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Peristaltic flow of non-Newtonian fluids containing small 
spherical particles(*) 

H. J. RATH and G. W. REESE (BREMEN) 

WE CONSIDER the two-dimensional plane peristaltic flow of an incompressible non-Newtonian 
fluid containing solid spherical particles. Furthermore it is assumed that the wavelength of the 
peristaltic wave is large compared with the channel width, and the appropriate Reynolds number 
is small compared with unity. The non-Newtonian fluid is characterized by a power law model 
which describes dilatant and pseudoplastic fluid behaviour. The inertia-free partial differential 
equation system has been solved analytically. Velocity distributions of the fluid phase and 
particulate phase as well as pressure-volume flow relationships are given. The results are com­
pared with the case of a single-phase fluid and it is seen that the various parameter have an 
influence on the velocity distributions and on the pressure-flow relationships. 

Rozwa:Zamy dwuwymiarowy, plaski przeplyw perystaltyczny nie8cisliwego plynu nienewtonow­
skiego zawieraj~cego stale c~steczki kuliste. Zalo:iono, 2:e dlugosc fali perystaltycznej jest 
du:ia w por6wnaniu z szeroko8ci~ kanalu, a odpowiednia liczba Reynoldsa jest du:io mniejsza 
od jednosci. Plyn nienewtonowski opisany jest modelem pot~gowym uwzgl~niaj~cym pseudo­
plastyczne zachowanie si~ plynu. Uklad r6wnan r6:iniczkowych c~stkowych nie uwzgl~a­
j~cy sil bezwladnosci rozwi~zano analitycznie. Podano rozklady pr~dko8ci fazy cieklej i fazy 
c~steczkowej. Wyniki por6wnano z przypadkiem plynu jednofazowego i pokazano, 2:e 
r6zne parametry maj~ wplyw na rozklady prctdkosci i na zaleznosc przeplywu od cisnienia. 

PaccMaT})HBaeM ,nayMepHoe, IIJIOCKoe rrepHCTaJibTJNecKoe Tet~eHHe Hec>f<HMaeMoH HeHbiDTO­

HOBCKOH >I<H,nKOCTH, co,nep>I<aBIIICH TBep,nbie c¢epWICCKHC tlaCTHUbi. llpeAIJOJIO>I<eHO, liTO 
,nJIHHa ·nepHCT8JibTHtleCKOH BOJIHbl .RBJI.ReTC.R 60JibiiiOH IIO cpaBHeHHlO C IIIHpHHOH KaHilJia, 

a cooTaeTcrayromee tiHCJio PeH:HoJI&,nca MHoro MeH&me t~eM e.rnnmna. HemroToHOBCKa.R >I<HA­
KoCT& OIIHCaHa CTeiiCHHOH MOACJiblO, YliHTbiBaiOmeH: IICCBAOIIJiaCTHtiCCKOe IIOBe,neHHe >I<H,n­

KOCTH. CHCTeMa AH¢¢epeHUHilJibHbiX ypaBHeHHH B t18CTHbiX IIpOH3BO,nHbiX, He yqHTbiBaiOma.R 

CHJI HHCpUHH, peiiieHa aHaJIHTHtiCCKH. llpHBCACHbl pacrrpe,neJieHH.R CKOpoCTeH >I<HAKOH <i>a3bi 
H ¢a3bl ti8CTJm. Pe3yJI&T8Tbl cpaBHCHbl CO CJiyqaeM OAH0¢83HOH >I<HAKOCTH H IIOK83aHO, 'tiTO 
pa3HbiC nap&MCTpbi HMCIOT BJIH.RHHC Ha pacnpe,neJieHH.R CKOpOCTH H Ha 3aBHCHMOCTb TC'ICHH.R 
OT ,naBJieHH.R. 

1. Introduction 

IN GENERAL, peristaltic pumping is characterized by the dynamic interaction of fluid flow 
with the movement of a flexible boundary. The dynamics of fluid transport by peristaltic 
motion of the confining walls has received careful study in the recent literature in both, 
the mechanical and physiological sciences. Peristaltic motion is one of the major mech­
anisms for fluid transport in many biological systems. Peristaltic pumping is the common 
mechanism for urine transport from kidney to bladder, food mixing and motility in the 
intestine, ejection of semen in male reproductive organs, and egg transport in female 

(*) Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mechanics, Spala, 
4-10 September, 1983. 
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fallopian tubes. Technical roller and finger pumps using viscous fluids also operate accord­
ing to this principle. 

