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Fractional regularity of solutions in Lp,q to the Navier-Stokes 
equations 

G. LUKASZEWICZ (WARSZAWA) 

WE CONSIDER the initial value problem for the Navier-Stokes equations in the infinite cylinde 
ST = R3 x [0. T) and study weak solutions of the problem belonging to the space LM(Sr) = 
= L"(O, T; LP(R3)). The aim of this paper is to estimate the Hausdorff dimension of the set 
S = {x e R 3 :ess sup iu(x, t)l = oo} of possible singularities of the considered solutions. 

te[O, T] 

Rozwai:amy zagadnienie pQC74tkowe dla r6wnan Naviera-Stokesa w nieskonczonym cylindrze 
Sr = R 3 x [0, T) i badamy slabe rozwi(lzania tego problemu nale:iclce do przestrzeni LM(Sr) = 
= L4 (0, T; LP(R3)). Celem tej pracy jest oszacowanie wymiaru Hausdorffa zbioru S = 

{x e R3 :ess sup lu(x, t)l = oo} moZliwych osobliwo8ci rozwai:anych rozwi(lzan. 
te(O,TJ 

PaccMaTpHBaeTcH Hattam.HRH aa~atta WJ:H ypaaHemm HaaLe-CToKca ~IDI 6ecKoHetiHo QHJIHH~pa 
ST = R 3 x [0, T) H HCCJie.rzyroTcH CJI&6hie peweHHH 3TOH npo6neMbi npHHa~nemamHe K npo­
CTpaHCTBY LM(Sr) == L 11(0, T; LP(R3

)). UeJILIO pa60Tbl HBIDieTCH OQeHKa paaMepHOCTH ra­
yc~op<t>a MHOH<eCTaa S = {x E R3 :ess sup lu(x, t)l = oo} B03MOH<HhiX oco6eHHocreii pacc-

te[O,T] 

M&TpHB&eMbiX peWeHHH. 

1. Introduction 

THIS PAPER analyzes the fractional regularity of solutions of the initial value problem for 
the Navier-Stokes equations in the infinite cylinder Sr = R 3 x [0, T), 0 < T < oo. We 
consider the problem in its weak form (see definition 1.1 below). The initial data g(x) = 
= (g1 (x), g 2 (x), g 3 (x)) is taken from the space Lr(R3) of functions for which 

3 

llgiiL'(Rl> = 2 (J !gl(x)!rdx} 1!r < 00 
i= 1 R 3 

(r > 1). 

The solutions u(x, t) = (u1(x, t), u2 (x, t), u3 (x, t)) belong to the space LP·Il(ST) of functions 
for which 

3 T 

llullv··"<Sr> = 2 (J ( J !u1(x, t)!Pdx)qfPdt) 1fq < oo (p, q ~ 2). 
i= 1 0 R3 

In this paper we consider solutions which have the following property: for almost 
every t E (0, T] each of them, say u(x, t), can, when considered as a function x ~ u(x, t), 
be modified on a set of three-dimensional Lebesgue measure zero to become a continuous 
function on R3 • 
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164 G. LUKASZEWICZ 

We will assume that the modification of u has been done. This paper aims at proving 
the following: 

THEOREM 1.1. Suppose that 

(1.1) 

is a weak solution of the Navier-Stokes equations with initial data g such that g E L'(R3
) 

and Dg E L'•(R3
) (Dg- the derivative of g) with 3/p+ 2/q > 3 fr > 0, 6fp+4/q > 3jr1 > 

> 0. 
If 

(1.2) 6 < p < q 

and the equations 

(1.3) 
pf(p-2)[5-A+afq-2/q-13/p] = 3+eH 

Ap/2+2(q-p)fq+apfq = 3+ £2 

hold for some positive A, a, e1 , e2 then the Hausdorff dimension of the set 

does not exceed a. 

