Fractional regularity of solutions in $L^{p, q}$ to the Navier-Stokes equations

G. ŁUKASZEWICZ (WARSZAWA)

We consider the initial value problem for the Navier-Stokes equations in the infinite cylinde $S_{T}=R^{3} \times[0, T)$ and study weak solutions of the problem belonging to the space $L^{p, q}\left(S_{T}\right) \equiv$ $\equiv L^{q}\left(0, T ; L^{p}\left(R^{3}\right)\right)$. The aim of this paper is to estimate the Hausdorff dimension of the set $S=\left\{x \in R^{3}:\right.$ ess $\left.\sup _{t \in[0, T]}|u(x, t)|=\infty\right\}$ of possible singularities of the considered solutions.

$$
{ }_{t \in[0, T]}
$$

Rozważamy zagadnienie poczătkowe dla równań Naviera-Stokesa w nieskończonym cylindrze $S_{T}=R^{3} \times[0, T)$ i badamy słabe rozwiązania tego problemu należące do przestrzeni $L^{p, q}\left(S_{T}\right) \equiv$ $\equiv L^{q}\left(0, T ; L^{p}\left(R^{3}\right)\right.$). Celem tej pracy jest oszacowanie wymiaru Hausdorffa zbioru $S=$ $=\left\{x \in R^{3}\right.$:ess sup $\left.|u(x, t)|=\infty\right\}$ możliwych osobliwości rozważanych rozwiązan. $t \in[0, T]$

Рассматривается начальная задача для уравнений Навье-Стокса для бесконечно цилиндра $S_{T}=R^{3} \times[0, T)$ и исследуются слабые решения этой проблемы принадлежащие к пространству $L^{p, q}\left(S_{T}\right) \equiv L^{q}\left(0, T ; L^{p}\left(R^{3}\right)\right)$. Целью работы является оценка размерности Гаусдорфа множества $S=\left\{x \in R^{3}\right.$:ess $\left.\sup _{t \in[0, T]}|u(x, t)|=\infty\right\}$ возможных особенностей рассматриваемых решений.

1. Introduction

This Paper analyzes the fractional regularity of solutions of the initial value problem for the Navier-Stokes equations in the infinite cylinder $S_{T}=R^{3} \times[0, T), 0<T<\infty$. We consider the problem in its weak form (see definition 1.1 below). The initial data $g(x)=$ $=\left(g_{1}(x), g_{2}(x), g_{3}(x)\right)$ is taken from the space $L^{r}\left(R^{3}\right)$ of functions for which

$$
\|g\|_{L^{r}\left(R^{3}\right)} \equiv \sum_{i=1}^{3}\left(\int_{R^{3}}\left|g_{i}(x)\right|^{r} d x\right)^{1 / r}<\infty \quad(r>1)
$$

The solutions $u(x, t)=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ belong to the space $L^{p, q}\left(S_{T}\right)$ of functions for which

$$
\|u\|_{L^{p, q}\left(S_{T}\right)} \equiv \sum_{i=1}^{3}\left(\int_{0}^{T}\left(\int_{R^{3}}\left|u_{i}(x, t)\right|^{p} d x\right)^{q / p} d t\right)^{1 / q}<\infty \quad(p, q \geqslant 2)
$$

In this paper we consider solutions which have the following property: for almost every $t \in[0, T]$ each of them, say $u(x, t)$, can, when considered as a function $x \rightarrow u(x, t)$, be modified on a set of three-dimensional Lebesgue measure zero to become a continuous function on R^{3}.

We will assume that the modification of u has been done. This paper aims at proving the following:

Theorem 1.1. Suppose that

$$
\begin{equation*}
u \in L^{p, q}\left(S_{T}\right) \tag{1.1}
\end{equation*}
$$

is a weak solution of the Navier-Stokes equations with initial data g such that $g \in L^{\prime}\left(R^{3}\right)$ and $\mathrm{Dg} \in L^{r_{1}}\left(R^{3}\right)(\mathrm{Dg}-$ the derivative of $g)$ with $3 / p+2 / q>3 / r>0,6 / p+4 / q>3 / r_{1}>$ >0.

If

$$
\begin{equation*}
6<p<q \tag{1.2}
\end{equation*}
$$

and the equations

$$
\begin{align*}
p /(p-2)[5-A+a / q-2 / q-13 / p] & =3+\varepsilon_{1} \\
A p / 2+2(q-p) / q+a p / q & =3+\varepsilon_{2} \tag{1.3}
\end{align*}
$$

hold for some positive $A, a, \varepsilon_{1}, \varepsilon_{2}$ then the Hausdorff dimension of the set

$$
S=\left\{x \in R^{3}: \sup \operatorname{ess}_{t \in[0, T]}\left(\sum_{i=1}^{3} u_{i}(x, t)^{2}\right)^{1 / 2}=\infty\right\}
$$

does not exceed a.
This paper was inspired by the research of Scheffer [9], as well as of Fabes, Jones and Riviere [3] (for other results of this nature see [1, 10, 11, 12, 13, 16]). The work [9] presents a similar result concerning the fractional regularity of Lerey solutions of the initial value problem for the Navier-Stokes equations in the infinite cylinder $R^{3} \times[0, \infty)$. In this paper we consider weak solutions of the Navier-Stokes equations which are not Lerey solutions. They are, however, sufficiently smooth to satisfy an integro-differential equation of the same form as Lerey solutions do. From the very integro-differential equation, following the method used in [9], we derive a suitable estimate for the considered solutions.

