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Fractional regularity of solutions in L”° to the Navier-Stokes
equations

G. LUKASZEWICZ (WARSZAWA)

WE consIDER the initial value problem for the Navier-Stokes equations in the infinite cylinde

St = R*x [0, T) and study weak solutions of the problem belonging to the space L”(Sy) =

= L0, T; LP(R3)). The aim of this paper is to estimate the Hausdorff dimension of the set

S = {x e R3ess sup |u(x, )= oo} of possible singularities of the considered solutions.
te[0, T]

Rozwazamy zagadnienie poczgtkowe dla réwnafi Naviera-Stokesa w nieskoniczonym cylindrze
Sr = R*x [0, T) i badamy slabe rozwigzania tego problemu nalezace do przestrzeni L”%(Sy) =
= L%0, T; L?(R%). Celem tej pracy jest oszacowanie wymiaru Hausdorffa zbioru § =

= {x e R3:ess sup |u(x,1)|= o0} mozliwych osobliwosici rozwazanych rozwigzar.
1€[0,T]

PaccmaTpuBaercst HauambHas 3afava 1A ypaeHenuit Hasbe-Crokca 1uis GeCKOHEUHO MIIMHE/pa

Sr = R3x [0, T) u uccnenyiorca cnabble pelreHus 3TOH npo0JieMbl IIPHHAZJIEKALKE K NPO-

crpadcTBy LP(S7) = L0, T; L°(R?)). Uensio paGoThl SBJAETCA OLEHKA pasMepHocTH [a-

ycnopda muoxkecTBa S = {x € R3:ess sup |u(x, )| = 00} BOIMOXKHBIX 0COGEHHOCTEH pacc-
1e[0,T]

MATPHBAcMbIX pellleHHH .

1. Introduction

THIS PAPER analyzes the fractional regularity of solutions of the initial value problem for
the Navier-Stokes equations in the infinite cylinder Sy = R*x [0, 7), 0 < T < 0. We
consider the problem in its weak form (see definition 1.1 below). The initial data g(x) =
= (g1(x), g2(x), g3(x)) is taken from the space L'(R?®) of functions for which

3
lgllran = ) ([ 1g@ldx)r < 0 (r > 1).

i=1 R?

The solutions u(x, t) = (uy(x, 1), u,(x, t), us(x, t)) belong to the space LP-4(S;) of functions
for which

T

3
illanacsyy = 3 ([ ( [ 1use, oyrasfairar)iie < 0 (p,q > 2.

i=1 '0 R3

In this paper we consider solutions which have the following property: for almost
every t € [0, T] each of them, say u(x, 1), can, when considered as a function x — u(x, t),
be modified on a set of three-dimensional Lebesgue measure zero to become a continuous
function on R3.
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We will assume that the modification of 1 has been done. This paper aims at proving
the following:
THEOREM 1.1. Suppose that

(1.1) u e LP9(Sy)

is a weak solution of the Navier-Stokes equations with initial data g such that g € L'(R?)
and Dg € L':(R?) (Dg — the derivative of g) with 3/p+2/q > 3/r > 0, 6/p+4/q > 3/r, >
> 0.

If
(1.2) 6<p<gqg
and the equations

pl/(p—2)[5—A+alq—2/q—13/p] = 3+¢,,
Ap/2+2(g—p)/a+ap/q = 3+ &,

hold for some positive A, a, &,, £, then the Hausdor(f dimension of the set

(1.3)

3
_ | 3. N7 2)y2 _
S = 1* € R .sup’eﬁ)s,sn (.‘;f u(x,1) ) oo}
does not exceed a.

This paper was inspired by the research of SCHEFFER [9], as well as of FABES, JONEs
and RIviErE [3] (for other results of this nature see [1, 10, 11, 12, 13, 16]). The work [9]
presents a similar result concerning the fractional regularity of Lerey solutions of the
initial value problem for the Navier-Stokes equations in the infinite cylinder R* x [0, o0).
In this paper we consider weak solutions of the Navier-Stokes equations which are not
Lerey solutions. They are, however, sufficiently smooth to satisfy an integro-differential
equation of the same form as Lerey solutions do. From the very integro-differential equa-
tion, following the method used in [9], we derive a suitable estimate for the considered
solutions.

Now, we precise the notion of a weak solution.

