribed by the proper orthogonal group S0(3), cf. Ref. [17].

Let us first derive the representation of constant isotropic tensors: ¢ = (¢i;), C = (Ciju),
under i «» j, k « ! symmetry requirement and with complete pairwise symmetry (ij) « (kl).
The indices run from 1 to 3. For the purpose we take a symmetric tensor a = (a;;) and
next we form scalar functions f; = ¢;jay, fo» = Cijuaijau, which are to be isotropic,
i.e. invariant under the group 0 (3). The isotropic integrity basis, being now also the func-
tional basis, for the tensor a is given by tr a = a;;, tra?, tra®. This basis has been derived,
for instance, in [30]. It is well known that in this case the most general isotropic scalar
function is a function of the elements of the isotropic basis. As particular cases the func-
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ctions f; and f, result. Taking into account previously mentioned symmetry requirements
and noting that in f; the tensor a enters linearly, while in f, only quadratic components
of a are present, we readily obtain

2.1 fi = citra = ¢ 4y ay,
(2.2) f2 = catr’atcstra’ = (¢3 0,500+ c3 i) an,

where I = (8;;) is the Kronecker’s delta; ¢,, ¢, ¢; are constants and

1
(2.3) L = ) (Ouse Ou+ 011 6) .
The relations (2.1)-(2.2) imply
2.4 iy = €10y,
(2.5) Cijmi = €20y akI+CSIUk!-

Nonexistence of a nontrivial, that is different from 0, constant isotropic tensor ¢! = (cy)

such that ¢!; # cj; for i # j can similarly be proved if an unsymmetric tensor is dealt with
instead of a.

Nonexistence of a nontrivial constant isotropic tensor of the third order: C! = (Cl;)
readily follows if the isotropic invariant f3 = Cl,u9;w; is considered. In this case the
isotropic basis for vectors u, v, w is involved and then C};, = 0.

On the other hand the hemitropic constant tensor of the third order exists. For the
purpose we consider the hemitropic invariant f; = C{,u;v;w,. The hemitropic integrity
basis for vectors u, v, w is given by
(2.6) Uiy, gDy, UyWy, U0, Uy Wi, WiW,, €5, U U5 Wy,
where (e;;,) stands for the Ricci’s symbol. Hence we infer that
(27) f¢ = el‘jkujv_th.

We note that £ is the pseudo-scalar relative to the group 0(3), but a scalar under S0(3).
From Eq. (2.7) we eventually obtain

(2.8) Cix = eun-
Representations of constant orthotropic and transversely isotropic tensors have been
derived in [35].

In similar manner representations of arbitrary constant isotropic and anisotropic
tensors can effectively be derived, provided that appropriate bases are known.

2.2. Isotropic tensor function of a second-order tensor

We proceed to solving the problem of the representation of an isotropic tensor function
fi = (f,,b,d) Both the function f and the argument b may be unsymmetric. We can split
f into the symmetric and skew-symmetric parts

1 1
29 f=g+l, g=-5@+f), 1=



150 J.J. TELEGA

Here “T” denotes transposition. Therefore it is sufficient to consider the isotropic repre-
sentations of the symmetric function g(b) and of the skew-symmetric function 1(b).
We set

(2.10) b=d+e, d= -;—(b+b"), e = % (b—bT).

Let us find the isotropic scalar function

.11) fs = 2u(b)ayy,

where q is a symmetric tensor. The functional basis for tensors d, e, q consists of 21 invari-
ants [4]

trd, trd?, trd3, trq, trq?, trq?, tre?, trde?,
(2.12) trd2e?, trd%ede, trdq, trd3q, trdq?, trd%q?, trqe?,
trq2e?, trq®e3qe, trqde, trq3de, trqd2e, trqe’de.