The fluid mechanics of peristaltic pumping have been studied for several years and 
' . reviews of some of the literature are presented by JAFFRIN' and SHAPIRO [I] and RAm [2]. 

Most investigations about peristalsis refer to the human ureter [3-6]. In [7] the authors 
investigated a peristaltic flow through nonuniform channels. Most of the studies. on peri­
staltic motion assumed Newtonian fluids of constant viscosity. HUNG and BROWN [8, 9] 
carried out an extensive experimental investigation to understand the mechanics of solid 
particle transport by peristaltic motion and they compared their computational two-di­
mensional flow model with the experimental data. KAIMAL [1 0] studied the peristaltic 
pumping of suspension of rigid particles in an Newtonian-liquid in a tube of arbitrary 
wave shape. Two-phase flow analysis without peristaltic wall contractions has been studied 
extensively by many authors [11], [12], [14]. The general study of solid particles-fluid 
flow systems is of importance in many fields, for example in biological fluid flow, in sediment 
transport and in chemical processing. 

Most of all investigations on peristaltic flow are restricted to Newtonian fluids. How­
ever, RAru and DEVANATHAN [13] studied a single-phase-peristaltic flow of a non-New­
tonian fluid, considering blood as a power law fluid and they obtained the solution for 
the stream function as a power series in terms of the amplitude of deformation aild evalu­
ated the stream function and velocity components numerically. BECKER [15] studied 
a peristaltic flow of simple non-Netwonian fluids. No experimental or theoretical papers 
on the peristaltic flow of non-Netwonian two-phase mixtures have been published. On 
the other hand most of the liquids used by peristaltic pumping have non-Netwonian 
fluid behaviour. And in physiology as well ~s in chemical engineering there are a lot of 
flow problems which are connected with a peristaltic flow of non-Newtonian fluids con­
taining small spherical particles. 

The purpose of the present paper is to investigate a peristaltic flow of a non-Newtonian 
fluid containing small rigid spherical particles. The non-Newtonian fluid should be char­
acterized by a power law model which describes dilatant, pseudoplastic and also Newto­
nian fluid behaviour. For our theoretical investigations it is assumed that the wavelength 
of the peristaltic wave is large compared with the mean half width of the channel. Further­
more we assume that the appropriate Reynolds number is small compared with unity. 
It should be noted that for our model arbitrary wave shapes are possible. This study should 
be helpful in regard to both, peristaltic pumping in physiology and to the engineering 
application of pumping solid-non-Newotnian fluid mixtures by peristalsis. 

2. Mathematical formulation of the problem 

We consider the peristaltic flow of an incompressible non-Newtonian fluid with distribu­
ted small rigid particles which are neutrally buoyant. The particles themselves, however 
will be assumed to consist either of a solid material or of drops or bubbles of a fluid im­
miscible with the suspending medium. The spherical particle size will also be assumed 
throughout to be very much smaller than the width of the channel and furthermore we 
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PERISTALTIC PLOW OF NON-NEWTONIAN FLUIDS 265 

neglect the Brownian motion and the lift due to the rotation of the particles. It is cons­
idered that the length of the peristaltic wave is large compared with the channel width and 
the appropriate Reynolds number is sufficiently small for the flow to be considered iner­
tia-free. We consider a symmetric channel with flexible walls, where the shape of the 
walls is determined by the arbitrary function of the travelling peristaltic wave. We choose 
the non-Newtonian fluid of a power law model which represents dilatant, Newtonian and 
pseudoplastic fluids and we consider a two-dimensional laminar flow of the two-phase 
mixture. 