Now, we precise the notion of a weak solution.
DEFINITION 1.1. A function $u(x, t)=\left(u_{1}(x, t), u_{2}(x, t), u_{3}(x, t)\right)$ is a weak solution of the Navier-Stokes equations with initial data g if the following conditions hold:
(a) $u(x, t) \in L^{p, q}\left(S_{T}\right)$ for some p, q with $p, q \geqslant 2$;
(b) $g(x) \in L^{r}\left(R^{3}\right), r \geqslant 1$ with $\operatorname{div}(g)=0$ in the sense of distribution;
(c) $\int_{0}^{T} \int_{R^{3}} u_{i}(x, t)\left(s_{i, t}(x, t)+\Delta s_{i}(x, t)\right) d x d t$

$$
+\int_{0}^{T} \int_{R^{3}} u_{j}(x, t) u_{i}(x, t) s_{i},{ }_{j}(x, t) d x d t=-\int_{R^{3}} g_{i}(x) s_{i}(x, 0) d x
$$

for all functions $s(x, t)=\left(s_{1}(x, t), s_{2}(x, t), s_{3}(x, t)\right)$ such that $s_{i}(x, t)$ belong to the space $S\left(R^{4}\right)$ of rapidly decreasing functions on $R^{4}, s_{i}(x, t)=0$ for $t \geqslant T$ and $\operatorname{div}(s)(\cdot, t)=0$ for all t;
(d) for almost every $t \in[0, T], \operatorname{div}(u)(\cdot, t)=0$ in the sense of distribution.

Here, as in other contexts, we use the summation convention for repeated indices; differential operators are written: $u_{i, j}=\left(\partial / \partial x_{j}\right) u_{i} ; u_{i, t}=(\partial / \partial t) u_{i} ; \operatorname{div}(u)=u_{i, i} ; \Delta u_{i}=u_{i, j j}$; $u_{i, j k}=\left(u_{i, j}\right)_{, k} ; \mathrm{Du}=\left\{u_{i, j}\right\}, 1 \leqslant i, j \leqslant 3$. We denote by $|\cdot|$ the Euclidean norm. If a and b are real numbers with $a<b$, then we set $[a, b]=\{t: a \leqslant t \leqslant b\} ; R^{+}=\{t: t>0\}$. If $x \in R^{3}$ and $r>0$, then $B(x, r)$ is $\left\{y \in R^{3}:|x-y| \leqslant r\right\}$.

We denote by Q the fundamental solution of the heat equation running back in time, more precisely $Q: R^{3} \times\{t: t<0\} \rightarrow R^{+}$is defined by $Q(x, t)=(-4 \pi t)^{-3 / 2} \exp \left(|x|^{2} / 4 t\right)$.

Several absolute constants in this paper are denoted by the letter C without bothering to distinguish them with subscripts. If a constant depends only on a parameter N, we write it as $C(N)$.

In Sect. 2 we formulate an imbedding lemma (Lemma 2.2) and prove some inequalities in $L^{p . q}$ spaces being useful in further considerations. In Sect. 3 we define the notions of Hausdorff measure and dimension and use them to prove a property of functions from $L^{p, q}$ (Lemma 3.1). We show in Sect. 4 that solving the Navier-Stokes equations in a weak form is equivalent to solving a certain integro-differential equation. In Sect. 5 we use the integro-differential equation to get a basic inequality for the function u and prove Theorem 1.1.

2. $L^{p . q}$ inequalities

In this section we formulate imbedding lemmas and lemmas of a technical character which we shall use to prove the main theorem 1.1.

Lemma 2.1. Suppose $f \in L^{p}\left(R^{3}\right)$ and $\mathrm{Df} \in L^{p / 2}\left(R^{3}\right)$. If $p>6$, then $f \in L^{z}\left(R^{3}\right), z>p$, with

$$
\begin{equation*}
\|f\|_{L^{z}\left(R^{3}\right)} \leqslant C\left(\|f\|_{L^{p}\left(R^{3}\right)}+\|\mathrm{Df}\|_{L^{p / 2}\left(R^{3}\right)}\right) \tag{2.1}
\end{equation*}
$$