The general isotropic scalar function of d, e, q is an arbitrary function of the invariants
(2.12). As a specific case the function f; results. Since q enters linearly, then this function
has the form

(2.13)  fs = a,trq+a,trdq+ astr d2q+ o, trqe® + astrqde + astrqd2e + o, trqe?de,

where the coefficients a,, .. , @, are arbitrary scalar functions of the invariants trd, trd2,
trd?, tre?, trde?, trd%e?, trd%e?de, and Eq. (2.10) has to be taken into account. From
Eq. (2.13) the representation of the symmetric function g readily follows:

2.19) 80 = o, I+ o d+oe;d2+ 0% + os(de —ed) + ot (d2e — ed?) + o, (ede? — e?de),
where

1 _ 1 _ 1_
U5 = 5 UAs, Q=5 &g, 7= — 5 U

According to SMITH [27] the representation of the tensor function g should involve
eight generators. However, BOEHLER [4] has proved that the functional basis for two
symmetric tensors A,;, A, and a skew-symmetric tensor W contains one redundant in-
variant, namely trA, A,W?2 (in Boehler’s and Smith’s notations). Hence our procedure
of representation of tensor functions immediately implies that also the set of generators
listed by SmiTH [27] contains redundant terms. In the formula (4.5) of [27] redundant
is the generator WAW. The statement follows if the generalized Cayley— Hamilton theorem
is used [5, 30].

It is worthwhile noting that the problem of a determination of minimal functional
bases in more involved cases is still open. For instance, in the case of two second-order
tensors, one of which is symmetric and the other is skew-symmetric, there seems to be
no convincing proof what is the minimal isotropic functional basis.

If e = 0, then from Eq. (2.14) we obtain the well-known representation of the second-
-order symmetric tensor function of a symmetric tensor.
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For d = 0 the relation (2.14) furnishes the representation of a symmetric function
g, of a skew-symmetric tensor

(2.15) gi(e) = afI+age?,

where the scalar functions «?, «$ depend on tre?. .

The set of generators for the isotropic skew-symmetric tensor function 1(b) obtained
in the above manner is the same as the set derived by SmitH [27].

We note that the representations considered in Subsect, 2.2, and/or their generaliza-
tions, can be useful in micropolar theories of elasticity and inelasticity.

2.3. Comments on isotropic fourth-order tensor function of a second-order symmetric tensor

We shall derive the representation of the isotropic tensor function
(2.16) Nimt = Nij(€)

of a second-order symmetric tensor €. The usual symmetry requirement is imposed, that
is Ny = Njiw = N“,-_,-A. It is important to derive the correct representation of the isotropic
polynomial function N, because when studying the papers [3, 19, 25] I have noticed that
in this respect a confusion is current. We observe that in the paper by RivLin and ERICK-
SEN [26] the representation of the fourth-order tensor function is not investigated,

Let us take a symmetric tensor a = (a;;) and consider the isotropic function of € and a

(2.17) fe = ﬁl}kt(e)auakb

The isotropic integrity basis, being also the functional basis, is given by ten invariants
which are listed in the set (2.12), with obvious changes of notations and e = 0. In the

scalar function f; the tensor a appears solely through quadratic components. Therefore
we have

(2.18) fe = a,tr’a+a,tia’ +astratrae+atra’e+ astr’ae+agtra’e’
+a,tratrae?® 4+ agtraetrae? + agtrlae?,

where, in the case of the polynomial representation, the coefficients «,, a,, ..., ¢ are
polynomials in tre, tre2, tre3. Taking account of the symmetry requirements imposed
on N, from Eq. (2.18) we readily obtain fs in the form (2.17) where

(2.19) Nyu = A”}Ukl(e) = 0ty 81y Oy + %2 (O 6+ 814 65) + 03 (04 10+ Sy €1)
+ots (O £0+ Oy e+ O B+ S &) + s €y i + 26 (Suc 00+ 0O+ @t 05000)
+ 07( 845 0kt + 640 04)) + 0ta( &1y 0kt + €41 01s) + 00 045 Oxr -
Here

ay = 0;/2, o3 = 03/2, ay=0Ouls, 0= Ae/d, o7 =0:/2, 0= Eusyy.

In the papers [3, 19, 25] the authors affirm that the coefficients o, «,, @3, o, are simply
constants. From our considerations it results that all scalar coefficients appearing in
Eq. (2.19), including «,, «,, a3, o4 are scalar functions of basic invariants of €.

One more remark concerning the paper [3]. In the formula (2.7) of [3] the symmetry
relation N;j,y = Ny;; should imply» = n, B= Cand G = H.



152 J. J. TELEGA

Further comments on the representation (2.19) furnishes Remark 2, given after Sect.
4 of the present paper.

