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Peristaltic flow of non-Newtonian fluids containing small
spherical particles(*)

H.J. RATH and G. W. REESE (BREMEN)

WE CONSIDER the two-dimensional plane peristaltic flow of an incompressible non-Newtonian
fluid containing solid spherical particles. Furthermore it is assumed that the wavelength of the
peristaltic wave is large compared with the channel width, and the appropriate Reynolds number
is small compared with unity. The non-Newtonian fluid is characterized by a power law model
which describes dilatant and pseudoplastic fluid behaviour. The inertia-free partial differential
equation system has been solved analytically. Velocity distributions of the fluid phase and
particulate phase as well as pressure-volume flow relationships are given. The results are com-
pared with the case of a single-phase fluid and it is seen that the various parameter have an
influence on the velocity distributions and on the pressure-flow relationships.

Rozwazamy dwuwymiarowy, plaski przeplyw perystaltyczny niesci§liwego ptynu nienewtonow-
skiego zawierajacego stale czasteczki kuliste. Zalozono, ze dlugo$é fali perystaltycznej jest
duza w poréwnaniu z szerokoscia kanalu, a odpowiednia liczba Reynoldsa jest duzo mniejsza
od jednosci. Plyn nienewtonowski opisany jest modelem potegowym uwzgledniajacym pseudo-
plastyczne zachowanie si¢ ptynu. Uklad réwnan rézniczkowych czastkowych nie uwzglednia-
Jacy sit bezwladnosci rozwiazano analitycznie. Podano rozklady predkosci fazy cieklej i fazy
czasteczkowej. Wyniki poréwnano z przypadkiem plynu jednofazowego i pokazano, Ze
rdzne parametry maja wplyw na rozklady pr¢dkosci i na zalezno$é przeptywu od ci$nienia.

PaccmatpuBaeM [ByMepHOe, IJIOCKOE NEPHCTAIILTHUECKOE TEUEHHME HECHKMMAEMON HEHBIOTO-
HOBCKOM »MIKOCTH, CoAepyKaslleii Teepable chepuueckue uactuunl. I[Ipeanonoixeno, uro
JJTHHA TIEPHCTANIBTHUECKON BOJHBI ABJAETCA GOMBLION MO CPaBHEHMIO C IIMPHUHON KaHama,
a COOTBETCTBYIOIee YHCIO PeliHoNbACa MHOTO MeHBbIlE UeM eTHHMIA. HeHBIOTOHOBCKaA »KuUA-
KOCTh ONMCAHA CTEMEHHOH MOIENbIO, YUHTHIBAIOLIEH NCEBIOMUIACTHUECKOE TMOBEICHHE KHI-
xocTH. Cucrema auddepeHIHaIbHbIX YPABHEHHI B YACTHBIX TIPOH3BOJHBIX, HE YUHTBIBAIOIIAA
CHJI MHEPLIUH, pellicHa aHAJIMTHUCCKH. IIpHBe/IeHb] pacpeieIcHHA CKOPOCTEil yXuaKoi dasbl
K (a3l vacTH. Pe3ysbTaThl CPaBHEHBI CO Cyuaem OJHOMA3HOH YKMIKOCTH U IIOKa3aHO, UTO
pasHble NapameTpbl HMEKOT BJIHAHHE Ha PaclpelelieHNA CKOPOCTH M Ha 3aBHCHMOCTh TEUYEHMA
OT MABJICHHS.

1. Introduction

IN GENERAL, peristaltic pumping is characterized by the dynamic interaction of fluid flow
with the movement of a flexible boundary. The dynamics of fluid transport by peristaltic
motion of the confining walls has received careful study in the recent literature in both,
the mechanical and physiological sciences. Peristaltic motion is one of the major mech-
anisms for fluid transport in many biological systems. Peristaltic pumping is the common
mechanism for urine transport from kidney to bladder, food mixing and motility in the
intestine, ejection of semen in male reproductive organs, and egg transport in female

(*) Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mechanics, Spala,
4-10 September, 1983.
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fallopian tubes. Technical roller and finger pumps using viscous fluids also operate accord-
ing to this principle.