Moreover, f can, when considered as a function, be redefined on a set of zero measure to become a continuous function on R^{3}.
Proof. The proof follows from interpolation inequalities [5], [6].
Lemma 2.2. Suppose $u \in L^{p, q}\left(S_{T}\right)$ and $\mathrm{Du} \in L^{p / 2, q / 2}\left(S_{T}\right)$.
If $p>6, q>2$, then $u \in L^{z, q / 2}\left(S_{T}\right), z>p$, with

$$
\|u\|_{L^{z, q / 2}\left(S_{T}\right)} \leqslant C\left(\|u\|_{L^{p, q}\left(S_{T}\right)}+\|D u\|_{L^{p / 2, q / 2}\left(S_{T}\right)}\right)
$$

Proof. The proof easily follows from the inequality (2.1).
Lemma 2.3. Suppose $u \in L^{p, q}\left(S_{T}\right), \mathrm{Du} \in L^{p / 2, q / 2}\left(S_{T}\right)$ and set

$$
\begin{equation*}
f(x, t)=\int_{0}^{t} \int_{R^{3}}|u(y, s)| \cdot|\mathrm{Du}(y, s)|\left(|x-y|^{2}+|t-s|\right)^{-3 / 2} d y d s \tag{2.2}
\end{equation*}
$$

If $6<p<q$, then $f \in L^{p, q}\left(S_{T}\right)$ with

$$
\|f\|_{L^{p, q}\left(S_{T}\right)} \leqslant C\left(\|u\|_{L^{p, q}\left(S_{T}\right)}+\|\mathrm{Du}\|_{L^{p / 2, q / 2}\left(S_{T}\right)}\right)\|\mathrm{Du}\|_{L^{p / 2}, q / 2}\left(S_{T}\right)
$$

Proof. We use the following imbedding theorem, the proof of which can be found in [2, 15].

Theorem (Imbedding). Suppose $g \in L^{p_{1}}\left(R^{d}\right)$ and set

$$
\operatorname{Tg}(x)=\int_{R^{d}} g(y)|x-y|^{-(d-\alpha)} d y \quad \text { where } \quad 0<\alpha<d, \quad x \in R^{d}
$$

If $1<p_{1}<p<\infty, 1 / p_{1}-\alpha / d=1 / p$, then T is continuous from $L^{p_{1}}\left(R^{d}\right)$ into $L^{p}\left(R^{d}\right)$.
We proceed to prove our lemma. For any $\theta, 0<\theta<1$

$$
\left(|x|^{2}+t\right)^{-3 / 2} \leqslant C|x|^{-3 \theta} t^{-3(1-\theta) / 2}
$$

from Eq. (2.2) we have

$$
|f(x, t)| \leqslant C \int_{0}^{t}(t-s)^{-3(1-\theta) / 2}\left(\int_{R^{3}}|x-y|^{-3 \theta}|u(y, s)| \cdot|\mathrm{Du}(y, s)| d y\right) d s
$$

As a function of $y,|u(y, s \mid) \cdot| \mathrm{Du}(y, s) \mid$ belongs to $L^{z p /(2 z+p)}\left(R^{3}\right), z \geqslant p$, for almost every s with

Hence, by the imbedding theorem, with $\theta=1-(z+p) / z p$,

$$
0<(2 z+p) / z p-3(1-\theta) / 3=1 / p
$$

we have
(2.3) $\|f(\cdot, t)\|_{L^{p}\left(R^{3}\right)} \leqslant C \int_{0}^{t}(t-s)^{(-3 / 2)(z+p) z p}\|u(\cdot, s)\|_{L^{z}\left(R^{3}\right)} \| \mathrm{Du}\left((\cdot, s) \|_{L^{p / 2}\left(R^{3}\right)} d s\right.$.

For $q_{1}=(1 / q+1-(3 / 2)(z+p) / z p)^{-1}$ with sufficiently large z we have, by the Hölder inequality,

$$
\left(\int_{0}^{T}\left(\|u(\cdot, t)\|_{L^{z}\left(R^{3}\right)}\|\mathrm{Du}(\cdot, t)\|_{L^{p / 2}\left(R^{3}\right)}\right)^{q_{1}} d t\right)^{1 / q_{1}} \leqslant C\|u\|_{L^{x, q / 2}\left(S_{T}\right)}\|\mathrm{Du}\|_{L^{p / 2, Q / 2}\left(S_{T}\right)}
$$

We apply the imbedding theorem to the inequality (2.3) with $0<1 / q_{1}-1+(3 / 2) \cdot(z+p) /$ $\mid z p=1 / q$ to get

$$
\|f\|_{L^{p, q}\left(S_{T}\right)} \leqslant C \cdot\|u\|_{L^{z, q / 2}\left(S_{T}\right)}\|\mathrm{Du}\|_{L^{p / 2, q / 2}\left(S_{T}\right)}
$$