From the representation formula (2.19) we conclude that it is not justified to affirm
that the tensor N can be written in the form, cf. Refs. [3, 25]

(2.20) N = Ljja+ Ay,
where
(2.21) T = oy 0ij 0+ 02(00k 05+ 0y O )

is the constant isotropic tensor while solely A;j; collects terms depending on €. We observe
that only for a fixed e the tensor I is the constant isotropic tensor. If € is not fixed,
then I;j, depends on € by means of «; and «,. One obviously can assume that «, and «,
are constants, but this is an additional assumption not implied by the representation
itself.

In the case of plastic incompressible flow considered by BALTOV and SAwczuk [3],

€ stands for the plastic strain. For € = 0 we have a, = ;— However, during plastic

deformation this coefficient changes because for incompressible flow it generally depends
on tr € and tr €.

We note that applications of isotropic even-order tensors in nonlinear elasticity are
discussed by OGDEN [20]. Our comments regarding the tensor function N(e) are also
relevant to isotropic tensors %, in Ogden’s notation.

3. Yield conditions for initially orthotropic materials

In this section we first consider the general form of a yield condition for a material
which can be regarded as orthotropic in a preferred reference configuration, cf. Refs.
[11, 12]. We assume that the corresponding Cartesian coordinate system coincides with
the system of the principal axes of orthotropy. We consider the scalar function

(3.1 flo—a,e,w) =0

invariant under the coordinate transformations associated with orthotropic symmetry.
Here o = (o)) is the stress tensor whereas € = (¢;;) is the plastic part of the strain tensor;
i,j=1,2,3. The tensor a = («;;) and the scalar w are parameters (internal variables)
describing, respectively, the translation and the expansion or contraction of the yield
surface. A choice of the scalar w depends on a particular class of materials. For metals
it is usually assumed that w is represented by the plastic work [11, 12, 14]. On the other
hand, for granular materials w can be the plastic volumetric strain (cf. [14, 15]).

The group of orthotropic symmetries, here denoted by Q, is a finite, or discrete group
defined as follows [5, 30]:

(3.2) 0 = {[0,]10;; = t1fori=jand Q,; = Ofori # j}.

In terms of crystallographic classes orthotropy corresponds to the rhombic-dipyramidal
class of the rhombic system.
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We put
(3.3) t=g0—a.
Thus we have
(34) ft,e, w) = 0.
The following special case of Eq. (3.4) is of interest in applications:
(3.5) F(t, e)—k(w) = 0.

In the sequel both the polynomial and nonpolynomial representations of the scalar function
(3.5) are studied.

3.1. General polynomial representation of Eq. (3.5) and some specific cases

In the case of orthotropy the integrity basis for two symmetric second-order tensors
t, € consists of 23 basic invariants [1, 7]:

(36 IL=t,, L=t L=t IL=1, I=1, I=1,,
I = ty3t3: 12,
BN Ji=¢n, Jr=¢n, Ji==6&;, Ji=2¢€35, Js=¢5, Je= ¢t
J7 = 83383, 8132,
Ky = tr3625, Ky =13183, K3=1,62, Ki=13313¢:,
(3.8) Ks=t3t:8623, Kg=t3t2383,, K;=1t,838;,
Kg = t;3631812, Ko = t3;8;8;3.
Thus the most general orthotropic scalar function (3.5) has the form
(3.9) FI,,1I,, ..., Ks)—k(w) = 0,
where F is a polynomial function of the indicated arguments.
The scalar function (3.9) is too general to be applicable. Therefore we shall investigate
several particular cases of the function (3.9). Let us suppose that the function F is indepen-
dent of I, and is a polynomial comprehending solely linear and quadratic terms in stress

components, with coefficients being polynomial functions of the invariants J,, ..., J,.
Denoting this function by F, we have

(3.10) Fy—k(w) = F,+ Fy—k(w),

where

(3.11) F,=a,I,+a,I,+asL+a,K,+asK,+acKs+a,K;+agKg+as Ko,

(3.12) Fy = b, I34+b,13+ ... +bs, Kz K.