DeFNITION 1.1. A function u(x,t) = (u,(x, 1), uo(x, 1), us(x, 1)) is a weak solution
of the Navier-Stokes equations with initial data g if the following conditions hold:

(@) u(x,t)e LP%St) for some p,q with p,q > 2;

) g(x)eL’(RY, r =2 | with div(g) = 0 in the sense of distribution;

T
© f f wi(x, 1) (s, (%, 1)+ As,(x, 1) )dxdt
0 R3

T
+ [ [, Duite, D5 (v, Dt = = [ gilx)si(x, 0)dx
o R R
Jor all functions s(x, t) = (s,(x, t), 55(x, 1), s3(x, 1)) such that s;(x,t) belong to the space
S(R*) of rapidly decreasing functions on R*, s;(x,t) = 0 for t > T and div(s) (-, 1) = 0
Jor all t;

(d) for almost every t € [0, T, div(w) (-, t) = 0 in the sense of distribution.
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Here, as in other contexts, we use the summation convention for repeated indices; differ-
ential operators are written: u; ; = (9/9x)) uis w;, = (3/0t) wy; div(u) = u; ;3 Auy = u,;;
i gn = W) ; Du={u; ;}, 1 <ij<3 We denote by |-| the Euclidean norm. If a
and b are real numbers with @ < b, then we set [a,b] = {t:a < t <b}; Rt = {t:t > 0).
If xe R® and r > O, then B(x,r)is {yeR3: |x—y| < r}.

We denote by Q the fundamental solution of the heat equation running back in time,
more precisely Q:R3x {f:t < 0} - R* is defined by Q(x, t) = (—4nt)~>2exp(|x|?/41).

Several absolute constants in this paper are denoted by the letter C without bothering
to distinguish them with subscripts. If a constant depends only on a parameter N, we
write it as C (N).

In Sect. 2 we formulate an imbedding lemma (Lemma 2.2) and prove some inequalities
in L?'7 spaces being useful in further considerations. In Sect. 3 we define the notions of
Hausdorff measure and dimension and use them to prove a property of functions from
L?:? (Lemma 3.1). We show in Sect. 4 that solving the Navier-Stokes equations in a weak
form is equivalent to solving a certain integro-differential equation. In Sect. 5 we use
the integro-differential equation to get a basic inequality for the function u and prove
Theorem 1.1.

2. L”1 inequalities

In this section we formulate imbedding lemmas and lemmas of a technical character
which we shall use to prove the main theorem 1.1.

Lemma 2.1. Suppose fe LP(R®) and Df € LP/2(R3). If p > 6, then fe L*(R3), z > p,
with

(2-1) ||f||L‘(R3) < C(”f”L"(R’)"' ||Dﬂ| LM(R“))-

Moreover, f can, when considered as a function, be redefined on a set of zero measure
to become a continuous function on R3.
Proof. The proof follows from interpolation inequalities [5], [6].
LEMMA 2.2. Suppose u € L?*9(Sy) and Du € LP/292(S;).
Ifp > 6, ¢ > 2, then ue L*9%(S;), z > p, with

[lul{L= LIRS < C([|ull . ¢(sr)+HDU”LPﬂ dlhsr))

Proof. The proof easily follows from the inequality (2.1).
LemMmaA 2.3. Supposeu € LP:4(Sy), Due L?/*%2(5;) and set

r

22) S0y = [ [1u@, 9)l- IDuy, )I(1x—yl? +[t—s)~>dyds.

0 R?
If 6 < p<gq, then fe LP9(Sy) with
1 fllce. s = < C([[ulle. ﬂ(sr)+||DU|f1.Pf2 le(sr))HDuHu’/z $U2(Sp)

Proof. We use the following imbedding theorem, the proof of which can be found in
[2, 15].
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TueoreM (Imbedding). Suppose g € LP*(R®) and set

Tg(x) = fg(y)]x—yl""“"dy where 0<a<d, xeR.
R

If1<p,<p< oo, lp,—ald=1/p, then T is continuous from LP*(R) into LP(R?).
We proceed to prove our lemma. For any 6,0 < 6 < 1

(|xlz+t)—3/2 < CIxI—JBt—3(I—0)I2’

from Eq. (2.2) we have

fx, 0] < € [ (¢=5)=30-92( [ x—y|=%lu(y, 5)| - IDu(y, 5)|dy)ds.
0 R3

As a function of y, lu(y, s)) |Du(y, s)] belongs to L*P/2:+P)(R3) z > p, for almost
every s with
[lu(+, s)Du( s, s)l|pzz+ncrsy < 1u(*, Hllpzre,| DU, 5)llLorzers)-
Hence, by the imbedding theorem, with § = 1—(z+p)/zp,
0 < (2z+p)/zp-3(1-0)/3 = 1/p,

we have
¢

2.3) G Dllerrn < Cf (t =) 3D E+22P||u( +, 5)||L2eray| [DU(( , 5)]|Lrizersyds.
0

For q; = (1/g+1—=(3/2) (z+p)/zp)~* with sufficiently large z we have, by the Hdlder
inequality,