3 

S = {x E R3
: sup ess (27 u1(x, t)2

)
1

'
2 = oo} 

te[O, T} i= 1 

This paper was inspired by the research of ScHEFFER [9], as well as of F ABES, JoN'ES 

and RIVIERE [3] (for other results of this nature see [1, 10, 11, 12, 13, 16]). The work [9] 
presents a similar result concerning the fractional regularity of Lerey solutions of the 
initial value problem for the Navier-Stokes equations in the infinite cylinder R 3 x [0, oo ). 
In this paper we consider weak solutions of the Navier-Stokes equations which are not 
Lerey solutions. They are, however, sufficiently smooth to satisfy an integra-differential 
equation of the same form as Lerey solutions do. From the very integra-differential equa­
tion, following the method used in [9], we derive a suitable estimate for the considered 
solutions. 

Now, we precise the notion of a weak solution. 
DEFINITION' 1.1. A function u(x, t) = (u 1 (x, t), u2 (x, t), u3 (x, t)) is a weak solution 

of the Navier-Stokes equations with initial data g if the following conditions hold: 
(a) u(x, t) E LP· q(ST) for some p, q with p, q ~ 2; 
(b) g(x) E L'(R3), r ~ 1 with div(g) = 0 in the sense of distribution; 

T 

(c) I I u 1(x, t) (st. ,(x, t)+Lis1(x, t))dxdt 
0 R 3 

T 

+ J J uix, t)u 1(x, t)s1,ix, t)dxdt = - J g 1(x)s 1(x,O)dx 
0 R 3 R 3 

for all functions s(x, t) = (s1 (x, t), s2 (x, t), s3 (x, t)) such that si(x, t) belong to the space 
S(R4

) of rapidly decreasing functions on R4
, si(x, t) = 0 for t ;?; T and div(s) ( ·, t) = 0 

for all t; 
(d) for almost every t E [0, 71, div(u) ( ·, t) = 0 in the sense of distribution. 
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FRACTIONAL REGULARITY OF SOLUTIONS IN L''·' TO THE NAVIER-STOKES EQUATIONS 165 

Here, as in other contexts, we use the summation convention for repeated indices; differ­
ential operators are written: ui.J = (ofox1) u1; ui.t = (ofot) u,; div(u) = u1, 1; Au1 = u1,}1 ; 

ui,Jk = (u1,1),k; Du = {ui,J }, 1 ~ i,j ~ 3. We denote by I · I the Euclidean norm. If a 
and bare real numbers with a< b, then we set [a, b] = {t:a ~ t ~b}; R+ = {t:t > 0}. 
If x E R 3 and r > 0, then B(x, r) is {y E R 3

: lx-yl ~ r}. 
We denote by Q the fundamental solution of the heat equation running back in time, 

more precisely Q:R3 x {t:t < 0}-+ R+ is defined by Q(x, t) = (-4nt)- 312exp(lx1 2 /4t). 
Several absolute constants in this paper are denoted by the letter C without bothering 

to distinguish them with subscripts. If a constant depends only on a parameter N, we 
write it as C (N). 

In Sect. 2 we formulate an imbedding lemma (Lemma 2.2) and prove some inequalities 
in L'·q spaces being useful in further considerations. In Sect. 3 we define the notions of 
Hausdorff measure and dimension and use them to prove a property of functions from 
L'·q (Lemma 3.1). We show in Sect. 4 that solving the Navier-Stokes equations in a weak 
form is equivalent to solving a certain integro-differential equation. In Sect. 5 we use 
the integro-differential equation to get a basic inequality for the function u and prove 
Theorem 1.1. 

2. LP · q inequalities 

In this section we formulate imbedding lemmas and lemmas of a technical character 
which we shall use to prove the main theorem 1.1. 

LEMMA 2.1. SupposefEL'{R3
) and DfEL'' 2{R3

). If p > 6, then[ED"{R3
), z > p, 

with 

(2.1) 

Moreover, f can, when considered as a function, be redefined on a set of zero measure 
to become a continuous function on R 3

• 

P r o o f. The proof follows from interpolation inequalities [5], [6]. 
LEMMA 2.2. Suppose u E L'·q(Sr) and DuE L''2 ·qf2 (Sr). 

Ifp > 6, q > 2, then u E Lz,qf2 (Sr), z > p, with 

llullvr:, ''2<sT> ~ C(lluiiLP· '<ST> + IIDuiiLPf2, ,,z~sT>). 