Now we use lemma 2.2 to complete the proof of the lemma.
Lemma 2.4. Suppose $u \in L^{p, q}\left(S_{T}\right), \mathrm{Du} \in L^{p / 2, q / 2}\left(S_{T}\right)$ and set

$$
f(x, t)=\int_{E}|u(y, s)| \cdot|\mathrm{Du}(y, s)|\left(|x-y|^{2}+|t-s|\right)^{-3 / 2} d y d s
$$

where

$$
E=\left(R^{3} \times[0, t]\right)-\left(B\left(x, 2^{-N}\right) \times\left(\left[t-2^{-2 N}, t\right] \times R^{+}\right)\right) .
$$

If $6<p<q, N$ is a positive integer, then for every $(x, t) \in S_{r}$ we have $|f(x, t)| \leqslant C(N)<\infty$.
Proof. Observe that $E=\left(\left(R^{3}-B\left(x, 2^{-N}\right)\right) \times[0, t]\right) \cup$
$\cup\left(\left(R^{3}-B\left(x, 2^{-N}\right)\right) \times\left[0, \max \left(0, t-2^{-2 N}\right)\right]\right) \cup\left(B\left(x, 2^{-N}\right) \times\left[0, \max \left(0, t-2^{-2 N}\right)\right]\right) \equiv$ $\equiv E_{1} \cup E_{2} \cup E_{3}$. Hence

$$
|f(x, t)| \leqslant C \sum_{i=1}^{3} \int_{E_{t}}|u(y, s)| \cdot|\operatorname{Du}(y, s)| \cdot|x-y|^{-3 \theta_{i}}|t-s|^{-3\left(1-\theta_{i}\right) / 2} d y d s \equiv C\left(I_{1}+I_{2}+I_{3}\right)
$$

for any $0<\theta_{i}<1(i=1,2,3)$. We can choose the numbers θ_{i} in such a way that the integrals I_{i} are finite.

By the Young and Hölder inequalities we have

$$
\begin{aligned}
I_{1} \leqslant \int_{0}^{t} \int_{R^{3}}|\mathrm{Du}|^{p / 2} d y d s+ & \int_{0}^{t} \int_{R^{3}-B\left(x, 2^{-N}\right)}\left(|u||x-y|^{\left.-3 \theta_{1}|t-s|^{-3\left(1-\theta_{1}\right) / 2}\right)^{p /(p-2)} d y d s}\right. \\
\leqslant & \leqslant T^{(q-p) / q}\left(| | \mathrm{Du} \|_{L^{p / 2, q / 2}\left(S_{T}\right)}\right)^{p / 2}+\int_{0}^{t} \int_{R^{3}}|u|^{p} d y d s \\
& +\int_{0}^{t} \int_{R^{3}-B\left(x, 2^{-N}\right)}|x-y|^{-3 \theta_{1} p /(p-3)|t-s|^{-3\left(1-\theta_{1}\right) p /(2(p-3))} d y d s<\infty}<l
\end{aligned}
$$

with θ_{1} such that $3 \theta_{1} p /(p-3)>3$ and $3\left(1-\theta_{1}\right) p /(2(p-3))<1$.
The integrals I_{2} and I_{3} are estimate in the same way.
Lemma 2.5. Let $6<p<q, A \in R, a>0$ and $(x, t) \in S_{T}$.
If

$$
\begin{equation*}
\int_{0}^{T}\left(\int_{B\left(x, 2^{-n}\right)}|u(x, t)|^{p} d x\right)^{q / p} d t<2^{-a n} \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{T}\left(\int_{B\left(x, 2^{-n}\right)}|\mathrm{Du}(x, t)|^{p / 2} d x\right)^{q / p} d t<2^{-a n} \tag{2.5}
\end{equation*}
$$

then we have

$$
\begin{align*}
\int_{\max \left(0, t-2^{-n}\right)}^{t} \int_{B\left(x, 2^{-n}\right)}|u(x, t)| & \cdot|\mathrm{Du}(x, t)| d x d t \tag{2.6}\\
& \leqslant C 2^{-n p /(p-2)[5-A+a / q-2 / q-13 / p]}+C 2^{-n[A p / 2+2(q-p) / q+a p / q]} .
\end{align*}
$$

Proof. We set $I=\left[t-2^{-2 n}, t\right] \cap R^{+}, B=B\left(x, 2^{-n}\right)$ and compute

$$
\begin{aligned}
\int_{I} \int_{B}|u(x, t)| \cdot|\mathrm{Du}(x, t)| d x d t & \leqslant 2^{A n p /(p-2)} \int_{I} \int_{B}|u(x, t)|^{p /(p-2)} d x d t \\
& +2^{-A n p, 2} \int_{I} \int_{B}|\mathrm{Du}(x, t)|^{p / 2} d x d t \equiv 2^{A n p /(p-2)} K_{1}+2^{-A n p / 2} K_{2}
\end{aligned}
$$