The fluid mechanics of peristaltic pumping have been studied for severa.l years and
reviews of some of the literature are presented by JAFFRIN and SHAPIRO [1] and RATH [2).
Most investigations about peristalsis refer to the human ureter [3-6]. In [7] the authors
investigated a peristaltic flow through nonuniform channels. Most of the studies on peri-
staltic motion assumed Newtonian fluids of constant viscosity. HUNG and BrowN [8, 9]
carried out an extensive experimental investigation to understand the mechanics of solid
particle transport by peristaltic motion and they compared their computational two-di-
mensional flow model with the experimental data. KammMAL [10] studied the peristaltic
pumping of suspension of rigid particles in an Newtonian-liquid in a tube of arbitrary
wave shape. Two-phase flow analysis without peristaltic wall contractions has been studied
extensively by many authors [11], [12], [14]. The general study of solid particles-fluid
flow systems is of importance in many fields, for example in biological fluid flow, in sediment
transport and in chemical processing.

Most of all investigations on peristaltic flow are restricted to Newtonian fluids. How-
ever, RAJU and DEVANATHAN [13] studied a single-phase-peristaltic flow of a non-New-
tonian fluid, considering blood as a power law fluid and they obtained the solution for
the stream function as a power series in terms of the amplitude of deformation and evalu-
ated the stream function and velocity components numerically. BECKER [15] studied
a peristaltic flow of simple non-Netwonian fluids. No experimental or theoretical papers
on the peristaltic flow of non-Netwonian two-phase mixtures have been published. On
the other hand most of the liquids used by peristaltic pumping have non-Netwonian
fluid behaviour. And in physiology as well as in chemical engincering there are a lot of
flow problems which are connected with a peristaltic flow of non-Newtonian fluids con-
taining small spherical particles.

The purpose of the present paper is to investigate a peristaltic flow of a non-Newtonian
fluid containing small rigid spherical particles. The non-Newtonian fluid should be char-
acterized by a power law model which describes dilatant, pseudoplastic and also Newto-
nian fluid behaviour. For our theoretical investigations it is assumed that the wavelength
of the peristaltic wave is large compared with the mean half width of the channel. Further-
more we assume that the appropriate Reynolds number is small compared with unity.
It should be noted that for our model arbitrary wave shapes are possible. This study should
be helpful in regard to both, peristaltic pumping in physiology and to the engineering
application of pumping solid-non-Newotnian fluid mixtures by peristalsis.

2. Mathematical formulation of the problem

We consider the peristaltic flow of an incompressible non-Newtonian fluid with distribu-
ted small rigid particles which are neutrally buoyant. The particles themselves, however
will be assumed to consist either of a solid material or of drops or bubbles of a fluid im-
miscible with the suspending medium. The spherical particle size will also be assumed
throughout to be very much smaller than the width of the channel and furthermore we
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neglect the Brownian motion and the lift due to the rotation of the particles. It is cons-
idered that the length of the peristaltic wave is large compared with the channel width and
the appropriate Reynolds number is sufficiently small for the flow to be considered iner-
tia-free. We consider a symmetric channel with flexible walls, where the shape of the
walls is determined by the arbitrary function of the travelling peristaltic wave. We choose
the non-Newtonian fluid of a power law model which represents dilatant, Newtonian and
pseudoplastic fluids and we consider a two-dimensional laminar flow of the two-phase
mixture.

In general arbitrary wave shapes are possible, but at the moment we assume that the
travelling waves are represented by an infinite sinusodial wave train function A(x, t)

.1 h(x, t) = a+bsin[2n/A(x—c1)],

where ¢ is the time, a is the mean half width of the channel, 4 is the amplitude and A the
wavelength of the peristaltic wave. The constant wave speed is denoted by c. The x, y-co-
ordinates are fixed in space and so they represent the laboratory frame of reference. The
corresponding velocity components of the fluid velocity in the x and y-direction, measured
in the laboratory frame are » and v, and the corresponding velocities of the particulate
phase are u, and v,.

Now we introduce the relative wave frame of reference which moves in the x-direction
with the constant wave speed c relative to the laboratory frame. The variables X and Y
measured in the wave frame are defined by

2.2) X=x—ct, Y=y.

The corresponding velocity components of the fluid are

(2.3) U=u-c, V=u,

and the components of the particulate velocity in the wave frame are defined by

(2.49) - U,=u,—c, V,=v,.

The reason for introducing the wave frame is that the governing equations become sta-
tionary.