The exact form of the function F; is given in the paper [35]. The orthotropic scalar func-
tions a,, ..., ag and b,, ..., bs, are arbitrary polynomials in J,, ..., J;. Taking account

of Egs. (3.6) and (3.8) we obtain the final form of the scalar orthotropic function F,,
linear in components of the tensor t

(3.13) Fy = hy(@)ty,

2 Arch. Mech. Stos. or 2/84
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where

hyy =a;, hy;=a;, hi;=a;,

1 1
(3.14) hy, =hyy = 7(“6812 +a;83823), hy3 = h;3 = 7(05 €13 +0a9 &3 £33),

1 .
hys = hy; = - (as823+ag €12 6:3),  hyy = hyy(e).
2

DAFALIAS [11, 12] discusses the yield criterion when h = 0. The inclusion of the terms
linear in stresses seems to us important, as we shall see in the sequel.
The function F; has the form

| 4
(3.15) Fy, = “E‘Huu(e)futkn ik, = 1,23,

The components of the orthotropic fourth-order tensor function }f(e) = (ﬁl 1i(€)), such
that Hijy = Hjuq = Huwij are given in [35], see also [11, 34).

In Dafalias’ approach the scalar function F; is known if first the representation of
the fourth-order tensor function H(e) is derived. Our approach leads to this representation
quite naturally and easily. Further, our approach seems to be more advantageous in
applications of the function (3.15) in yield conditiong. Why? The function F; will usually
be too general due to the presence of 21 functions H;jx. Therefore further simplifications
are needed. The form (3.12) of the function F; seems to be more appropriate for possible
simplifications than the equivalent form given by the function (3.15). The same conclusion
regards both initially isotropic and anisotropic materials.

The results as yet obtained indicate that a consistent approach to representation of
tensor functions furnishes not merely representations of unknown functions but can
also lead to improvements in the existing representations.

An alternative method to the representation of second-order anisotropic tensor func-
tions has been proposed by BOEHLER [5, 6], see also [17].

3.2. Special cases of Eq. (3.10)

It is interesting to study the initial yield condition resulting from Eq. (3.10). In this
case we have e = 0, a = 0, t = o, k(w) = k,, where k, is a material constant. We put

(3.16) h° = h°(0), HO° = H(0).

From the form (3.14) and the explicit form of H;j, we readily infer that merely A9, , A3,,
33 and nine constants Hj,, do not disappear, cf. [11, 34, 35]. Thus from the relation
(3.10) we obtain

1
3.17) 21011 +h3200,+h33033+ D) (HYy110%+HY 22203+ HS33308%;

+2H?,3,0,102,4+2H?, 330,033+ 2H323303,633+4H 212012
+4H 93,3013 +4H3250%33)—ko = 0.
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If we set
1 1
TH?111=G+H+X2, —_,_—k;H(z)zzz=F+H+Y2,
0
1 1
m”gsss = F+G+2Z?, "k:H?uz = 2XY-2H,
(3.18) | |
k—H?lag = 2XY_2G, _](_;—ng?' = 2YZ—2F,
0
2 2 2
""‘H2323=L9 Hﬂ?ua‘—‘M’ k—OH?nz:Ns
0

then the relation (3.17) gives

(3.19)  F(0;,—033)*+G(033—0,,)* + H(0yy — 623)* + Lo3s + Moi,
1
+N0fz+(X0n+Y022+2033)2+k—(h?x 0y, +h3;02,+h85053)—1 = 0.
o

The criterion (3.19) has been proposed for orthotropic compacting materials like porous
limestone by SMITH and CHEATHAM [29]. The criterion (3.10) can thus be regarded as
a direct generalization of the initial yield condition (3.19).

A deeper insight into the criterion (3.10) is gained if the deviatoric and normal com-
ponents of the tensor t are used. We have

1
(3.20) L= s+ 3 TR
where
D D l 1
(3.21) sy =0o5=Fiys o= oy=—50udy,  Pu= ay— 5 twdy.

Therefore we eventually obtain

1 1 1
(322) F—=k(W) =+ HyusSisu— g Hulim+ — Hijitijtmm +higtyy—k(w) = 0.
2 18 3

The first term in Eq. (3.22) is the quadratic form in s. Hence only fifteen independent
components of H enter into this form, cf. [11]. For € = 0 the quadratic form reduces to
the first six terms appearing in Eq. (3.19); compare with the Hill’s yield condition [16].
The second and the third terms entering the condition (3.22) correspond to the term
(X044 +Y0o,,+Z0;3)* which appears in Eq. (3.19). Comparing the initial yield condition
(3.19) with the criterion (3.22) and taking into account the dependence of h and H on e
we infer that strong interrelation exists between normal and shear behaviour during
yielding. For instance, in the condition (3.19) merely three constants connected with
normal stresses are present. Yielding activates also the shear stresses entering linearly,
as the presence in Eq. (3.22) of the terms A,,1,,, A;3¢,3 and hy5 1,5 indicates.