By the Hölder inequality

$$
\begin{aligned}
& K_{1} \leqslant C 2^{-3 n(p-3) /(p-2)} \int_{I}\left(\int_{B}|u(x, t)|^{p} d x\right)^{1 /(p-2)} d t \\
& \leqslant C 2^{-3 n(p-3) /(p-2)} 2^{-2 n(q(p-2)-p) /(q(p-2))} \times\left(\int_{I}\left(\int_{B}|u(x, t)|^{p} d x\right)^{q / p} d t\right)^{p /(q(p-2))} \\
& \leqslant C 2^{-3 n(p-3) /(p-2)} 2^{-2 n(q(p-2)-p) /(q(p-2))} 2^{-n a p /(q(p-2))}
\end{aligned}
$$

and

$$
K_{2} \leqslant 2^{-2 n(q-p) / q}\left(\int_{I}\left(\int_{B}|\mathrm{Du}(x, t)|^{p / 2} d x\right)^{q / p} d t\right)^{p / q} \leqslant 2^{-2 n(q-p) / q 2^{-a n p / q} .}
$$

Summing up the above calculations we get the inequality (2.6).
Lemma 2.6. Suppose $g \in L^{r}\left(R^{3}\right)$ and set

$$
\begin{equation*}
\left.f(x, t)=\int_{R^{3}} Q(x-y,-t) g(y) d y, \quad\left((x, t) \in S_{T}\right)\right) \tag{2.7}
\end{equation*}
$$

If $3 / p+2 / q>3 / r>0, p, q>1$, then $f \in L^{p, q}\left(S_{T}\right)$ with

$$
\|f\|_{L^{p, q}\left(S_{T}\right)} \leqslant C T^{1 / q+3 /(2 p)-3 /(2 r)}\|g\|_{L^{r}\left(R^{3}\right)}
$$

Proof. Since

$$
\|Q(\cdot,-t)\|_{L^{3}\left(R^{3}\right)} \leqslant C t^{-3 / 2+3 /(2 s)}
$$

if s is chosen so that $0<1 / p=1 / s+1 / r-1$, then by the Young inequality

$$
\|f(\cdot, t)\|_{L^{p}\left(R^{3}\right)} \leqslant C t^{-3 / 2+3 /(2 s)}\|g\|_{L^{r}\left(R^{3}\right)}
$$

If $q(1-1 / s)<2 / 3$,

$$
\|f\|_{L^{p, q}\left(S_{T}\right)} \leqslant C T^{1 / q-3 / 2(1-1 / s)}\|g\|_{L^{\prime}\left(R^{3}\right)}
$$

Hence

$$
\|f\|_{L^{p, q}\left(S_{T}\right)} \leqslant C T^{1 / q+3 /(2 p)-3 i(2 r)}\|g\|_{L^{r}\left(R^{3}\right)}, \quad 3 / p+2 / q>3 / r
$$

3. Hausdorff measure and dimension

The basic facts about Hausdorff measure and dimension can be found in [4, 7]. We recall the definitions for convenience.

Let X be a metric space and $a>0$. The a-dimensional Hausdorff measure of a subset $Y \subset X$ is

$$
\begin{equation*}
\mu_{a}(Y)=\sup _{\varepsilon>0} \mu_{a, \varepsilon}(Y)=\lim _{\varepsilon \rightarrow 0} \mu_{a, \varepsilon}(Y) \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
\mu_{a, \varepsilon}(Y)=\inf \sum_{j}\left(\operatorname{diam} B_{j}\right)^{a} \tag{3.2}
\end{equation*}
$$

the infimum being taken over all the coverings of Y by balls B_{j} such that diam $B_{j}(=$ diammeter of $\left.B_{j}\right) \leqslant \varepsilon$.

It is clear that $\mu_{a, \varepsilon}(Y) \leqslant \varepsilon^{a-a_{0}} \mu_{a_{0}, \varepsilon}(Y)$ for $a>a_{0}$, so if $\mu_{a_{0}}(Y)<\infty$ for some $0<a_{0}<\infty$, then $\mu_{a}(Y)=0$ for all $a>a_{0}$. In this case the number

$$
\inf \left\{a: \mu_{a}(Y)=0\right\}=\inf \left\{a: \mu_{a}(Y)<\infty\right\}
$$

is called the Hausdorff dimension of Y.
The set function $\mu_{a}(\cdot)$ is countably additive on the Borel subsets of $X[4,7]$.

Lemma 3.1. For $a>0$ and $u \in L^{p, q}\left(S_{T}\right), q>p$, let $A_{a}(u)$ be the set of those $x \in R^{3}$ such that there exists m_{x} with

$$
\int_{0}^{T}\left(\int_{B\left(x, 2^{-m}\right)}|u(x, t)|^{p} d x\right)^{q / p} d t \leqslant 2^{-a m} \quad \text { for all } \quad m \geqslant m_{x}
$$

