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Theories with carrier fields: multiple-interaction nonlocal
formulations

D. G.B. EDELEN (BETHLEHEM)

THis paper examines the conszquencss of ths following hypothesis: One can associate with
any physical body a finite number of functions of position and time, called carrier fields, that
describe the microscopic properties of the body and are such that appropriately defined opera-
tors on the carriers describe the macroscopic properties of the body. The analysis is pursued
in terms of two classss of problems. The first class consists of problems with a homogeneous
variational principle for the carriers whose Lagrangian function contains bounded linear opera-
tors acting on the carriers. The second class replaces the homogeneous variational principle
by an inhomogzneous one and the Lagrangian function is allowed to depend on non-linear
operators appropriate to the representation of multiple interactions. Governing equations
for the carrier ficlds are obtained for both classzs of problems; these governing equations being
general integro-differential equations on a Banach spacz of carrier functions. The equations
for thz carrier ficlds are then used in order to obtain equations for the macroscopic properties
of the physical bodies under investigation. These results allow the derivation and generaliza-
tion of the governing equations for theories reported under the general headings of multi-
polar, micropolar, simple, director, and nonlocal field theories. In addition, the results pose
the possibility of unification of these various theories and of obtaining an orderly transition
from latticz dynamics to classical continuum mechanics.

Praca ninigjsza bada skutki nastgpujacej hipotezy: Dowolnemu ciatu fizycznemu mozna przy-
porzadkowac skonczong liczbe funkcji polozenia i czasu, zwanych noénikami pél i opisujacych
mikroskopowe wlasno$ci ciala. Analiz¢ przeprowadzono na podstawie dwoch klas zagadnien.
Pierwsza klasa sklada sie z zagadnien charakteryzujacych sie¢ jednorodna zasadg wariacyjna
dla no$aikéw, ktorych funkeja Lagrange’a zawiera ograniczone operatory liniows, dziatajace
na nos$niki. W klasie drugiej jednorodna zasade wariacyjna zastapiono zasada niejednorodng,
przy czym funkcja Lagrangz’a moze zaleze¢ od operatordéw nieliniowych wlasciwych dla re-
prezzntacji oddzialywan wielokrotnych. Réwnania podstawowe dla no$nikéw pdl otrzymano
dla obydwu klas zagadnien. Przyjmuja one posta¢ ogdlnych réwnan rézniczkowo-catkowych
w przestrzeni Banacha funkeji no$nikéw. Rownania dla no$nikow pol wykorzystano nastgpnie
do otrzymania réwnan opisujacych makroskopowe wiasnosci badanych ciat fizycznych. Otrzy-
mane wyniki pozwalaja na wyprowadzenie i uogdlnienie rébwnan dla réznych teorii znanych
pod ogolnymi nazwami jako tcorie multipolarne, mikropolarne, proste, ukierunkowane oraz
Jako teoria pol nielokalnych. Ponadto wyniki te stwarzaja mozliwoéé unifikacji tych roéznych
teorii i otrzymania prawidlowego przzjscia od dynamiki siatek do klasycznej mechaniki konti-
nuum.