In general arbitrary wave shapes are possible, but at the moment we assume that the 
travelling waves are represented by an infinite sinusodial wave train function h(x, t) 

(2.1) h(x, t) = a +bsin[2n/ .A.(x-ct)], 

where t is the time, a is the mean half width of the channel, b is the amplitude and A. the 
wavelength of the peristaltic wave. The constant wave speed is denoted by c. The x, y-eo­
ordinates are fixed in space and so they represent the laboratory frame of reference. The 
corresponding velocity components of the fluid velocity in the x and y-direction, measured 
in the laboratory frame are u and v, and the corresponding velocities of the particulate 
phase are up and Vp. 

Now we introduce the relative wave frame of reference which moves in the x-direction 
with the constant wave speed c relative to the laboratory frame. The variables X and Y 
measured in the wave frame are defined by 

(2.2) X = x- ct, Y = y. 

The corresponding velocity components of the fluid are 

(2.3) U=u-c, V=v, 

and the components of the particulate velocity in the wave frame are defined by 

(2.4) 

The reason for introducing the wave frame is that the governing equations become sta­
tionary. 

By means of the assumptions at the beginning of this paragraph we obtain the following 
inertia-free Navier-Stokes equations in the wave frame of reference: 

(2.5) 
ap a 

0 = -(1-. ~) ax -~FDu(U- Up)+ aY TJC)It 

(2.6) 
aP 

0 = -~ BX +~FDu(U- U11), 

(2.7) 

(2.8) 

9 Arch. Mecb. Stos. or 2/84 
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and the continuity equations 

(2.9) 
a a ax [(1-cc)U]+ ay [(1-cc)V] = 0, 

(2.10) 
a a 
ax [ccUp]+ aY [ccVp] = o, 

in which F0 ,,p is the drag force of the particles in the fluid, oc is the volume fraction of the 
particles, Pis the pressure and Tx1 is the shear stress of the fluid and of course it is possible 
to introduce various rheological models which describe different non-Newtonian fluid 
behaviour. We use a simple rheological model which is called the power law fluid and it 
is given byOsTWALDE-DE WAELE [14] (see Eq. (2.11)). 

(2.11) 
I 
au j"- 1 au 

Txy =Kay aY. 

The derivative of U with respect to Y is the shear rate, n is the flow behaviour index and 
K is the consistency index which depend upon n. It is well known that for n ~ 1, this 
model represents the dilatant, Newtonian and pseudoplastic fluids, respectively.-

The drag force of a moving rigid sphere in a power law fluid is given by KA w ASE et a/. 
[16, 17] 

11-1 

(2.12) 

9 ( 27 )--y- K (U U )"_ 1 -22n2 +29n+2 
Fo, = 2 4- R"+ 1 - P n(n+2)(2n+ i)' 

11-1 

F _ _2_(~7_)2 ~(V-V)"_1 -22n
2
+29n+2 

0
•- 2 4 R"+ 1 P n(n+ 1)(2n+ 1) · 

This equation is obtained by an approximate solution of the equation of motion in the 
creeping flow regime, where R is the radius of the particles. Equation (2.12) shows that 
the drag force increases with a decrease of the flow index n. 

Now we introduce dimensionless parameters and coordinates. Three important 
describing parameters of peristaltic flow are the ratio of amplitude e, the wave number 
d and a modified Reynolds number Re. 

(2.13) 

(2.14) 

(2.15) 

£ = bfa, 

c5 = afA., 
ea"c2-ll 

Re = c5. 
K 

For n = 1 the consistency index K is equal the shear viscosity flo and so from Eq. (2.15) 
we get the appropriate Reynolds number for a Newtonian fluid. It is efficient to introduce 
the following dimensionless parameters and coordinates: 

(2.16) " U, = U,/c, U = Ufc, 

(2.17) V = V).f(ac), " 
V, = V,).j(ac), 

(2.18) X= X/A, 
A 

Y = Y/a, 
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Y = tc/J., "- K ( c )~~-• 
K--- ' 

flo a 

P = Pa 2 /(p,0 cA}, 

(2.19) 

(2.20) 

(2.21) H = h/a = 1 + esin(2ni}. 

267 

For the integration of the continuity and momentum equations we must satisfy the fol­
lowing boundary conditions. For the fluid phase we use 

" " " (2.22) U= -1 on Y= H, 
" ,.. an " " (2.23) V=- on Y= H, a'l" 

" au " (2.24) --- = 0 on Y= 0, aY 
" " (2.25) V=O on Y=O 

and for the particulate phase 
" Y= ii, (2.26) u, = -1 on 

" ,.. aH A A 

(2.27) v =- on Y= H, 
p a'l" 

au,= 0 " (2.28) ay on Y= 0, 
A " (2.29) v, = 0 on Y= 0. 