Proof. The proof easily follows from the inequality (2.1). 
LEMMA 2.3. Suppose u E LP·q(Sr), DuE £Pfl,qf 2 (Sr) and set 

t 

(2.2) f(x, t) = J J lu(y, s)l· IDu(y, s)l(lx-yl 2 +1t-sl)- 3
'

2dyds. 
0 R 3 

If 6 < p < q, then /E LP·q(Sr) with 

llfllLP·4<Sr> ~ C(llu llLP.4(ST> + IIDuliLPf2,qf2<sT>)IIDullvFz.q,z(sr>. 

Proof. We use the fo1lowing imbedding theorem, the proof of which can be found in 
[2, 15]. 
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166 G. LUICASZ:EWICZ 

THEOREM (Imbedding). Suppose g e L"•(gl) and set 

Tg(x) = J g(y)lx-yj-<d-cx>dy where 0 <ex< d, x eR4
• 

R~ 

If 1 < p 1 < p < oo, 1/p1 -a./d = 1/p, then Tis continuous from L"•(R") into L"(~). 
We proceed to prove our lemma. For any 0, 0 < 0 < 1 

(lxlz + t)-3/2 ~ Clxj-38t-3<t-8)t2, 

from Eq. (2.2) we have 

t 

lf(x, t)l ~ C J (t-s)- 3<t-O>t2(J lx-yl- 38lu(y, s)I·IDu(y, s)ldy)ds. 
0 R 3 

As a function of y, lu(y, sl) · jDu(y, s)l belongs to L:Pf<lz+P>(R3}, z ~ p, for almost 
every s with 

llu( ·, s)Du( ·, s)llv:,,<z=r+P><R3> ~ llu( ·, s)llv:<R3,11Du( ·, s)llv•t2<R3>· 

Hence, by the imbedding theorem, with 0 = 1- (z+p)/zp, 

0 < (2z+p)/zp-3(1-0)/3 = 1/p, 

we have 
t 

(2.3) II!(·, t)IIL"<R'> ~ c r (t-s)<- 3fl)(z+p)zPIIu( ·, s)IILs<R'>IIDu({ ·, s)llo•I2(R'>ds. 
0 

For q1 = (l /q+ 1- (3/2) (z+ p)/zp}- 1 with sufficiently large z we have, by the HOlder 
inequality, 

T 

(.f (llu( ·, t)IIL~~<R'>IIDu( ·, t)IIL"'2<R'>)q•dtr'q' ~ ClluiiL~~·''2<sr)IIDuiiL..,,2,,,2(sr>· 
0 

We apply the imbedding theorem to the inequality (2.3) with 0 < l/q1 -1 + (3/2) · (z+p)/ 
fzp = l/q to get 

11/IIL-"•'<Sr> ~ C · llullv~:,qf2<Sr>11DuiiL"'2,,t2<Sr>· 

Now we use lemma 2.2 to complete the proof of the lemma. 
LEMMA 2.4. Suppose u e LP·q(Sr), Due LPfZ,qfZ(Sr) and set 

f(x, t) = J lu(y, s)I·IDu(y, s)l(lx-yl 2 +lt-sl}- 3
'
2dyds, 

E 

where 

E = (R3 x [0, t])- (B(x, 2-N) x ([t-2-zN, t] x R+)). 

If6 < p < q, Nis a positive integer, then for every (x, t) E Sr we have lf(x, t)l ~ C(N) < oo. 
Proof. Observe that E = ((R3 - B(x, 2-N)) x [0, t])u 

u((R3-B(x, 2-N))x [0, max(O, t-2- 2N)]) u(B(x, 2-N)x [0, max(O, t-2- 2N)]) = 
= E1 uEzuE3 • Hence 
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3 

lf(x, t)l ~ C _r J !u(y, s)l· IDu(y, s)l· lx-yl- 30tlt-sl- 3<1- 0•>12dyds = C(I1 +I2 +I3) 

l=l E 1 

for any 0 < 01 < 1 (i = 1, 2, 3). We can choose the numbers (Ji in such a way that the 
integrals I 1 are finite. 