Hacrosmmas paGora usyuaer cneacteus cremyronteit rumoresnt: ITponspossHomy (HaHUecKoMy
TEJIy MOKHO COMOCTABMTh KOHEUHOE KOJMYecTBO (DYHKUHH MONMOMEHHSA H BpEMEHH, Hasbl-
Ba€Mble HOCHTEJISIMH I10JI6H, ¥ ONMCBLIBAIOIIME MHKPOCKONMMYECKHE CBOHCTBA Tena. AHaIH3
NpoBeJeH Ha OCHOBE ABYX KiaccoB 3amay. ITepBblIif Kiacc COCTOMT M3 3a[ay XapaKTepHay-
IOIIMXCA OJHOPOAHBIM BapHAIMOHHLIM TPHHUMIIOM [7f Hocmreneit, dynxuusa Jlarpawxa
KOTOPBIX COHEPYKHT OTpaHMYeHHbIE JMHEHHBIE ONEPaTophbl AeiiCTBYOIMEe HAa HocuTenH. Bo
BTOPOM KJIACCE OOQHOPOAHBIN BapHalHOHHBII NMPHHUMIT 3aMeHeH Heo HOPOAHBIM IPHHIMIIOM,
npuyem ¢ynxkima JlarpaHyKa MOXKET 3aBHMCETh OT HEJHHEHHBIX ONEPaTOPOB CBOHCTBEHHBIX
JUIA NPEJCTaBIeHUA MHOTOKPATHBIX B3aummopeiicTBmii. OCHOBHbIE YPAaBHEHUA [JIA HOCHTENEH
TONeH MONyYeHBI AU 00OMX KJIACCOB 3a/1ay; MPHHMMAIOT OHM B oOLIMX HHTerpo-mudde-
PEHLMANBHBIX ypaBHeHHH B 0aHaXoBOM NpOCTpaHCTBe GYHKUMI HOCHTeNeil. YpaBHeHUA
JUIA HOCHTeNeli moself MCIOJBL30BAHBI 3aTEM AJIA TONYUeHHsA YpaBHEHMif, OMHCHIBAIOLIMX
MaKpOCKOIHYECKHe CBOHCTBA Hccienyembix usnueckux Te. [TonyueHHBIE pe3ysbTaThl MO3-
BOJIAIIOT BbIBECTH M 00OOLUUTE YpaBHEHUS /1A Pa3HBLIX TEOPHI M3BECTHBIX IOJ ODIIMMK Has-
BaHHAMH, KaK MYJIBTHIO/IADHbIE, MHKDOIIOJIAPHBIE, IPOCTBIE, HAallpaBJIEHHBIE TCOPHH, 3 TAKIKE
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KHaK TeOpHA HEJIOKAIBHBIX nosneii. KpOMC 3TOr0 3TH PE3YNbTaThl CO3/AI0T BO3IMOXKHOCTE YHH-
(:JHH&IIHH 3ITHX Pa3HbIX TEOPHMII M MOJMYYEHHA NPABHILHOTO nepexona OT AHHAMHKH PeELLEeTOK
K H/IACCHYECKON MeXaHHWKe KOHTHHYYM.

1. Variational considerations and carrier fields

Tuis underlying concept that is common to all of the theories considered in this paper
can be stated loosely as follows: One can associate with any physical body a finite number
of functions of “position” and “time”, called carriers, such that all microscopic properties
of the body are determined by these carriers. There are several contexts in which we shall
use this concept, and indeed, the bare statement of the concept is either tautological or
vacuous unless it is closed within a very carefully stated physical domain of discourse.

The first thing we do is to state the necessary analytic preliminaries and common
mathematical context. The usual three-dimensional number space is denoted by E, and
the points of E; are labeled by their coordinate values {Z“} relative to a fixed Cartesian
coordinate cover (Z) of E;. Let B denote an open arcwise connected subset of E; and
let B* denote the closure of B with respect to the Euclidean topology of E;. We assume
that B* has a nonzero Euclidean volume measure [ d¥(Z) and that dB*, the boundary

B

of B*, is closed and is a regular two-surface in E; with the possible exception of a finite
number of edges and vertices. The directed surface measure of dB* is denoted by
{dS«(Z)} = {N.(Z%)dS(Z)}. Let T denote a given closed interval [to,,] of the real
line #. We define the point set D* by D* = B*x T with the naturally induced product
topology.

The symbol 2,(D*; N) is used to denote the (closed) normed linear space of N-tuples
of functions {®,(X* 1)}, A = 1, ..., N, of class C! on D* with the norm || || of uniform
convergence for each ®,(X4, ) and each first derivative 9,9, = 09,/0X%, 0,D, =
= o®,/ot.

We shall also require certain collections of linear operators. Let W(X“—Z4) and
ho(X*, Z*4), p = 1, ..., M be defined for all {X“} and all {Z} in B* and be such that

(1.1) oX4 1) =Lf>p = f W(XA=Z*hy (X4, Z) (24, 1)dV(2),
B‘

(1.2) CIOHHA, 1) = (5L = f W(ZA—X"Yh,(Z4, X4) f(ZA, t)dV(Z)

exist (and are finite) for all functions f(Z*, ¢) of class C defined on D*. It will be seen
in what follows that it is natural to refer to ¢ )} as the (variational) dual of { »,. In
general, { >, will be used to construct a “descriptor of a macroscopic property” from
a carrier function @4(Z4, ):

(1.3) (P, = f W(XA—ZAYh, (XA, ZA) D 4(ZA4, 1)dV(2Z),
3.
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while ¢ >} will occur in the governing field equations for the quantities {®,}. The func-
tion W(£*) will usually vanish outside of some small neighborhood of {4} = {0}, in
which case, {f), may be viewed as an “averaging operator” with weight function 4,( , )
over the support of W(Z*—X*).