Then the Hausdorff dimension of $R^{3}-A_{a}(u)$ is $\leqslant a$.
Prcof. By definition of $A_{a}(u)$, for any $\varepsilon>0$ and $x \in R^{3}-A_{a}(u)$ there exists a ball $B\left(x, \varepsilon^{\prime}\right), \varepsilon^{\prime} \leqslant \varepsilon$, such that

$$
\begin{equation*}
\int_{0}^{T}\left(\int_{B\left(x, \varepsilon^{\prime}\right)}|u(x, t)|^{p} d x\right)^{q / p} d t>2^{-a}\left(\operatorname{diam} B\left(x, \varepsilon^{\prime}\right)\right)^{a} \tag{3.3}
\end{equation*}
$$

The family of all such balls covers $R^{3}-A_{a}(u)$ in the sense of Vitali. By the Vitali covering theorem [8] there exists a subfamily $\left\{B\left(x_{j}, \varepsilon_{j}\right): j \in J\right\}$ such that the $B\left(x_{j}, \varepsilon_{j}\right)$ are mutually disjoined, J is at most countable and

$$
\begin{equation*}
R^{3}-A_{a}(u) \subset \bigcup_{j=1}^{\infty} B\left(x_{j}, 5 \varepsilon_{j}\right) . \tag{3.4}
\end{equation*}
$$

By virtue of Eqs. (3.1), (3.2), (3.3), and (3.4) it follows that

$$
\mu_{a}\left(R^{3}-A_{a}(u)\right)=\sup _{s>0} \mu_{a, 5_{\varepsilon}}\left(R^{3}-A_{a}(u)\right)
$$

and

$$
\begin{aligned}
\mu_{a, 5 \varepsilon}\left(R^{3}-A_{a}(u)\right) \leqslant \sum_{j=1}^{\infty} & \left(\operatorname{diam} B\left(x_{j}, 5 \varepsilon_{j}\right)\right)^{a} \\
& =5^{a} \sum_{j=1}^{\infty}\left(\operatorname{diam} B\left(x_{j}, \varepsilon_{j}\right)\right)^{a}<10^{a} \sum_{j=1}^{\infty} \int_{0}^{T}\left(\int_{B\left(x_{j}, \varepsilon_{j}\right)}|u(x, t)|^{p} d x\right)^{q / p} d t \\
& \leqslant 10^{a} \int_{0}^{T}\left(\int_{R^{3}}|u(x, t)|^{p} d x\right)^{q / p} d t<\infty \quad \text { independently of } \quad \varepsilon>0
\end{aligned}
$$

so the Hausdorff dimension of $R^{3}-A_{a}(u)$ does not exceed a.
Lemma 3.2. For $a>0, u \in L^{p, q}\left(S_{T}\right), \mathrm{Du} \in L^{p / 2, q / 2}\left(S_{T}\right), 6<p<q$, let $A_{a}(u, \mathrm{Du})$ be the set of those $x \in R^{3}$ for which there exists m_{x} such that for all $n \geqslant m_{x}$ Eqs. (2.4) and (2.5) hold. Then the Hausdorff dimension of $R^{3}-A_{a}(u, \mathrm{Du})$ is $\leqslant a$.
Proof. The proof immediately follows from lemma 3.1.

4. Equivalence of weak solution of the Navier-Stokes equations and solution of certain integro-differential equation

In this section we prove that if a function $g(x)$ satisfies suitable conditions, then u is a weak solution of the Navier-Stokes equations with the initial value g if and only if u is a solution of a certain integro-differential equation.

We define the function W with the domain $R^{3} \times\{t: t<0\}$ and range R^{+}as follows :

$$
W(x, t)=-(4 \pi)^{-1} \int_{R^{3}} Q(y, t)|x-y|^{-1} d y .
$$

We have the following:
Lemma 4.1. Suppose $g \in L^{r}\left(R^{3}\right), \operatorname{Dg} \in L^{r_{1}}\left(R^{3}\right)$ and $\operatorname{div}(g)=0$ in the sense of distribution. If $6<p<q, 3 / p+2 / q>3 / r>0, \quad 6 / p+4 / q>3 / r_{1}>0$, then $u \in L^{p, q}\left(S_{T}\right)$ is a weak solution of the Navier-Stokes equations with the initial value g if and only if u is a solution of the integro-differential equation

$$
\begin{align*}
& u_{i}(x, t)=\int_{R^{3}} g_{i}(y) Q(y-x,-t) d y-\int_{0}^{t} \int_{R^{3}} u_{j}(y, s) u_{i, j}(y, s) Q(y-x, s-t) d y d s \tag{4.1}\\
&+\int_{0}^{t} \int_{R^{3}} u_{j}(y, s) u_{k, j}(y, s) W_{, i k}(y-x, s-t) d y d s \quad(i=1,2,3)
\end{align*}
$$