By means of the assumptions at the beginning of this paragraph we obtain the following
inertia-free Navier—Stokes equations in the wave frame of reference:

aP 2
(2.5) 0= —(1 —-‘a) ' aFp (U-U,)+ —a—)-;'r,,,
JaP
(2.6) 0= 2% +aFy (U-U,),
P
(27) 0= —aﬁ; +mFD,(V—‘ Vp b

(2.8) 0= —(l —-a)—gf; —aFp (V-V,)

9 Arch. Mech. Stos. nr 2/84
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and the continuity equations

29 ~:7 [(1-Ul+—- )V]=10

aY [a-

(2.10) U,)+ —;7[an] =0

x
in which Fp,, is the drag force of the particles in the fluid, « is the volume fraction of the
particles, P is the pressure and 7,, is the shear stress of the fluid and of course it is possible
to introduce various rheological models which describe different non-Newtonian fluid
behaviour. We use a simple rheological model which is called the power law fluid and it
is given by OsTWALDE-DE WAELE [14] (see Eq. (2.11)).

U™t au
oY Y

(2.11) K~

The derivative of U with respect to Y is the shear rate, n is the flow behaviour index and
K is the consistency index which depend upon n. It is well known that for n 2 1, this
model represents the dilatant, Newtonian and pseudoplastic fluids, respectively.

The drag force of a moving rigid sphere in a power law fluid is given by KAWASE et al.
[16, 17]

n—-1
27 K yei —22n%4-29n+42
Fo= 5 (%) @ D En D)
(2.12) »
9 [27\z K ney —22n%429n+42
F"=‘7(‘4‘) wor Y S ey

This equation is obtained by an approximate solution of the equation of motion in the
creeping flow regime, where R is the radius of the particles. Equation (2.12) shows that
the drag force increases with a decrease of the flow index n.

Now we introduce dimensionless parameters and coordinates. Three important
describing parameters of peristaltic flow are the ratio of amplitude ¢, the wave number
é and a modified Reynolds number Re.

(2.13) " &=bla,
(2.14) d=all,

n. 2=n
2.1 -t
(2.15) Re %

For n = 1 the consistency index K is equal the shear viscosity p, and so from Eq. (2.15)
we get the appropriate Reynolds number for a Newtonian fluid. It is efficient to introduce
the following dimensionless parameters and coordinates:

(2.16) U= Ule, = Ule,
.17 V=vilac), V,=V,iac),
(2.18) X =X/a, Y = Y/a,

>

I
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A K e\
(2.19) S £ = 7(7) ,
(2.20) P = Pa*|(uoch),
(221 H = hla = 1+e&sin(27X).

For the integration of the continuity and momentum equations we must satisfy the fol-
lowing boundary conditions. For the fluid phase we use

(2.22) U=-1 on Y=4,
~  OH A oa
(2.23) V==~ on Y=4,
(2.24) %‘f =0 on Y=0,
(2.25) V=0 on Y=0
and for the particulate phase
(2.26) J,= =1 on ¥=48,
2 oH "
(2'27) p = 7‘:— on Y = H,
au, 5
(2.28) ) 0 on Y=0,
(2.29) y, =0 on Y=0

3. Velocity profiles and pressure-flow rate relationships

Two important parameters of peristaltic flow are the dimensionless pressure rise per
wavelength and the normalized time-mean volume ﬂow of the two-phase mixture. For
the rate of volume flow we need the velocities {/ and U,, in the X-direction. An analytical
integration of the momentum equations is possible by the fact that the pressure Pis only
a function of X.

Wlth Egs. (2.11) and (2.12), Eqgs. (2.5) and (2.6) may be integrated twice with respect
to ¥ using the boundary conditions (2.22), (2 24), (2.26) and (2.28). As a result we get
velocity profiles for the fluid velocity in the X-drrectlon (measured in the wave frame).

31 1 ] ( A+l j\,"_'*_l)
B0 e b g ak -
and for the particulate velocity in the X-direction

" p |lin AN+l 41
By U —f—ul [L.ﬁ”:—l (&= -9
K dx

”"(2 Tﬁ(_iz_“ n(n+2)(2n+1) ""(gﬁ__)""
( ) f(} —22n%+29n+2 dx

9*
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For the case of a Newtonian fluid (» = 1) containing spherical particles we get from Egs.
(3.1) and (3.2) parabolic velocity profiles.

Now we calculate the pressure rise per wavelength and the time-mean volume flow.
The rate of volume flow Q measured in the wave frame of reference is a constant that
varies neither with tin}\e nor with the position along the axis of the channel.

The volume flow Q is calculated as the sum of the fluid volume flow and the particu-
late volume flow.