2. Theories with a homogeneous variational principle with linear operators for the carriers

Almost every physical theory on the “microscopic™ level possesses a homogeneous(!)
variational principle. For this reason and because the homogeneous variational structure
provides a convenient basis for computation and understanding, we shall first examine
theories with a homogeneous variational principle that involves linear operators on the
carrier fields.

We assume that the carriers of the theory are an N-tuple of functions {@,(Z4, 1)}
that belong to 2,(D*; N). The physical interpretations that may be attached to these
carriers will vary from theory to theory, and, in fact, there may be no simple physical
interpretation that can be attached to the carriers in certain instances. In this respect,
the remarks of RivLIN [1] are very much to the point. It is, however, helpful to have
something definite in mind, and so we shall think of the carriers {®,(Z4, t)} as represent-
ing distributions of, say, mass, momentum, energy, etc., on the microscopic level of
a material body. With this view in mind, it is natural to introduce operations on the
carriers that will lead to the macroscopic quantities which may be associated with the
macroscopic properties of material bodies. We accordingly introduce the quantities

@1 (Bay(XA 1) = [ WXA-ZAYh (XA, Z4 D 424, 1)dV (2),
B.

where we assume that the functions W(X*—Z*) and h,(X“, Z*) are given functions whose
choice is dictated by the physics involved(?).

Physical theories with homogeneous variational principles also involve space and
time derivatives, and so we must provide for their occurrence in the theory. As far as
time derivatives are concerned, (2.1) gives

(2-2) (31 cp/l)p — Br<¢d>p

and hence there is no problem with time derivatives. For space derivatives, however,
(2.1) gives

@3 2Py = 5z (DK% 1) # (3a Dady,

except for very special choices of the functions W and k,. Hence we must make a choice
between 9,{(D,), and {3,D,),. It can be shown (see Appendix) that a variational for-
malism with the choice d,(®,), has a number of deficiencies which are not evidenced

(") A variational principle is said to be homogeneous if it is of the form 8 [L = 0, while 6 [ L =
= f T"&q,, is referred to as an inhomogeneous variational principle.

() The interested reader can easily generalize (2.1) and the resulting theory so as to include integra-
tions with respect to ¢, provided due care is exercised in order to avoid causality problems.
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with the choice {d,P,),, and hence we elect the latter. This choice is also that which
occurs in the nonlocal calculus of variations [2, 3, 4].

The variational theory assumes the existence of a Lagrangian function
(2'4) ‘L - L(XAQ r; qu(XA: f), atQA(XA» t)'! aBQA(XA’ t); <®A>l £l a!<®d>l,

COuPa)1s o3P Dw, 0:{Pyadu, {04 (DA>M)
of class C2(3) in its 4+ 5N(1 + M) arguments. This function defines an action functional
by the relation
2.5) JeNW = [ [Lavxyar.

T B*
We assume that the carrier fields @, take given values on part of the boundary of D*.
If (8D*)? denotes the part of dD* on which @4 is given, then we write

@Al(anv)‘il = ga»

where each g, is a given function on the domain (éD*){. Since the boundary of D* con-
sists of dB*x T and the body at times ¢ = ¢, and ¢ = ¢;, the above given boundary
conditions translate into

@A(XA£ I)I(a.B"]A]_' == uA(XA, Il‘)l ’(33‘)14’
(2'6) @A(XA’ ro)l(ﬂ‘}f_o = T4 (Xd)i{gn)il'tf

B4 (XA, 1) gyt = wa (X,

@97, B9Y1°

where u,,v, and w, are given functions of the indicated domains. We define (8D*)4
for each A by the requirement dD* = (dD*){ U (dD*)4, (8D*){n (éD*)3 = ¢, so that
we have

0B* = (0B*){ v (9B*)3, (IB*){n(3B%)] = ¢,
B* = (B*){.0V (BM7,0 = (B¥)1,1 U (B34,
(BH1.0n (B30 = (BH{.0 (BY31 = ¢.