Let us return to the condition (3.19) once again. We set X = ¥ = Z = 0 and K}
= h31/ko, KS = h3,/ko, K3 = h33/ko; hence we obtain the following criterion

2%
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(3.23) F(032—033)* +G(033—0,4)*+ H(0,, —035)*+ Lo} 3+ Moi; + Noi,
+K{0y,+ K362, +K3033 = 1.

The condition (3.23) has been proposed by StaAssi-D’ALIA [33] and rediscovered by
CADDELL, RAGHAVA and ATKINS [9]. Afterwards it has been extensively used to describe
the macroscopic, pressure dependent initial yield behaviour of oriented polymeric ma-
terials like polycarbonate, polyethylene and polypropylene, see Refs. [8, 10, 21, 24, 37].
In this case the material constants F, G, ..., K3 are defined as follows:

1 1 1
H+G= -, F+H=——— G+F= ——u—,
(3.24) _ TGl " T,|C,| T.|C.|
’ [ —T, |C,| =T L —T.
Ko = X x s Ko = y y , KO o z z ,
L TG T, G T S X

where T, T,, T, denote the tensile yield stresses at atmospheric pressure and room tem-
perature in the 1, 2 and 3 directions, respectively. C,, C, and C, are the corresponding
compressive yield stresses.

Setting Hij = 0 in Eq. (3.22) one obtains

1
(3.25) 5 Hyjpa S8 +hity;—k(w) = 0.

Only fifteen coefficients H;j, enter now the criterion (3.25) since Hj, = 0. Therefore the
condition (3.25) offers a direct generalization of the initial condition (3.23). As a first
approximation one can assume h;;(€) = 0 for i # .

3.3. Briefly on nonpolynomial representation of l-i

We shall briefly comment on the nonpolynomial representation of the fourth-order
tensor function H(e). It means that we must find the orthotropic form-invariant tensor
function

(3.26) Hyjpy = Hy(€), Hyy = Hyy = Hyy;
and the representation of H is not necessarily polynomial.
Our approach used previously permits to obtain the nonpolynomial representation

of fl(e) in the same manner as the polynomial representation. The problem reduces to
finding the orthotropic, nonpolynomial scalar function

1 A
(3.27) fr= EX Hia (&)t

The functional basis for t, € is given by [1]
I, ... ;,J,,....J;, K, K,, K,
and
Ky = tiaty383+13t 38, Ht3t; 8,3,
Ks = tiz€283+128383 12381382,

The nonpolynomial orthotropic scalar function (3.27) is obtained similarly as the poly-
nomial function F;. The components H;j,; of the tensor H are now formally the same as
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previously, yet the scalar coefficients are scalar functions ig the invariants J,, ..., J;, not
necessarily polynomial. The components 4;; of the tensor h(e) may now also be nonpoly-
nomial functions.

Of interest seems to be the following criterion:

1/n
(3.28) (‘; Hijklsijskl) +hit;—k(w) = 0,
where n > 1 is a natural number. Since the deviator s appears in the first term, therefore
necessarily H;;;; = 0, see Sect. 3.2. We observe that for n > 1 the criterion (3.28) repre-
sents always a nonpolynomial function even if polynomial representations of h and H
are considered.

For the initial flow, Eq. (3.28) reduces to
(3.29)  [F(022—033)* +G(033—0,,)* + H(0,; — 03,)* + Lo’ 3+ Mo}, + Nod,]'/"
1
ko
Setting X = ¥ = Z = 0 and taking kj instead of k, in the relations (3.18) we obtain
the relations between the constants HJ,, = H;;u(0) and the constants F,...,N. The
initial yield condition (3.29) has been proposed for anisotropic rocks and soils by PARISEAU
[22]. Hence the criterion (3.28) represents a direct extension of this condition.
REMARK 1

The present remark is concerned with a representation of orthotropic functions in the
form given by I-Sum Liu [17], p. 1104.