3. Velocity pl'ofiles and pressure-flow rate relationships 

Two impo>rtant parameters of peristaltic flow are the dimensionless pressure rise per 
wavelength a1nd the normalized time-mean volume flow of the two-phase mixture. For 

A A A 

the rate of vo,lume flow we need the velocities U and Up in the X-direction. An analytical 
integration of the momentum equations is possible by the fact that the pressure Pis only 
a function of X. 

With Eqs. (2.11) and (2.12), Eqs. (2.5) and (2.6) may be integrated twice with respect 
to Y using the boundary conditions (2.22), (2.24), (2.26) and (2.28). As a result we get 
velocity profiles for the fluid velocity in the X-direction (measured in the wave frame). 

(3.1) n [ 1 dP ]t'"( A"+ 1 -."+ 1) U= -1--- .,.-,.. H" -Y 11 
n+1 K dX 

and for the particulate velocity in the X-direction 

(3.2) " n [1 dP]1'"(""+1 ,..11+1) U
11 

= -1--- .,.--;;- H,.- -Y-,.-
n+1 K dX 

1-11 ~ " 
_ ( -~)

1

'" (_27_)2r1 .R(!i.)1

"[ ~n+2)(2n+ 1) ]
1

'" (!!.!;_)1

'". 
9 , 4 K -22n2 +29n+2 dX 

9* 
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268 H. J. RATH AND G. w. REESB 

For the case of a Newtonian fluid (n = 1) containing spherical particles we get from Eqs. 
(3.1) and (3.2) parabolic velocity profiles. 

Now we calculate the pressure rise per wavelength and the time-mean volume flow. 
The rate of volume flow Q measured in the wave frame of reference is a constant that 
varies neither with time nor with the position along the axis of the channel. 

The volume flow Q is calculated as the sum of the fluid volume flow and the particu­
late volume flow. 

" " " (3.3) Q = QFluld +QParticle· 

It is important .to mention that for the calculation of volume flow arbitrary initial concen­
tration profiles <X{:i) are possible. 

" " H H 

(3.4) Q = f (1-cx(Y))udY+ J cxchu,df. 
0 0 

For the parabolic concentration profile 

(3.5) 

the volume flow is calculated as 

n "2n+1[ 1 dP ]tfn 
(3.6} Q = -H- H n ,. - " 

2n+1 R dX 

1-n " 
_ ! _ (~)t/n ( -27 )211 ( n(n+2)(2n+ 1) ) ct R.": 1 H [__;_ d~ ] 1

/• 

3 9 4 -22n2 +29n+2 ° K dX 

It may be noted that for a concentration profile <X(f} = const = <Xo, the factor 2/3 in 
Eq. (3.6) is replaced by the factor 1. 

Now we change the system of reference. The instantaneous volume flow q is given by 
the following relationship: 

a ir 
(3.7) q = f {1- cx(Y})(u+ 1)dY + J cx<hcu,+ 1)dY, 

0 0 

because u = u-1 and Up = u,-1. The interpretation of Eq. (3.7) leads to 
" " " (3.8) q = Q+H. 

For the peristaltic flow, the time-mean volume flow q in the x-direction is a quantity of 
practical interest. In our theory arbitrary wave functions H are possible. On the other 
hand if we want to calculate the time average flow we must use a special function for H, 
for example we use Eq. (2.21). For the time-mean flow we integrate the instantaneous 
volume flow over one period. If T is the dimensionless period of the peristaltic wave, we 
get for the time average flow the following relation: 

" T 

(3.9) 1 f" " ij = ---;;;-- qd-c = Q+ 1. 
To 
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After normalizing the time-mean volume flow we get 

(3.10) 
- q 1 A 

q = - = - (Q+1). 
B B 

The other important parameter of a peristaltic flow is the dimensionless pressure rise per 
wavelength, and for this characteristic parameter we should know the pressure gradient 
in the X-direction. With Eqs. (3.10) and (3.6) we get 