Proof. It is proved in [3] that if $g \in L^{r}\left(R^{3}\right), 1 \leqslant r<\infty$ and $\operatorname{div}(g)=0$ in the sense of distribution, then $u \in L^{p, q}\left(S_{T}\right), p, q>2, p<\infty$, is a weak solution of the Navier-Stokes equations with the initial value g if and only if u is a solution of the integral equation

$$
\begin{align*}
& u_{i}(x, t)=\int_{R^{3}} g_{i}(y) Q(y-x,-t) d y+\int_{0}^{t} \int_{R^{3}} u_{j}(y, s) u_{i}(y, s) Q, j(y-x, s-t) d y d s \tag{4.2}\\
&-\int_{0}^{t} \int_{R^{3}} u_{j}(y, s) u_{k}(y, s) W_{, i j k}(y-x, s-t) d y d s \quad(i=1,2,3)
\end{align*}
$$

Further, it is proved in [3] that if $u \in L^{p, q}\left(S_{T}\right)$ with $2 / q+3 / p \leqslant 1,2<p, q<\infty$ is a weak solution of the equation (4.2) with

$$
\begin{equation*}
D_{x}^{\alpha} \int_{R^{3}} g_{i}(y) Q(y-x,-t) d y \in L^{p /(|\alpha|+1), q /(|\alpha|+1)}\left(S_{T}\right) \tag{4.3}
\end{equation*}
$$

whenever $|\alpha| \leqslant 1$, then also $D_{x}^{\alpha} u \in L^{p /(|\alpha|+1), q /(|\alpha|+1)}\left(S_{T}\right)$ for $|\alpha| \leqslant 1$.
By virtue of lemma 2.6, Eq. (4.3) is fulfilled if $g \in L^{r}\left(R^{3}\right), \mathrm{Dg} \in L^{r_{1}}\left(R^{3}\right)$ with $3 / p+$ $+2 / q>3 / r>0,6 / p+4 / q>3 / r_{1}>0$.

To obtain the proof of the lemma observe that

$$
\begin{equation*}
|Q(y, s)| \leqslant C\left(|y|^{2}-s\right)^{-3 / 2}, \quad\left|W_{, i k}(y, s)\right| \leqslant C\left(|y|^{2}-s\right)^{-3 / 2} \tag{4.4}
\end{equation*}
$$

so by virtue of lemma 2.3 we can integrate by parts in Eq. (4.2) to get Eq. (4.1).

5. Estimates of Hausdorff measures of the set of singularities of a solution to the Navie -Stokes equations

In this section we prove Theorem 1.1 about the set of singularities of a solution to t Navier-Stokes equations. The primary role in our considerations is played by Eq. (4. (fulfilled by a solution of the Navier-Stokes equations, provided it exists, see remal 5.1 below) from which we derive the basic inequality for the function u.

It follows from lemma 2.1 that if $u \in L^{p, q}\left(S_{T}\right), \mathrm{Du} \in L^{p / 2, q / 2}\left(S_{T}\right)(p>6)$, then for almost every $t \in[0, T] u(x, t)$ can, when considered as a function $x \rightarrow u(x, t)$, be modified on a set of three-dimensional Lebesgue measure zero to become a continuous function on R^{3}.

We assume that the modification of u has been done.
Lemma 5.1. Suppose $u \in L^{p, q}\left(S_{T}\right), \mathrm{Du} \in L^{p / 2, q / 2}\left(S_{T}\right), 6<p<q$, and let a and A be any positive reals and N any positive integer. If u satisfies Eq. (4.1), then for all $x \in A_{a}(u, \mathrm{Du})$ and almost all $t \in[0, T]$

$$
\begin{align*}
|u(x, t)| \leqslant & \left|\int_{R^{3}} g(y) Q(x-y,-t) d y\right|+C(N) \tag{5.1}\\
& +C \sum_{n=N}^{\infty} 2^{3 n} 2^{-n p /(p-2)[5-A+a / q-2 / q-13 / p]}+C \sum_{n=N}^{\infty} 2^{3 n} 2^{-n[A p / 2+2(q-p) / q+a p / q]} .
\end{align*}
$$

Proof. Denote by E the set $R^{3} \times[0, t]-\left(B\left(x, 2^{-N}\right) \times\left(\left[t-2^{-2 N}, t\right] \cap R^{+}\right)\right)$.
From Eqs. (4.1) and (4.4)

$$
\begin{aligned}
|u(x, t)| \leqslant\left|\int_{R_{3}} g(y) Q(x-y,-t) d y\right| & +2 \int_{E}|u(y, s)| \cdot|\mathrm{Du}(y, s)|\left(|x-y|^{2}+|t-s|\right)^{-3 / 2} d y d s \\
& +C \sum_{n=N}^{\infty} 2^{3 n} \int_{\max \left(0, t-2^{-2 n}\right)} \int_{B\left(x, 2^{-n}\right)}|u(y, s)| \cdot|\mathrm{Du}(y, s)| d y d s
\end{aligned}
$$

By virtue of lemmas 2.4, 2.5 and 3.2 we get easily the inequality (5.1). We are ready to prove Theorem 1.1.