T

i 1/9,
(.‘ (”u( 5y t)”[,’(}!’)]lDu( & t)”LWZ(Ra,)q'df) S CI'ullLl.¢/2(sr"|IDU”LIIZ‘GIZ(ST).
0

We apply the imbedding theorem to the inequality (2.3) with 0 < 1/g,—1+(3/2)- (z+p)/
[zp = 1/q to get
”f“LM(sr) <C: llu“[_""lz(ST)I!DUHLPIZ"’Z(S;-)'

Now we use lemma 2.2 to complete the proof of the lemma.
LemMMmA 2.4, Suppose u € LP*9(Sy), Du e L?P/*92(S;) and set

S, 0) = [ u(y, )] - IDu(y, 9)(lx—y[2+|t—s)~>dyds,
E
where
E = (R*x[0, t])— (B(x, 2" x ([t—27%¥, 1] x R*)).
If6 < p < g, Nisa positive integer, then for every (x, t) € Sy we have |f(x, 1)| < C(N) < c0.
Proof. Observethat E = ((R®*—B(x,2 ™) x [0, tDu

U((R3-B(x, 2~") x [0, max(0, t—2"2M]) u(B(x,2~") x [0, max(0, t—2"*")]) =
= E,UE,UE;. Hence
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3

0l < € Y [1uly, 9l - 1Dy, 91 - Ix—y|=4jt—s|=34=001dyds = (1, + T, +1)
i=1 E,

for any 0 < 6; < 1 (i =1, 2, 3). We can choose the numbers 6; in such a way that the
integrals /; are finite.
By the Young and Holder inequalities we have

! t
L< [ [Dupldpds+ [ [ (ullx—yl=30—s|-30-00)sie- 24y ds
0 R} 0

R-B(x, 2-N)

4
< T“‘"’)"'(IIDuHmz.wz(sT,)"’z+J flul’dyds
0

R?

+f f [x —y| = 30pIP=3) |t — 5| - 31 0P AP-N)dyds < O
0 R*-B(x,2-N)
with 8, such that 30,p/(p—3) > 3 and 3(1-0,)p/2(p-3)) < 1.
The integrals I, and I, are estimate in the same way.
Lemma 2.5. let 6 <p<qg,AeR,a>0 and (x,?)€e Sr.

If
T
(24) [ [ G, oprdx)" e < 2o
0 B(x,2-m)
and
A Ip
@.5) J( [ 1Dux, opreax)"ar < 2-o,
0 B(x,2-M
then we have
t
(2.6) [ [ JuCx, DI+ [Du(x, 1)]dxdt

max(o; t—2-" B(x,2-™)
< C2-rri(p-D)15-A+alg—2/q—13/pl 4 C2 - nlAp/2+2q~-p)/a+apla},

Proof. Weset!l = [t—27%" t]nR*, B= B(x,2™") and compute

[ [ 1uGx, 1)1 IDu(x, Hldxdt < 24m20=2 [ [ |u(x, 1)|Pio-Ddxdt
I B

1 B

+2-4m2 [ [ |Du(x, 1)|#2dxds = 24wio-2K, +2-4wl2K,,
I B

By the Holder inequality
K, < C2_3"(P—3)/(p—2)f (f lu(x, t)lde)”(pdz)dt
T B

< C2- 3= 1o~ - 242w =2)~p)(a(p-2) ( i ( J |u(x,r)|de)Q/p dt)”(q‘p"m
1 B

< C2-3np=ie-29~ 2n(a(r~2)~p)/(ap—2)) = nap/(ap—2))
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and

[
K, < 2- ~2n(q- p)m(f (f |Du(x, t)["lzdx)q’p )Pﬂ &£ 2-2nlg-p)a)—anpja,

Summing up the above calculations we get the inequality (2.6).
LeMMA 2.6. Suppose g € L"(R?) and set

Q.7 fet) = [ @G-y, =DMy,  ((x,1) € Sp).
RS

If 3/p+2/q > 3/r >0, p,g > 1, then fe LP4(Sr) with
fller agspy < CTHI+3I2)=3120) |g|[ ) o).
Proof. Since
HQ( -, —Olleors, < Ct=302+329,

if s is chosen so that 0 < 1/p = 1/s+1/r—1, then by the Young inequality
HACs Olleecrsy < Ct=32+3129)|g|| Lrga,.
If q(1-1/s) < 2/3,
S |Le acs,y < CTHA=32A=119)[g][ 0 gs).
Hence
[1£1]La. s S < CT'a+31G0 =32 |g|| e rsy,  3/p+2/q > 3/r.