Let f be either a scalar-valued, vector-valued, or tensor-valued orthotropic function
(here we use notations of Ref. [17]). Further, let v denote a set of vectors, while A stands

for a set of second-order tensors. I-Shih Liu claims that an orthotropic function f(v, A)
can be represented by

(3.30) f(v,A) = f(v, A, n,®n,, n,&n,),

where f~is an isotropic function. However, I think that the problem is more subtle. Drop-
ping the term n,®n; we infer that in the case of orthotropy all basic invariants, listed
for instance in [5, 6] and containing M; = n;®n;, are redundant. Such conclusion is
false. The representation of an orthotropic function can be obtained from

(3.31) f(v,A) = f(v, A,n,®n,, n,®n,, n,®n,)

and next we may use the identity n, ®n, +n,®n, +n;®n, = 1. In this manner an equiv-
alent set of invariants and/or generators is obtained. In peculiar cases, but not in general,
the number of basic invariants and/or generators can thus be reduced.

+ (kY1 0y, +h3r 05, +h5035)— 1.

4. Some yield criterions for initially transversely isotropic materials

This section is concerned with yield conditions of the form (3.1) for transversely iso-
tropic materials. The notion of transverse isotropy used in this paper has been defined
in the Appendix.
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In this case the transverse integrity basis for tensors t, € is given by [1, 2, 30]

il = log, i, = taﬁtﬁan i3 = 133, i4 = t3qla3, i5 = tSc:taﬁtaJs
@.1) . J1= €y J2 = Eplpay J3 = €33, Ja = E3afazs Js = €3aExpp3,

ki = tagepa, Ky = tantaz, K3z = taalagtps, ki = tza€sptps,
ks

I

l3e Explpas k6 = E3alupEpa, k; = Lsalap Epy Eys3-

Here Greek indices take values 1, 2. Like in the case of orthotropy, we want to derive the
general form of the following yield criterion:

1 ~ A
4.2) F, = —2-Muk1(€) tijta+my(€)t;—k(w) = 0,

where My = Mjy = My;;. The scalar function F, must be invariant under the group
T,. Considering the scalar function linear in t

4.3) Fs = a,i,+asiy+ask,+ak,+ask,+agks,
we arrive at

4.4 Fs = my(e)t;,

where

Mag = Ay Opp+ a3 Eag+0ag Eas €35,
4.5)

Mgy = Mag = A4 83 +as5Eqp8p3, M3z =4dz; My = ’ﬁu(e)-
The scalar coefficients a,, ..., a6 are polynomials in jy, ..., js.

The polynomial representation of the function M is given in the Appendix. Represen-
tations of tensor functions, form-invariant under the remaining transverse isotropy groups
can be derived by a similar procedure. For this purpose the paper by Smith is indispens-
able. We observe that in the case of the transverse isotropy group 7, new formulas given
by SmitH [28] also result in 17 basic invariants for two symmetric second-order tensors.
In general, when vectors, symmetric and skew-symmetric tensors are involved, the integ-
rity basis derived in [28] contains fewer basic invariants than the basis listed in [2]. Fur-
ther, it is interesting to note that according to SMiTH [28] integrity bases of an arbitrary
number of symmetric second order tensors are the same in the case of the transverse iso-
tropy groups T, T, and T.

We pass to the initial flow. In this case we have € = a = 0, t = o, while the only
nonvanishing components of transversely isotropic tensors (m;;), (M) are

0 0 )
mdy =m3,, m$;, M, = M3, My, Migs,
0 0 0 0 0 0 0 0
M3 = M3323, Mtiaz, M3Yss = M3ys3,  Mii = 2Miz2+ My,
where m$; = m;,(0), My = M;j;,(0). The yield criterion (4.2) reduces to

(4.6)

1
4.7 703'0'?1 = M{+M,033+M;3033+M0340,3+(Ms+Mgass) o+ Ma(oy)?,

where

0 0
mi; —Mjz3

(4.8) M, = o M
' 2M%212
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M(1]212+M(1)x33 M?122+M(3333 M?ns
4.8 M; = - - — , Mg=1--"222
D M~ s aM3,., +
0 0 0 0
hyy M? 22— M7 33 1 Mii22
Ms = — — Mg= ————"% M;= ——— s T
s 2M9%,,, © 2M9%;12 § 6 4M%3,2

The yield condition (4.7) has been used in [29].