(33) Q = QFluid + QParticle .

It is important to mhention that for the calculation of volume flow arbitrary initial concen-
tration profiles «(Y) are possible.

A A

H H
A A A

(3:4) 0= [ (1—u(M)Ud¥+ [ a(¥)0,ar.
(1} 0

For the parabolic concentration profile
(3.5) a(Y) = aoll —(Y/H)?]

the volume flow is calculated as

A

A A n A2n+l 1 dP ”"
= e e i = A
36 0 H 2n+1H RdX]
1-n A
_2(2\"(27) 7 [ n+2)@n+l)) arerel 1 dP
319 4 —22n24+29n+2 | ° £ oaxrl -

It may be noted that for a concentration profile a(];) = const = &g, the factor 2/3 in
Eq. (3.6) is replaced by the factor 1.
Now we change the system of reference. The instantaneous volume flow g is given by
the following relationship:
H

H
(3.7 i=[ (1—aM)U+D)d¥+ [ «(¥)(U,+1dY,
V] 0

because U = ##1—1 and U , = u,— 1. The interpretation of Eq. (3.7) leads to
(3.8) §=0+H.

For the peristaltic flow, the time-mean volume flow ¢ in the x-direction is a quantity of
practical interest. In our theory arbitrary wave functions H are possible. On the other
hand if we want to calculate the time average flow we must use a special function for H,
for example we use Eq. (2.21). For the time-mean flow we integrate the instantaneous
volume flow over one period. If T is the dimensionless period of the peristaltic wave, we
get for the time average flow the following relation:

7
1 A o
Tﬁ
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After normalizing the time-mean volume flow we get

(3.10) q=—= m(Q+I)
The other important parameter of a peristaltic flow is the dimensionless pressure rise per
wavelength, and for this characteristic parameter we should know the pressure gradient
in the X-direction. With Eqs. (3.10) and (3.6) we get

A no oa2metl ] gp YU
3.11) ge—1l= —H— BT H [K &X]

1-n .
22 l”’(27 [ n(n+2)(2n+1) R”“,; 1 dP
3\9 4 —2m2429n+2 | *° £ oaxr
using the parabolic concentration profile from Eq. (3.5). It may be noted that Eq. (3.11)
changes for n = 1 to

ap _
(3.12) l_r] e Ge—1+H
n=1

--]3—H3 /K+ 2 ao—g—RzH/K

and for o, = 0 (single-phase flow) Eq. (3.12) is equal to SHAPIRO’S result [3].
The pressure change over one wavelength Ap;, also called pressure rise, is the same
whether measured in moving or stationary coordinates. Ap; is given by

1 A

(3.13) Ap, = f P g

0 dX
Using Eq. (3.11) for d};/d.f we solve Eq. (3.13) numerically. Up to this point we have
not made any restriction to the values of the volume fraction of the particles, we assumed
that 0 < « < 1. However, in many flows of practical interest, the volumetric concentration
of the particles is small. Therefore, we assume now that « is small compared with unity.
By means of this assumption it is possible to calculate the velocity component in the
Y-direction because from Eq. (2.9) we obtain for o < 1

y A
(3.14) R
X

and from Egs. (2.7) and (2.8) it could be seen that ¥ = V,. With the help of Eq. (3.1) and
using the boundary conditions (2.23) and (2.25), we get for the velocities in the Y-direction

A A A . 2n+1
A A 2n+1 dH Y n Y n
315 V-V,= —. Lo i £
w19 ’ n+1 d,?IH n+1 (H) ]

— ___’_1_.__[ 1 ]l/ﬂ dH (HII"Y A 192n+1).
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4. Results and discussion

The purpose of this paper is to calculate velocity distributions of the fluid and particular
phase as well as pressure-flow rate relationships as functions of the volume flow, pressure
rise, amplitude ratio and rheological parameter of the liquid. For the calculation of the
various parameters of peristaltic flow we have taken the following quantities: ¢ = 3 cm/s,
A=8cm, p=1g/em?® a=8-10"% cm, R = 8-10"* cm, a, = 0.1. First we calculate
the pressure gradient from Eq. (3.11). For the numerical integration of Eq. (3.13) we used
a modified Simpson method given by ROMBERG [18]. Two important parameters of peri-
staltic flow are the pressure rise per wavelength 4p; and the time-mean volume flow ?1
As we see from Eqs. (3.11) and (3.13), the pressure rise is a nonlinear function of the time-
average volume flow. Figure 1 shows the relationships between the normalized pressure
rise per wavelength and the time-mean volume flow as well as the influence of the rheo-
logical parameter and the influence of the ratio of amplitude on the pressure-flow rela-
tionships. It should be noted that the pressure rise is normalized by the pressure rise
for zero time-mean flow. From Fig. 1 we see that only for n = 1, which corresponds to a

0.739 = n = 1.00
146,82 R = 100

non

. n
202,97 R

Fig. 1. Normalized pressure rise per wavelength versus dimensionless time mean flow.