3. Hausdorflf measure and dimension

The basic facts about Hausdorff measure and dimension can be found in [4, 7]. We
recall the definitions for convenience.

Let X be a metric space and a > 0. The 2 — dimensional Hausdorff measure of a subset
YcXis

(31) /uu(Y) = Su%#a,a(Y) = llII; Ha.s(y):
where
(3.2) fa, (Y) = inf Y (diamB))",

the infimum being taken over all the coverings of Y by balls B, such that diam B;(= diam-
meter of B)) < ¢

It is clear that u, (YY) < "%y, (Y) for a > a,, so if w,(Y) < o for some
0 < ag < 0, then u,(¥) = 0 for all @ > a,. In this case the number

inf{a:u,(Y) =0} = inf{a: u,(¥) < o0}

is called the Hausdorff dimension of Y.
The set function p,(-) is countably additive on the Borel subsets of X [4, 7).
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LemMMA 3.1. For @ > 0 and u € L”%(St), ¢ > p, let A,(u) be the set of those x € R?
such that there exists m; with

T
([ e orax)™de <2 forall m>m,.
0 B(x,2-m)
Then the Hausdorff dimension of R3— A4,(u) is < a.
Prcof. By definition of A,(u), for any ¢ > 0 and x € R®— A4,(u) there exists a ball
B(x, €'), ¢ < &, such that
T
(3.3) [ [ 1ute, 0izax)"ds > 274(diam B(x, &))",
0 Bx¢)
The family of all such balls covers R3— 4,(u) in the sense of Vitali. By the Vitali covering

theorem [8] there exists a subfamily {B(x,, ¢;):j € J} such that the B(x,, ¢;) are mutually
disjoined, J is at most countable and

3.4 R*—A4,(u) = U B(x;, 5¢)).
j=1

By virtue of Eqgs. (3.1), (3.2), (3.3), and (3.4) it follows that
nua(R3 . Aa(u)) e Sulgtua. Se(Rs = Aa(u))

and

oo

ta, s R* = A,)) < D] (diam B(x;, 5¢)))*

Jj=1

o SaS (diam B(x;, ¢,))* < ]oajf( J‘ - t)l"dx)qlpdt
=i

i=10 Bxpe)
g |

< lO"f(f]u(x, t)l"dx)q Pdt < o independently of &> 0
0 R

so the Hausdorff dimension of R*— A4,(u) does not exceed a.

Lemma 3.2. For a > 0,u € L”%Sy), Due LP>%Y%(S;), 6 < p < q, let A,(u, Du)
be the set of those x € R* for which there exists m, such that for all n = m, Egs. (2.4)
and (2.5) hold. Then the Hausdorff dimension of R®*— A4,(u, Du) is < a.
Proof. The proof immediately follows from lemma 3.1.

4, Equivalence of weak solution of the Navier—Stokes equations and solution of certain
integro-differential equation

In this section we prove that if a function g(x) satisfies suitable conditions, then u is
a weak solution of the Navier-Stokes equations with the initial value g if and only if u is
a solution of a certain integro-differential equation.

3 Arch. Mech. Stos. nr 2/84



170 G. LukAszewicz

We define the function W with the domain R*x {: ¢ < 0} and range R* as follows:

W(x, 1) = —(@dn)~ [ Oy, 1)lx—yl~'dy.

R3
We have the following:

LemMA 4.1. Suppose g € L'(R?), Dg € L*(R?) and div(g) = 0 in the sense of distribu-
tion. If 6 <p<gq, 3/p+2/qg>3/r>0, 6/p+4/qg>3/r, >0, then ue L”Sy)
is a weak solution of the Navier-Stokes equations with the initial value g if and only if
u is a solution of the integro-differential equation

@1 ux,t) = fgl(y)Q(y—x, —~t)dy —ffuj(y,S)u,-,j(y,S)Q(y—xss—t)dyds
RS o R3

+ [ [ w, s, OW, oy =%, s—t)dyds (i = 1,2,3).