Now we shall briefly discuss the nonpolynomial representation of the fourth-order
tensor function M;j,(€). The functional basis for tensors €, t is obtained from the integrity
basis (4.1) if t?e basic invariants k., k4 are dropped, cf. [5, 7]. The nonpolynomial repre-
sentation of M;jy(€) has the form (A.4)-(A.9), except that now the terms with the coeffi-
cients 0,,,0,3,6,,,0,5 and 0,5 disappear while the remaining 6 are scalar functions in
the invariants j,, ..., js, not necessarily polynomial.

REMARK 2

Hitherto we have been deriving primarily second- and fourth-order isotropic and
anisotropic tensor functions from appropriate scalar functions. Another approach is
also possible. For instance, the second-order tensor function

(4.9) fu = fi(@

results from the vector function

(4.10) v = fustty = Ju( @,
while the fourth-order tensor function

(4.11) Fiyu = Fipu(®),
can be derived from the second-order tensor function
(4.12) Fyy = Fipu(@B)b.

Here % stands for a set of arguments of the tensor function under consideration. Thus
the following scheme can sometimes be useful when dealing with representations of tensor
functions, see [35]:

scalar functions — vector functions — tensor functions.

It can readily be verified that the representation of the isotropic, fourth-order tensor
function of a symmetric second-order tensor, given in [3] by the formula (2.7), is formally
similar to the representation resulting from Eq. (4.12) if b = b” and if only i « j and
k « | symmetry is required. However, now also all scalar coefficients depend on tre,
tre? and tre’. If we additionally specify (ij) < (kl) symmetry, then we arrive at the repre-
sentation given by the formula (2.19) of our paper.

Though we have exclusively dealt with tensor functions of a single argument, an exten-
sion to more involved cases is straightforward, see [35].
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Appendix

Fourth-order transversely isotropic tensor function of a symmetric tensor

From among the five groups which define the symmetry properties of materials which
are referred to as being transversely isotropic, we consider only the group T,, cf. [28, 30].
This group is generated by the following matrices:

(A'l) TZ:Q(G)’ Rl = diag(— ] ) ]: 1)7
where

cosf sinf 0
(A.2) Q(0) = | —sinf cosf 0], 0<6 < 2nm,
0 0 1

R, corresponds to a reflection in the plane perpendicular to the x,-axis.
Let us consider a transversely isotropic scalar function quadratic in components of t.

(A3)  F=0,if+eia+03i3+0sis+0sk3+06k3+0,ks+0ski+0oks +0,0ki 40,1k,
+01201 i3+ 013l ky+oraiikat01sis k0160 ke 0,703k + 01813k, +0,0i3ky
+020i3ke+021 k1 kot 022k  ka+023Kk ke +024 Ky ka4 025ka ke +026K4 ke,

where ¢,, ..., 026 are polynomials in j,, ..., js. Taking account of the relations (4.1),
from Eq. (A.3) we eventually obtain

(Ad)  Mpay, = 0, 0ug0y,+05(0ay Op, + Oap Opy) + 05 Eap £+ 04 €43 53 853 43
+05(Oup &y + 0, £up) + O6(Bap €43 €43 + Oy a3 £53) + 09 (20 €93 €u3 + Eyyu a3 £53)
(A5)  Mypyy = Mugsy = Mysap = Mipap = 05(0ap €43+ Ouy €53+ Bpy603)
+05(Fap %y3 + Oay g3 + Opy %a3) + 01 0(Eap Eya + Eay 853+ £y €a3) + 011 (eap %3
+ €ay g3+ £y %u3) + 012 €3 €p3 €43 + 0, 3(€a3 53 %y3 + a3 €43 %p3 + Ep3 Ey3 %a3)s
where .3 = €45 €833
(A6)  Masps = Maaps = Mpsas = Mapay = 014 0ap+0,5 €45+ 016 €a3 €53
+0, 5 %03 %3+ 01 5( &3 %p3 + 283 %03,
(A7) Mypas = Mpass = Mazes = Masg, = 0,6 Oap+ 030 £ap+ 05, €03 853,
(A8)  Mgyzs = Maazs = Mizas = Miyz3a = 055 603 +053 %3,
(A.9)  Msz33 = 0,4.

The scalar coefficients 0,, ..., 6,4 are polynomials in the invariants j,, ..., js and are
related to g,, ..., 026.
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