The field equations and the boundary data of the theory then obtained from (2.6) and
the following requirement (variational principle):

2.7) JH{Pa+¢4} 1) = J{Pa}] (D) +o(ll {p4}I])
must hold for all {$(X*, #)} € 2,(D*; N) such that ¢ ,(X*; r)](ap,),lt = 0, where o(]| |
is with respect to the norm || || of 2,(D*; N). (The more customary statement, where

it is also required that {¢p(X*, H)}|ps,

equations and boundary conditions). Since the Lagrangian function for these theories
involves only linear operators of the carriers as arguments, namely {@,),, {Pop,
04D 4),, the resulting theories will be referred to as theories of type one.

4 =0, only gives Euler equations, not Euler
2

(®) This continuity requirement can be relaxed in many instances without significant changes in the
final results. It is assumed here primarily in the interests of simplicity and convenience.
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Since the Lagrangian function (2.4) contains the functionals {@,>,, 3P ),, (04D,
as arguments, we could use the nonlocal variational calculus [2, 3, 4] to obtain the field
equations and boundary conditions(*). It is illustrative, however, to proceed directly.

The first thing to do is to evaluate {f+u),. When (2.1) is used, we have {f+u), =
= {f),+<{u),. It then follows from (2.4) and (2.5) that (2.7) is satisfied if, and only if,

oL ar
(2.8) orff{ 70, ¢"+3(64¢,4) Oabat 55 gy b

2 -
B Z (3@ 5 {Ppt @, @ S )3<¢A>p Ko, 0, <34¢4>,)}dy(x)d,

holds for all {q),;} € 9,(D*; N) which vanish on (8D*){. Now, we have

[ ur@s, oy<f,(x4, nav(x)
Bl

= [ Jur@, nwxA-z4h,x4, Z9A24, 1) dV(Z)dv(X).

B* B*
Since the domains of the Z-wise and X-wise integrations are the same, we can interchange
their orders by standard theorems in analysis so as to obtain

@9 JUrxA <4 nadv(x)

B*

= [ [ Ur@* yW(ZA- X4k, (Z4, XOAXA, ) dV (Z)dv(X)

B* B

= [<UnxA nfxs, navx),

B*

where { ! is the variational dual of { ), that is defined by (1.2). When this result is
used to rewrite (2.8), we obtain the requirement that

@.10) O‘f”(am Z<3@>))¢A(XA 1)
*(a(a & T Z<a(a @ >)a $4(Xt)

dL oL t )
+ (a(adqi,,) + ; <m>,) daa(X ,r)} av(X)dt

must hold for all {¢,} € 2,(D*; N) which vanish on (3D*){.

(*) This is accomplished by the trivial modification in the definition of { »,:

o= [ o= [ WX ~ZYh(X*, 2 f(2, DaV(2)dr.
T B*
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Although it is not essential, since discontinuities may be accounted for by introducing
the appropriate supports for the discontinuities (this leads to the “jump conditions” on
the field variables), we shall assume that all of the terms in (2.10) are sufficiently continu-
ous that we may perform the indicated integrations by parts. We then have that

(2.11) O—If{am 2<3(¢A),, : (3(34%‘) 2<6(3 5, P)
(3(3 R 2 ( a(a,<¢d>,,)> )}¢A(X‘ ndv(X)at
% {fN‘(X)(a(a D, 2<3<3 T, >)¢A(X“ 1)dS(X)dt

* ”(3(6 @) " Z< a(a<@,,>,)>)

must hold for all {¢,} € 2,(D*; N) which vanish on (¢D*){. Now, a subset of all
{pa(X“ 1)} belonging to Z,(D*; N) consists of those {¢,(X*, 1)} which are such that

{‘\bd(x“! f)}]as- =0, {¢ A(XA! rﬂ)} =0, {¢ A(XA’ Irl)} =0.
When this set of elements of 2,(D*; N) is used in (2.11), the fundamental lemma of the
calculus of variations shows that (2.11) can hold if, and only if, {®,(X*, 7)} satisfies the
N Euler-Lagrange equations

JL dL aL
(=13 bwom “a‘(a(34¢4))"3'(a(3,¢4)

! JL 1 oL t
2’ {< 3(‘154), i m) _a‘(<m>p)}, A=1,..,N

P

dV(X)

at all points interior to B* x T. When (2.12) is then used to simplify (2.11), we have the
requirement that