By the Young and Holder inequalities we have 

t t 

It~ J J lDulP12dyds+ J J (lullx-yl- 301 lt-si- 3<1-li1>12)PI<P-·2>dyds 
0 R 3 0 R3 -B(x, 2-N) 

t 

t 

~ T<q-p)fq(l1Dullo•J2,.,fl<Sr>)PI 2 + J J lulPdyds 
0 R3 

+ f f lx-yl-38tPf(p-3)1t-s!-J(l-fit)PJ(2(P-3))dyds < 00 

0 R 3 -B(x, 2-N) 

with 01 such that 301p/(p-3) > 3 and 3(1-01)p/(2{p-3)) < 1. 

If 

The integrals I 2 and I 3 are estimate in the same way. 
LEMMA 2.5. Let 6 < p < q, A E R, a > 0 and (x, t) EST. 

T 

(2.4) r ( f )qfp 
• iu(x, t)iPdx dt < 2-an 
0 B(x, 2-11 ) 

and 
T 

(2.5) J ( J )q/p 
IDu(x, t)!P1 2dx dt < 2-an, 

0 B(x, 2-11) 

then we have 
I 

(2.6) J J lu(x, t)i· IDu(x, t)ldxdt 
max(O, t-2- 11) B(x, 2-n) 

~ C2-npf(p-2)[S-.A +afq-2{q-13{p]+ C2-n[Ap{2+2(q-p)fq+apfq). 

Proof. We set I= [t-2- 2", t] nR+, B = B(x, 2-") and compute 

J J lu(x, t)l · IDu(x, t)l dxdt ~ 2Anpf(P- 2> J J iu(x, t)IPI<P- 2>dxdt 
I B I B 

+2-AnPt2 f f iDu(x, t)iP12dxdt::: 2Anpf(p-2)Kt +2-Anpf2K2. 
I B 

By the Holder inequality 

f (f )1/(p-2) 
K 1 ~ C2-Jn(p-J)/(P- 2> lu(x, t)IPdx dt 

I B 

~ C2-3n(p-3)i(p-2)2-2n(q(p-2)-P)/(q(p-2)) X (J (J lu(x,t)lPdxt'P dtyf(q(p-2)) 
I B 

~ C2- 3n(p- 3)f(p-2)2-2n(q(p-2)-P)/(q(p-2))2 -napf(q(p-2)) 
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168 G. L~WICZ 

and 

x2 ~ 2-ln(q-p)fq(f (f IDu(x, t),Pf2dxr'p dtr'q ~ 2-211(q-p)fq2-"""' q· 
I B 

Summing up the above calculations we get the inequality (2.6). 
LEMMA 2.6. Suppose g E Lr (R3

) and set 

(2.7) f(x, t) = J Q(x-y, -t)g(y)dy, ((x, t) EST)). 
Rl 

If 3/p+2fq > 3/r > 0, p,q >I, then /ELP· 4(Sr) with 

IIJIILP· 4(ST) ~ CTI/q+ 3/(2p)- 31<2'>11gllu(RJ>. 

P r o o f. Since 

IIQ( . ' - t)IIL·(Rl) ~ Ct- 312+ 3/(2-f)' 

if sis chosen so that 0 < 1 fp = l fs + 1 /r-1, then by the Young inequality 

IIJ( ·' t}IILP(Rl) ~ Ct-Jfl+J/(2f)llgl1Lr(RJ,. 

If q(l-1/s) < 2/3, 

Hence 

3. Hausdorff measure and dimension 

The basic facts about Hausdorff measure and dimension can be found in [4, 7]. We 
recall the definitions for convenience. 

Let X be a metric space and a > 0. The a - dimensional Hausdorff measure of a subset 
Y c X is 

(3.1) 

where 

(3.2) 

f.la{Y) = SUPflaiY) = lim ,Ua,e(Y), 
s>O e-+0 

f.la.s(Y) = inf J; (diamB1)a, 
j 

the infimum being taken over all the coverings of Y by balls B1 such that diam B1( = diam­
meter of B1) ~ e. 