(3. 11) 
A n A 2n+1[ 1 dP ]1/n 

qs-I = -H- --- H n --- -
2n+1 i dX 

1-n A 

- ~ (~)1/n (3_?_)211 ( _!l_(n + 2)(2n + 1) )t/n ex R~-! H [-1 dP ]1fn 
3 9 4 -22n 2 +29n+2 ° f< dX 

using the parabolic concentration profile from Eq. (3.5). It may be noted that Eq. (3.11) 
changes for n = 1 to 

(3. 12) 

and for a0 = 0 (single-phase flow) Eq. (3.12) is equal to SHAPIRo's result [3]. 
The pressure change over one wavelength L1p.t, also called pressure rise, is the same 

whether measured in moving or stationary coordinates. L1p1 is given by 

J A 

(3.13) f dP A 

LJpl = - A dX. 
0 dX 

Using Eq. (3.11) for dPfdX we solve Eq. (3.13) numerically. Up to this point we have 
not made any restriction to the values of the volume fraction of the particles, we assumed 
that 0 ~ a ~ 1. However, in many flows of practical interest, the volumetric concentration 
of the particles is small. Therefore, we assume now that a is small compared with unity. 
By means of this assumption it is possible to calculate the velocity component in the 
Y-direction because from Eq. (2.9) we obtain for a< 1 

A 

y A 

(3.14) v = - J _a~ aY 
0 ax 

and from Eqs. (2.7) and (2.8) it could be seen that V = VP. With the help of Eq;. (3.1) and 
using the boundary conditions (2.23) and (2.25), we get for the velocities in the ¥-direction 

A A 2n + 1 dH I Y n ( Y )
2

n: 
1

J (3.15) v = v = - - ---:--
, n + 1 dX fi - 2n + 1 ii 

_ --~-~ _1_ d~ dlf (J11tny_J{-1y+ . 
[ 

A 11~ A 2n 1) 
n+1 K dX dX 
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4. Results and discussion 

The purpose of this paper is to calculate velocity distributions of the fluid and particular 
phase as well as pressure-flow rate relationships as functions of the volume flow, pressure 
rise, amplitude ratio and rheological parameter of the liquid. For the calculation of the 
various parameters of peristaltic flow we have taken the following quantities: c = 3 cmfs, 
;. = 8 em, e = 1 gfcm3

, a= 8 · 10- 2 em, R = 8 · 10- 4 em, a0 = 0.1. First we calculate 
the pressure gradient from Eq. (3.11). For the numerical integration of Eq. (3.13) we used 
a modified Simpson method given by RoMBERG [18]. Two important parameters of peri­
staltic flow are the pressure rise per wavelength LJp1 and the time-mean volume flow q. 
As we see from Eqs. (3.11) and (3.13), the pressure rise is a nonlinear function of the time­
average volume flow. Figure 1 shows the relationships between the normalized pressure 
rise per wavelength and the time-mean volume flow as well as the influence of the rheo­
logical parameter and the influence of the ratio of amplitude on the pressure-flow rela­
tionships. It should be noted that the pressure rise is normalized by the pressure rise 
for zero time-mean flow. From Fig. 1 we see that only for n = 1, which corresponds to a 

-e- n = 0. 56 -M- n = 0. 79 _.,_ n = 1. 0 0 

o R = 202.97 R = 146.82 R = 1,oo 
0~------------------~----------~------------~---------, 
~ 

o.ao o.zo o.JO o.40 o.so o.so o.70 o.eo o.90 s.oo 
q-

FIO. 1. Normalized pressure rise per wavelength versus dimensionless time mean flow. 

Newtonian fluid containing spherical particles, we have a linear function between LJp1 and q. 
In general, the volume flow rate increases with the increasing amplitude ratio e. For 
example, at e = 0.8 we see that with decreasing values of the flow behaviour it increases 
while retaining the same pressure rise. 