@213) 0= f fN,.(X")( TR 2<a<a,‘a>,l>, P)cf;,,(){“ 1)dS(X)dt

% f {( 50,0 T Z 2e<oy a(a,@,o,) ) )q”*’(’(‘ ’)lrl‘“’("’)

must hold for all {¢ 4} € 2,(D*; N) which vanish on (éD*){. If we now consider those
elements of 9,(D*; N) which satisfy the requirement {¢,(X*, 7)}|ss+ = 0, then (2.13)

reduces to
M
oL oL ") i }“ _
et D (e ) |$4X4 01 dV(X) =0
,,[ {((a@,o 2: <a(a.<¢4>,)>p ! t
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Since ¢ 4 vanishes on (6D*){, it vanishes on (B*){, and (B*){,. Hence the fundamental
lemma of the calculus of variations yields the initial and terminal conditions

== (3(3 o) " 24 < a(, <¢>A>F) ) )L% on (B*)3,0,
(2.14)

+Y

on (B¥),

N (aca ) {sacosy a(a.<¢,,>,,) ) )

t=1y

The conditions on (B*){, and (B*){ , are given by (2.6). Finally, taking {¢4(X*, 1)} =
= {¢p4(X*)} and applying the fundamental lemma of the calculus of variations on the
three-manifold dB* x T, we obtain the boundary data

M
- oL \!
L 0 = M0 ; stz omt
The boundary data on (9B*){ is given by (2.6). The Euler-Lagrange equations, the initial
data, the terminal data and the boundary data are thus given by (2.12), (2.14), (2.15)
and (2.6), respectively.

The reader should carefully note that the Euler-Lagrange equations and data we have
just obtained are equations for the determination of the carrier fields {®,(X*, t)}. This
point is of fundamental importance in later sections, since this formulation determines
the macroscopic quantities (@ ,),,

JdL oL oL
KDay,”  0€0aPap" (9L Pa)p)

8 Puadp,  0KPady,

only, after we solve the integro-differential systems of equations (2.12), (2.14), (2.15) and
(2.6) for the carriers {®D,}.

It is quite easily seen that the Euler-Lagrange equations (2.12) may be interpreted
as local equations of balance. In fact, integrating (2.12) over an arbitrary part P of B¥,
we obtain the local balance laws

18 f { 5@y Z aasT v

t
= 2, " Z <a<¢>4>p> v

f {a(a,db,.) +t Z < a<64¢4>p p}N‘dS(X)
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However, if P is the whole body B*, then (2.15) holds and we have

2.17) d = oL

@ J\ewoy <a(a G5 ) 0

f {MA 2 <a<<m>p J“'V‘X’

fd {5(34¢'A) + 2<3<3A¢A>p p}N,(dS(X)

@B}

If (6B*){ = ¢, then the global law of balance (2.17) is quite different from the local law
(2.12). As an example, suppose that M = N = 1, @,(X%4, t) = @, and

oD\ 45xcy 9P 9P | oupye
then (2.12) gives the field equation

32'@ — l a AB BA AB BA TI
Qo 57z ‘EaXA{( i )ax—ﬂ‘ﬁ aXB> -8 axﬂ>l‘

Thus, when (1.1) and (1.2) are used with
W(XA—ZYh, (X4, Z4) = K(X4, Z4),

we have
P 1 @ B\ _BA
T “7?}(7{(“ ST

1
BX"

f (BeeK, 2+ 42K, 00} 25 Danz).

3. Theories with non-linear macroscopic operators of multiple interactions
and an inhomogeneous variational principle

The theories developed in the previous section were based upon the assumption that
the macroscopic independent variables of the Lagrangian function obtain from linear
operators

(e = f W(XA—ZA)h,(X4; ZHAZ4)dV(Z)

acting on the carrier fields and their derivatives: they are of type one. Although theories
based upon this assumption provide a structure for describing a large class of physical
phenomena, they are not adequate in all instances. We therefore consider theories of
type two which are significantly more general.
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Let each of the functions

gh(X4, PA(X4, 1), 0 Pa(X4, 1), 0 PAX?, 1); ZH, Pa(Z1, 1), 05Pa(ZE, T)
GPAZE, 1) s 25, Pa(Z5, 1), 35 DA(Z7, 1), O @1(2;,‘, 1),
a=1,...,0, p=1,..,R

be of class C? in each of its indicated arguments. For each (X4, t) in D*, we define the
functionals k% by the relations

3.1) KA 1 (@) = [ [ [ ghav(zy) ... av(z,).