It is clear that f.la, 6(Y) ~ Ea-aa ,Ua
0

, 8 (Y) for a > ao, SO if ,Ua
0 

( Y) < 00 for SOme 
0 < a0 < oo, then ,Ua(Y) = 0 for all a > a0 • In this case the number 

inf {a :f.la(Y) = 0} = inf {a: ,Ua(Y) < 00} 

is called the Hausdorff dimension of Y. 
The set function ,Ua( ·)is countably additive on the Borel subsets of X [4, 7]. 
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LEMMA 3.1. For a > 0 and u E L"·q(Sr), q > p, let Aa(u) be the set of those x E R3 

such that there exists m~ with 

T 

J ( J lu(x, t)l"dxt'" dt ~ 2-am for all m ~ mx . 
0 B(x, 2- 111) 

Then the Hausdorff dimension of R3
- Aa(u) is ~ a. 

P r c o f. By definition of Aa(u), for any e > 0 and x E R3
- Aa(u) there exists a ball 

B(x, e'), e' ~ e, such that 
T 

(3.3) f ( f 
' q/p 

lu(x, t)l"dx) dt > 2-a(diamB(x, e'))41
• 

0 B(x, s') 

The family of all such balls covers R3
- A 41(u) in the sense of Vitali. By the Vitali covering 

theorem [8] there exists a subfamily {B(x1 , e1):j E J} such that the B(xJ, e1) are mutually 
disjoined, J is at most countable and 

(3.4) 
00 

R 3 -Aa(u) c U B(x1 , 5e1). 
j=1 

By virtue of Eqs. (3.1 ), (3.2), (3.3), and (3.4) it follows that 

f.'a( R3
- Aa(u)) = SUPfla. sl R3

- Aa(u)) 
a>O 

and 
00 

,U0 ,s,(R3 -Aa(u)) ~}; (diamB(x1,5e1))a. 
j=l 

oo oo T 

= 5a}; {diamB(x1 , e1))a < 1041
}; j ( f lu(x, t)l"dxt'" dt 

j= 1 j= 1 0 B(x1, a1) 

T 

~ lOa J ( J lu(x, t)l"dxt'" dt < oo independently of e > 0 
0 R 3 

so the Hausdorff dimension of R3
- Aa(u) does not exceed a. 

LEMMA 3.2. For a > 0, u E L"·q(Sr), DuE £PfZ,qJ 2(Sr), 6 < p < q, let Aa(u, Du) 
be the set of those x E R3 for which there exists mx such that for all n ~ mx Eqs. (2.4) 
and (2.5) hold. Then the Hausdorff dimension of R3 -A41 (u, Du) is~ a. 
P r o o f. The proof immediately follows from lemma 3.1. 

4. Equivalence of weak solution of the Navier-Stokes equations and solution of certain 
i ntegro-differential equation 

In this section we prove that if a function g(x) satisfies suitable conditions, then u is 
a weak solution of the Navier-Stokes equations with the initial value g if and only if u is 
a solution of a certain integra-differential equation. 

3 Arch. Mech. Stos. nr 2/84 
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We define ~he function W with the domain R 3 x {t: t < 0} and rangeR+ as follows: 

W(x, t) = -(4n)- 1 J Q(y, t)ix-yl- 1dy. 
Rl 

We have the following: 
LEMMA 4.1. Suppose g e L'{R3

), Dg e L''{R3
) and div(g) = 0 in the sense of distribu­

tion. If 6 < p < q, 3fp+2fq > 3/r > 0, 6fp+4fq > 3/r1 > 0, then u e LP·q(Sr) 
is a weak solution of the Navier-Stokes equations with the initial value g if and only if 
u is a solution of the integra-differential equation 

t 

(4.I) u1(x, t) = J g1(y)Q(y-x, -t)dy - J J u1(y, s)ui.iy, s)Q(y-x, s-t)dyds 
R 3 0 R 3 

t 

+ J July, s)uk, 1(y , s)W, ik(y-x, s- t)dyds (i = I, 2, 3). 
0 R 3 

Proof. It is proved in [3] that if g e L'(R3
), I ~ r < oo and div(g) = 0 in the sense 

of distribution, then ueLP·q(Sr),p, q > 2,p < oo, is a weak solution ofthe Navier-Stokes 
equations with the initial value g if and only if u is a solution of the integral equation 

t 

(4.2) u1(x, t) = J g1(y)Q(y-x, -t)dy+ J J uAy, s)u1(y, s)Q.iy-x, s-t)dyds 
Rl 0 Rl 

t 

- J July, s)uk(Y, s)W, tJk(y-x, s- t)dyds (i = I, 2, 3). 
0 R 3 

Further, it is proved in [3] that ifu e LP·q(Sr) with 2fq+3/p ~ I, 2 < p. q < oo is a weak 
solution of the equation (4.2) with 