Newtonian fluid containing spherical particles, we have a linear function between Ap, and 3.
In general, the volume flow rate increases with the increasing amplitude ratio e. For
example, at ¢ = 0.8 we see that with decreasing values of the flow behaviour it increases
while retaining the same pressure rise.

In Fig. 2 we see the dimensionless pressure rise per wavelength for zero time-mean
flow as a function of the amplitude ratio and the rheological parameter of the liquid.
It may be noted that for ¢ = 0 we have no peristalsis and the pressure rise tends to zero
and for ¢ = 1 we have a complete occlusion and the pressure rise tends to infinity. For
the given rheological parameter the pressure rise of a Newtonian two-phase mixture is
much less than the pressure rise of a non-Newtonian mixture while retaining the same

P

/7
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-8 n=0.56 K=20297
= —— n = 0.79 R:MB,BZ
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F1G. 2. Dimensionless pressure rise per wavelength for zero time mean flow as a function of the ratio of
amplitude.

amplitude ratio. Now we take a look at details of fluid motion. Figure 3 shows the axial
velocity profiles of the fluid velocity and the particulate velocity in the laboratory frame
of reference for an amplitude ratio of ¢ = 0.8 and a time-mean flow of g = 0.8.

We see that there is no significant difference between the fluid velocity and the particu-
late velocity for the scale we have used. A variation of the exponent » and the quantity
K causes the velocity distribution to deviate from a parabolic shape. In Fig. 4 we see the
lateral and axial fluid velocity distribution in the fixed frame for an amplitude ratio of
& = 0.8 while in Fig. 5 we see the same quantities for a ratio of amplitude of & = 0.3.
We see that the maximum and minimum values of the velocities in Fig. 4 are greater than
the corresponding values in Fig. 5. From Figs. 4 and 5 we see also that at the moving wall
we have satisfied the boundary condition. It may be noted that at the axis of symmetry
of the channel the lateral velocity is zero for all values of X/A because of symmetry.

Now we take a look at the velocity fields. Figure 6 shows the field of the fluid velocity
in the relative wave frame of reference. For the given amplitude ratio of ¢ = 0.8 we see
the interesting trapping phenomenon. This trapping phenomenon forms a pair of vortices.
We see that there are two stagnation points at the axis of symmetry. In general, trapping
is usually identified by the existence of stagnation points. It should be noted that the
vortices will not be observed in the fixed frame. Figure 7 shows the trapping phenomenon
for a Newtonian fluid and we see only small differences between the fluid velocity fields
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FiG. 3. Distribution of the axial fluid velocity and particulate velocity in the laboratory frame of reference.
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F1G. 4. Lateral and axial fluid velocity distribution in the laboratory frame.
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F1G. 5. Lateral and axial fluid velocity distribution in the laboratory frame.
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Fi1G. 8. Velocity field of the fluid velocity in the laboratory frame.
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F1G. 9. Velocity field of the fluid velocity in the laboratory frame.
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F1G. 10. Velocity field of the fluid velocity in the laboratory frame.

given by Figs. 6 and 7. Figures 8, 9 and 10 show us the velocity fields in the fixed frame for
three different values of the amplitude ratio. We see that there is no trapping phenomenon
in the laboratory frame. Figures 11 and 12 show the fluid velocity fields in the wave frame
of reference. We see that at the widest part of the channel we have a maximum of the
velocity and at the narrowest part we have a minimum of the velocity.
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0.56, 12 = 202.97 corresponds

to a 0.5); PEO solution while » = 0.79, K = 146.82 corresponds to a 0.5% Carbopol

in 10% NaOH.

It may be noted that the rheological parameter n

A
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In conclusion, we mention that this analysis is the first attempt made in literature to
understand the peristaltic motion of non-Newtonian fluids containing small rigid particles
and so further aspects and developments of these problems can be investigated.
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