These functionals correspond with the quantities { ), of the last section.
Let L(X4, t; D(X4, 1); 0pD(X4, 1); 8,P4(X4, 1); kP) be a function of class C2 in all
of its arguments and define the functional J; by

(3.2) RUPN WD = [ [ Larav(x).
T B*

In addition, we postulate the existence of given functions {¢/(X*, )} on B*x T, {T4(X4, 1)}
on (@B*)ix T, {#4X*)} on (B¥i, and {74(X*)} on (B*)3.,. (Since the data (2.6)
are assumed, it would be inconsistent to assume that 7 is given on (6B*){, etc.). These
functions are used to construct the linear functional

33 i@l = [ [0 0ax4, navxydr

T B*
+f J' TAXA, 1) A(XA 1)dSX)dt + [ TAXN XA, 1,)dV(X)
T (2893 (B34
_ [ S (XA, 10)dV(X).
(B*)2,0

The field equations and the data for the theory now obtained from the inhomogeneous
variational statement require that

(G4 J{Pa+¢4}1 (L) = JH{D A} (D) +jl{ a1 +0(l{ b4}
shall hold for all {¢,(X*, )} € 2,(D*; N) that vanish on (2D*){.

The generality of the above formulation is such that there is little purpose in pro-
ceeding directly. Accordingly, we shall make use of the results of the nonlocal variational
calculus given in [2, 3, 4, 5]. Define the operators #, by the relations

(3.5)  WAUXA,ZE, ooy 28 10 28 Zhiis 0 ZD)
=l (L 24 s 284, X2, Zhiii i Z5)s

These operators are then used to construct the extended Lagrangian function &£ by

(3.6) P L4 ZZZ[H ( k,gﬁ)dV(Z) LdV(Z,).

a=1 p:l re=1
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It may then be shown that the condition (3.4) is satisfied for all {¢4(X*, 1)} € 2,(D*; N)
that vanish on (¢D*){ if, and only if, the carrier fields {@,(X*, r)} satisfy the N nonlocal
Euler equations

. 0% AL ) 3(,,_&?1___)
3.7 q = 3B(X7, 1) 0XA\ (0, BAX", 1)) T o (9, PA(X®, 1))

at all points interior to D* = B*x T, the data (2.6), and

0%
3.3) T4 = Nax®) {Wﬁ}
on (éB%)3,
; 0%
(3.9) i {W‘F}H,:,
on (B*)él.o and,
0%
(3.10) T {WT)} } L,,
on (B*)j.;.

These field equations and boundary-initial data may be viewed to advantage in terms
of Lagrangian functions that represent multiple interactions. The reason for this is that
we may take for a typical Lagrangian function as one which assumes the form

%a(%) + [ G4,z Bzt V()
B

+ [ [ Ga(x4, 28, ZH) Dz Dz dV(Z,)dV(Z,) + ...
B-

2 f f [ G(x4, z4, 24, ZHD(ZH)DZH) P28 AV(Z,)dV(Z,)dV(Zs) + ...

and interpret the double integral as a two-point interaction, the triple integral as a three-
point interaction, etc.

We note in passing that these equations reproduce the results obtained in Sect. 2
under the identification of k) with (@%),, .... In fact, under this identification, (3.6)
yields

3.11 L =L+ + ..

G-I <a<¢u>, +xaom; >,, {sw@5y).

and (3.7) reproduces the field equations (2.12) for ¢ = 0 in (3.7). Thus, if we substitute
(3.11) into (3.7)-(3.10), we obtain the governing equations and data for the case with
linear operators governed by the inhomogeneous variational principle (3.4). There is
thus no need to redo the cases considered in Sect. 2 for inhomogeneous variational prin-
ciples.
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4. Macroscopic formulations