(4.3) D~ J g1(y)Q(y-x, -t)dy E LP/(!cx!+l),q/(Jcx J+ l)(Sr), 
Rl 

whenever I (XI ~ I, then also D~u e LP/(Jcxl + 1>· qf( l«l + 1>(Sr) for I (XI ~ 1. 
By virtue of lemma 2.6, Eq. (4.3) is fulfilled if g e L'(R3

), Dg e L''(R3) with 3/p+ 
+2/q > 3/r > 0, 6fp+4fq > 3/r1 > 0. 

To obtain the proof of the lemma observe that 

(4.4) IQ(y, s)l ~ C(iy?-s)- 3
'
2

, IW, ,k(y, s)l ~ C(lyl 2 -s)- 3
'
2 

so by virtue of lemma 2.3 we can integrate by parts in Eq. (4.2) to get Eq. (4.I). 

S. Estimates of Hausdorff measures of the set of singularities of a solution to the N avie1 
-Stokes equations 

In this section we prove Theorem 1.1 about the set of singularities of a solution to t 
Navier-Stokes equations. The primary role in our considerations is played by Eq. (4. 
(fulfilled by a solution of the Navier-Stokes equations, provided it exists, see remat 
5.1 below) from which we derive the basic inequality for the function u. 
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It follows from lemma 2.1 that if u E LP·q(Sr), DuE LPfl,qf2(Sr) (p > 6), then for 
almost every t E [0, T] u(x, t) can, when considered as a function x ~ u(x, t), be modified 
on a set of three-dimensional Lebesgue measure zero to become a continuous function 
on R3

• 

We assume that the modification of u has been done. 
LEMMA 5.1. Suppose u E LP·q(Sr), DuE LP/l,qf2(Sr), 6 < p < q, and let a and A be 

any positive reals andN any positive integer. Ifu satisfies Eq. (4.1), then for all x E Aa(u, Du) 
and almost all t E [0, T] 

(5.1) lu(x, t)! ~I J g(y)Q(x-y, -t)dyi+C(N) 
Rs 

00 00 

+ C .2; 23n2-npf(p-2)[5-A+afq-2fq-13/P]+ C 2 23n2-n[Apf2+2(q-p)fq+apfq). 

n=N n=N 

Proof. Denote byE the set R 3 x[O,t]-(B(x,2-N)x([t-2- 2N,t]nR+)). 

From Eqs. (4.1) and (4.4) 

!u(x, t)l ~ I J g(y)Q(x-y, -t)dyl+2 J !u(y, s)I·IDu(y, s)!(lx-yl 2 +lt-sl)- 312dyds 
Rs E 

00 

+ C ,2; 23
" J J !u(y, s)l· IDu(y, s)!dyds. 

n = N max(O, t- 2-2n) B(x, 2-n) 

By virtue of lemmas 2.4, 2.5 and 3.2 we get easily the inequality (5.1). We are ready to 
prove Theorem 1.1. 

Consider (1.1) and (1.2). By virtue of lemma 4.1 u satisfies Eq. (4.1) and DuE 
E LPfl,qf2 (Sr). Let x E Aa(u, Du). From lemma 5.1 and Eqs. (1.3) we conclude that 
for any positive integer N ~ mx and for almost all t E [0, T] 

00 

!u(x,t)! ~ IJ g(y)Q(y-x, -t)dyj+C(N)+C ,2;2-min(s,,a2)n < 00. 

Rl n=N 

The theorem follows by virtue of lemma 3.2 and the inclusion Sc R3
- Aa(u, Du). 