0 R3

Proof. Itis proved in [3] that if ge L"(R?), 1 < r < 00 and div(g) = O in the sense
of distribution, then ue LP9(Sy), p, ¢ > 2, p < 0, is a weak solution of the Navier-Stokes
equations with the initial value g if and only if  is a solution of the integral equation

@2 w0 =[amu-x,~0dy+ [ [u, )uly, )0 (y—=, s—t)dyds
R3 0 R3

!
— [ [ uy, Yy, IW, iy —x, s—t)dyds (i = 1,2,3).
0 R3

Further, it is proved in [3]thatifu e LM(ST.) with2/g+3/p < 1,2 < p,q < o0 is a weak
solution of the equation (4.2) with

4.3) D; fgi(Y)Q(y—x, —t)dy € LplC=i+D.al(el+D(Sy),
R3

whenever |a| < 1, then also Diu € L2/(=l+1Dai(2l+1)(S,) for |a| < 1.

By virtue of lemma 2.6, Eq. (4.3) is fulfilled if g € L"(R®), Dg € L"(R%) with 3/p+
+2/q > 3/r > 0,6/p+4/g > 3/r, > 0.

To obtain the proof of the lemma observe that

(4.4) 100y, )l < C(lyI>=9)732,  |W u(y, sl < C(Iy|>—s)~32
so by virtue of lemma 2.3 we can integrate by parts in Eq. (4.2) to get Eq. (4.1).

5. Estimates of Hausdorff measures of the set of singularities of a solution to the Navie
—Stokes equations

In this section we prove Theorem 1.1 about the set of singularities of a solution to t
Navier-Stokes equations. The primary role in our considerations is played by Eq. (4.
(fulfilled by a solution of the Navier-Stokes equations, provided it exists, see remai
5.1 below) from which we derive the basic inequality for the function u.
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It follows from lemma 2.1 that if u e LP9(S7), Du € LP/292(S;) (p > 6), then for
almost every ¢ € [0, T] u(x, t) can, when considered as a function x — u(x, t), be modified
on a set of three-dimensional Lebesgue measure zero to become a continuous function
on R3.

We assume that the modification of u has been done.

LEMMA 5.1. Suppose u € LP%(Sy), Du e L?92(S;), 6 < p < ¢q, and let @ and 4 be
any positive reals and N any positive integer. If u satisfies Eq. (4.1), then for all x € 4,(u, Du)
and almost all t€ [0, T]

G luCe 0l < | [ 6@y, —0)dy|+CV)
RJ

(> [o¢]
)
+C 23n2—np/(p—2)[5-A+alg-2[q-13[pl  C 23nQ ~nl4p[2+2(q—p)/a+aplq)
Proof. Denote by E the set R*x [0, t]—(B(x, 2~ ") x ([t—2"2", t]nR*)).
From Eqs. (4.1) and (4.4)

lu(x, 1)l < Ug(y)Q(x—y, —t)dy|+2{lu(y,S)l - [Du(y, 9)(Ix—yl|* +[t—s])=*dyds
Ry

0

+c o= [ 1@, 9 IDu(y, s)ldyds.

n=N max(0, t—2-21) B(x, 2-")
By virtue of lemmas 2.4, 2.5 and 3.2 we get easily the inequality (5.1). We are ready to
prove Theorem 1.1.
Consider (1.1) and (1.2). By virtue of lemma 4.1 u satisfies Eq. (4.1) and Due
e LPI*912(S;). Let x € A,(u, Du). From lemma 5.1 and Egs. (1.3) we conclude that
for any positive integer N > m, and for almost all ¢ € [0, T]

[u(x, )| <

fg(Y)Q(y—X, —!)dyl+C(N)+C Zz—min(sl,q)n < .
R n=N

The theorem follows by virtue of lemma 3.2 and the inclusion Sc R?®— 4,(u, Du).
REMARK 5.1. It is proved in [3] that if 3/p+2¢g < 1 with 3 < p < o0, g belongs to
L'(R%) with 3/p+2/g > 3/r > 0 and div(g) = 0 in the sense of distribution, then the
Navier—Stokes equations with initial data g have a weak solution u € LP'%(Sy), at least
for 0 < T < Ty, Ty = To(p,q,71, 8-
ReEMARK 5.2. The assumption (see Eq. (1.1)): Dge L"'(R®), 6/p+4/q > 3/ry > 0
guarantee the regularity of u(Du e LP/2:9/2(Sy)).
., Observe that in the case of Lerey solutions we have the regularity of ¥(Du € L*3(Sz))
vithout such assumption. In this case we have from Eq. (2.7) (cf. Eq. (4.1)):

T r
2 fflf.k(xat)lzdxdt=ffxfeXP(-iliszf)IF(g)(x)lzdxdt
0 R}

I 0 R

J

T
= [ 1F@ 2| [ xzexp(—2ix20dt}dx < 1721lgllZcs,
R3 0
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where F denotes the Fourier transform

3
AR = () = ( [ (i Yray).

Lerey solutions which belong to LP-4(Sy) were studied in [14].
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