Consider (1.1) and (1.2). By virtue of lemma $4.1 u$ satisfies Eq. (4.1) and $\mathrm{Du} \in$ $\in L^{p / 2, q / 2}\left(S_{T}\right)$. Let $x \in A_{a}(u, \mathrm{Du})$. From lemma 5.1 and Eqs. (1.3) we conclude that for any positive integer $N \geqslant m_{x}$ and for almost all $t \in[0, T]$

$$
|u(x, t)| \leqslant\left|\int_{R^{3}} g(y) Q(y-x,-t) d y\right|+C(N)+C \sum_{n=N}^{\infty} 2^{-\min \left(\varepsilon_{1}, e_{2}\right) n}<\infty .
$$

The theorem follows by virtue of lemma 3.2 and the inclusion $S \subset R^{3}-A_{a}(u, \mathrm{Du})$.
Remark 5.1. It is proved in [3] that if $3 / p+2 q \leqslant 1$ with $3<p<\infty, g$ belongs to $L^{r}\left(R^{3}\right)$ with $3 / p+2 / q>3 / r>0$ and $\operatorname{div}(g)=0$ in the sense of distribution, then the Navier-Stokes equations with initial data g have a weak solution $u \in L^{p, q}\left(S_{T}\right)$, at least for $0<T<T_{0}, T_{0}=T_{0}(p, q, r, g)$.

Remark 5.2. The assumption (see Eq. (1.1)): $\operatorname{Dg} \in L^{r_{1}}\left(R^{3}\right), 6 / p+4 / q>3 / r_{1}>0$ guarantee the regularity of $u\left(\mathrm{Du} \in L^{p / 2, q / 2}\left(S_{T}\right)\right)$.

Observe that in the case of Lerey solutions we have the regularity of $u\left(\mathrm{Du} \in L^{2,2}\left(S_{T}\right)\right)$ vithout such assumption. In this case we have from Eq. (2.7) (cf. Eq. (4.1)):

$$
\begin{aligned}
& \int_{0}^{T} \int_{R^{3}}\left|f_{, k}(x, t)\right|^{2} d x d t=\int_{0}^{T} \int_{R^{3}} x_{k}^{2} \exp \left(-2|x|^{2} t\right)|F(g)(x)|^{2} d x d t \\
&=\int_{R^{3}}|F(g)(x)|^{2}\left\{\int_{0}^{T} x_{k}^{2} \exp \left(-2|x|^{2} t\right) d t\right\} d x \leqslant 1 / 2\|g\|_{L^{2}\left(R^{3}\right)}^{2}
\end{aligned}
$$

where F denotes the Fourier transform

$$
F(g)(x)=\left(F\left(g_{j}\right)(x)\right)=\left(\int_{R^{3}} g_{j}(y) \exp \left(i \sum_{k=1}^{3} x_{k} y_{k}\right) d y\right)
$$

Lerey solutions which belong to $L^{p, q}\left(S_{T}\right)$ were studied in [14].

References

1. L. Caffarelli, R. Kohn, L. Nirenberg, Partial regularity of suitable weak solutions of the Navier--Stokes equations, Comm. in Pure and Appl. Math., 35, 6, 771-831, November 1982.
2. A. P. Calderon, A. Zygmund, On the existence of certain singular integrals, Acta Math., 88, 85-139, 1952.
3. E. B. Fabes, B. F. Jones, N. M. Riviere, The initial value problem for the Navier-Stokes equations with data in L^{p}, Arch. Rational Mech. Anal., 45, 222-240, 1972.
4. H. Federer, Geometric measure theory, Springer-Verlag, New York 1969.
5. E. Gagliardo, Ulterori proprietà di alcune classi di funzioni in più variabli, Ricerche di Mat., 8, 24-51, 1959.
6. L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. di Pisa, ser. III, 13, Fasc. II, 115-162, 1959.
7. C. A. Rogers, Hausdorff measures, Cambridge 1970.
8. S. SAKS, Theory of the integral, Warsaw 1937.
9. V. Scheffer, Turbulence and Hausdorff dimension, in: Turbulence and Navier-Stokes Equations, R. Temam ed., Lecture Notes in Math., vol. 565, Springer-Verlag, 94-112, 1976.
10. V. Scheffer, Partial regularity of solutions to the Navier-Stokes equations, Pacific Journ. of Math., 66, 535-552, 1976.
11. V. Scheffer, Hausdorff measure and the Navier-Stokes equations, Comm. in Mathematical Physics, 55, 97-111, 1977.
12. V. Scheffer, The Navier-Stokes equations in space dimension four, Comm. in Mathematical Physics, 61, 41-68, 1978.
13. V. Scheffer, The Navier-Stokes equations on a bounded domain, Comm. in Mathematical Physics, 73, 1-42, 1980.
14. J. Serrin, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, R. E. Langer, University of Wisconsin Press, 69-83, 1963.
15. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, 1970.
16. R. Temam, Navier-Stokes equations and nonlinear functional analysis, Université de Paris-Sund, 1982.

NSTITUTE OF MECHANICS
 UNIVERSITY OF WARSAW.

Received April 6, 1983.