In Fig. 2 we see the dimensionless pressure rise per wavelength for zero time-mean 
flow as a function of the amplitude ratio and the rheological parameter of the liquid. 
It may be noted that for e = 0 we have no peristalsis and the pressure rise tends to zero 
and for e = 1 we have a complete occlusion and the pressure rise tends to infinity. For 
the given rheological parameter the pressure rise of a Newtonian two-phase mixture is 
much less than the pressure rise of a non-Newtonian mixture while retaining the same 

/ 
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-e- n a 0.56 K :202,97 

- n • 0.79 K:146,82 

- n • 1.00 K:1,00 

FIG. 2. Dimensionless pressure rise per wavelength for zero time mean flow as a function of the ratio of 
amplitude. 

amplitude ratio. Now we take a look at details of fluid motion. Figure 3 shows the axial 
velocity profiles of the fluid velocity and the particulate velocity in the laboratbry frame 
of reference for an amplitude ratio of e = 0.8 and a time-mean flow of q = 0.8. 

We see that there is no significant difference between the fluid velocity and the particu­
late velocity for the scale we have used. A variation of the exponent n and the quantity 
K causes the velocity distribution to deviate from a parabolic shape. In Fig. 4 we see the 
lateral and axial fluid velocity distribution in the fixed frame for an amplitude ratio of 
e = 0.8 while in Fig. 5 we see the same quantities for a ratio of amplitude of e = 0.3. 
We see that the maximum and minimum values of the velocities in Fig. 4 are greater than 
the corresponding values in Fig. 5. From Figs. 4 and 5 we see also that at the moving wall 
we have satisfied the boundary condition. It may be noted that at the axis of symmetry 
of the channel the lateral velocity is zero for all values of X/). because of symmetry. 

Now we take a look at the velocity fields. Figure 6 shows the field of the fluid velocity 
in the relative wave frame of reference. For the given amplitude ratio of e = 0.8 we see 
the interesting trapping phenomenon. This trapping phenomenon forms a pair of vortices. 
We see that there are two stagnation points at the axis of symmetry. In general, trapping 
is usually identified by the existence of stagnation points. It should be noted that the 
vortices will not be observed in the fixed frame. Figure 7 shows the trapping phenomenon 
for a Newtonian fluid and we see only small differences between the fluid velocity fields 
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1------i ~ = 1 c 

1 n" ~6 K = 202_97 

2 n .. 0.79 K: 146,82 
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/ 

Flo. 3. Distribution of the axial fluid velocity and particulate velocity in the laboratory frame of reference. 

n = 0.56 
K 202.97 

0.8 
q 0.8 

I · v~ = 3 
co 

Flo. 4. Lateral and axial fluid velocity distribution in the laboratory frame. 
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FIG. 5. Lateral and axial fluid velocity distribution in the laboratory frame. 
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FIG. 6. Velocity field of the fluid velocity showing the trapping phenomenon in the wave frame. 
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FIG. 7. Velocity field of the fluid velocity showing the trapping phenomenon in the wave frame. 
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FIG. 8. Velocity field of the fluid velocity in the laboratory frame. 
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FIG. 9. Velocity field of the fluid velocity in the laboratory frame. 
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FIG. 10. Velocity field of the fluid velocity in the laboratory frame. 
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given by Figs. 6 and 7. Figures 8, 9 and 10 show us the velocity fields in the fixed frame for 
three different values of the amplitude ratio. We see that there is no trapping phenomenon 
in the laboratory frame. Figures 11 and 12 show the fluid velocity fields in the wave frame 
of reference. We see that at the widest part of the channel we have a maximum of the 
velocity and at the narrowest part we have a minimum of the velocity. 
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n = 1.00 
K 1. oo 

0.3 
q 0.8 

FIG. 11. Velocity field of the fluid velocity in the wave frame. 

n 1. 00 
K 1. 00 

...... 
' 0.5 .... 

' '-. q 0.8 
' ' ' ' 

FIG. 12. Velocity field of the fluid velocity in the wave frame. 

It may be noted that the rheological parameter n = 0.56, K = 202.97 corresponds 
to a 0.5% PEO solution while n = 0.79, K = 146.82 corresponds to a 0.5% Carbopol 
in 100/o NaOH. 
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In conclusion, we mention that this analysis is the first attempt made in literature to 
understand the peristaltic motion of non-Newtonian fluids containing small rigid particles 
and so further aspects and developments of these problems can be investigated. 
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