REMARK 5.1. It is proved in [3] that if 3fp+2q ~ 1 with 3 < p < oo, g belongs to 
L'(R3

) with 3fp+2fq > 3/r > 0 and div(g) = 0 in the sense of distribution, then the 
Navier-Stokes equations with initial data g have a weak solution u E LP·q(Sr), at least 
for 0 < T < T0 , T0 = T0 (p, q, r, g). 

REMARK 5.2. The assumption (see Eq. (1.1)): Dg E L'1 (R3
), 6/p+4/q > 3/r1 > 0 

guarantee the regularity of u(Du E LPfl,qf 2 (Sr)). 
_, Observe that in the case of Lerey solutions we have the regularity of u(Du E L2

•
2 (Sr)) 

-vithout such assumption. In this case we have from Eq. (2.7) (cf. Eq. (4.1)): 
T T 

.. J. J J 1/,k(x, t)l 2dxdt = J J xfexp( -2lxl 2 t)IF(g)(x)l 2dxdt 
~ I 0 R 1 0 R3 

T 

= J IF(g)(x)! 2
{ J xfexp( -2lxl 2 t)dt} dx ~ 1/21lglli.2cR'>' 

R3 0 

http://rcin.org.pl
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where F denotes the Fourier transform 
3 

F(g)(x) = (F(g1)(x)) = ( J giy)exp ( i 2 xkyk)dy). 
R3 k=l 

Lerey solutions which belong to LP·q(Sr) were studied in [14]. 

References 

1. L. CAFFARELLI, R. KoHN, L. NIRENBERG, Partial regularity of suitable weak solutions of the Navier­
-Stokes equations, Comm. in Pure and Appl. Math., 35, 6, 771-831, November 1982. 

2. A. P. CALDERON, A. ZYGMUND, On the existence of certain singular integrals, Acta Math., 88, 85-139, 
1952. 

3. E. B. FADES, B. F. JoNES, N. M. RIVIERE, The initial value problem for the Navier-Stokes equations 
with data in LP, Arch. Rational Mech. Anal., 45, 222-240, 1972. 

4. H. FEDERER, Geometric measure theory, Springer-Verlag, New York 1969. 
5. E. GAGLIARDO, Ulterori proprieta di alcune classi difunzioni in piu variabli, Ricerche di Mat., 8, 24-51, 

1959. 
6. L. NIRENBERG, On elliptic partial differential equations, Ann. Scuola Norm. Sup. di Pisa, ser. IU, 13, 

Fasc. TI, 115-162, 1959. 
7. C. A. ROGERS, Hausdorff measures, Cambridge 1970. 
8. S. SAKS, Theory of the integral, Warsaw 1937. 
9. V. SCHEFFER, Turbulence and Hausdorff dimension, in: Turbulence and Navier-Stokes Equations, 

R. TEMAM ed., Lecture Notes in Math., vol. 565, Springer-Verlag, 94-112, 1976. 
10. V. SCHEFFER, Partial regularity of solutions to the Navier-Stokes equations, Pacific Journ. of Math., 66, 

535-552, 1976. 
11. V. SCHEFFER, Hausdorff measure and the Navier-Stokes equations, Comm. in Mathematical Physics, 

ss, 97-111, 1977. 
12. V. SCHEFFER, The Navier-Stokes equations in space dimension four, Comm. in Mathematical Physics. 

61, 41-68, 1978. 
13. V. SCHEFFER, The Navier-Stokes equations on a bounded domain, Comm. in Mathematical Physics, 

73, 1-42, 1980. 
14. J. SERRIN, The initial value problem for the Navier-Stokes equations, Nonlinear Problems, R. E. Langer, 

University of Wisconsin Press, 69-83, 1963. 
15. E. M. STEIN, Singular integrals and differentiability properties of functions, Princeton University Press, 

1970. 
16. R. TEMAM, Navier-Stokes equations and nonlinear functional analysis, Universite de Paris-Sund, 1982. 

NSTITUTE OF MECHANICS 
UNIVERSITY OF WARSAW. 

Received April 6, 1983. 

http://rcin.org.pl