The formulations given in the previous sections may be referred to as microscopic,
since the field equations and data are for the determination of the (microscopic) carrier
fields {@,(X4, )} rather than macroscopic quantities such as the quantities k2, { >,
or { )}. Although such formulations give a complete system of governing equations,
there is an undesirable feature of the microscopic formulation when we attempt to use
it in posing and solving macroscopic problems. This comes about because the equations
of the microscopic formulation must be solved for the carrier fields {®@,(X%, )} and
then these fields must be used to determine the macroscopic quantities. If the carrier
fields are indeed physically measurable quantities, then the above procedure is an ac-
ceptable one although the equations which must be solved are a somewhat formidable
array of integro-differential equations. On the other hand, if the carrier fields are not
physically measurable quantities (wave functions, etc.), then we would certainly prefer
to have governing equations for macroscopic systems that involve the physical macro-
scopic variables directly; in fact, this is the preferable situation whenever we wish to
give a description of a macroscopic system.

There are three distinct avenues by which we can obtain governing equations for
macroscopic systems from the results given above. The first of these is to assume that
the carrier fields {® (X%, ¢)} are actually macroscopic variables such as mass, displace-
ment, magnetization, etc. The Euler-Lagrange field equations and the boundary and
initial conditions obtained above are then the governing nonlocal macroscopic equations
of the theory. Although this alternative is a familiar one, since it is equivalent to a for-
mulation using a classical variational principle (the only difference from classical theories
being the fact that the Lagrangian function L can now depend on integrals of the dependent
variables), we lose a certain degree of generality since we no longer have quantities which
can represent the underlying microscopic properties of material bodies.

The second alternative arises from the assumption that the basic quantities of the
macroscopic theory are taken to be a 4NM-tuple of functions {U,,(X*, 1), Usp(X4, 1)},
A=1,...,N,p=1,..,M, A=1,2,3. For the theories considered in Sect. 2, the
carrier fields {®@*(X4, )} are now considered to be arbitrary to within the constraints

(41) <¢A>p = UAP! <34@A>F = UAAP(S).

Further, since the macroscopic theory is to involve only the macroscopic variables
{Usps Ussp}, we assume that the Lagrangian function has the form

(42) L= L(X“, t; UA;M UMP: 0, UAp)

and that (6D*){ = ¢. When (4.1) and (4.2) are used in conjunction with the microscopic
equations (3.7)—(3.10) with the appropriate modifications for the special nature of the
g.s (i.e. g, = g,), the assumption of underlying carrier fields with an inhomogeneous
variational principle yields the following system of macroscopic equations of the first kind:

(%) Since {3 P>, = 3P 4>y, We have (& Py = 3P ady = & Us,.
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M
_ Y 8k i ( _ oL T)}
) qd_ﬁfkavﬂ , =200, " e )
Y‘ i
(4.4) N,‘(X”)F1 <3UM, . on @B
(4'5) jA(XA) b 2 a(a UA ) A on (:B*)I;,O’
P fe=tp
(4.6) THXY = Z <a(a, Unp) JH on (B%2.s-

Macroscopic theories of the first kind thus preserve the existence of a definite Lagrangian
function L and the functions W and h, which define the operators { »}. Furthermore,
the macroscopic Euler-Lagrange equations (4.3) are of the second order with respect
to timewise differentiation and so the data (4.5) and (4.6) are well posed.

Macroscopic formulations of the second kind can be obtained under quite different
circumstances. For formulations of this kind, the Lagrangian function, the operators
k% and the carriers {@,} are all assumed to be arbitrary to within the constraints

&

KOO0 = 5,0 1y
o0&

4.7 S44(X5, 1) = Ao (X7, 1))’
¥

PA(XE, 1) = am(a,d>,,(xﬂ, 1))'

where {R", §44, P4} is a 6N-tuple of functions of {X4, ¢} that is identified with the
macroscopic variables of the theory. With these assumptions, the requirement of con-
sistency with the microscopic equations (3.7)-(3.10) yields the following system of macro-
scopic equations of the second kind:

(4.8) gt = {R4— 3,543, pP1},

(4.9) T4 = No(X®)S*%jsp, on (3B¥)3,
(4.10) INX4) = PYiery,  on (B¥)0,
4.11) TANXY = PYoiys on (BYE,

Macroscopic theories of the second kind do not preserve the notion of a Lagrangian
function and the field equation (4.8) are only of the first order with respect to differentia-
tion with respect to time. Satisfaction of both the initial conditions (4.10) and the terminal
conditions (4.11) will not, in general, be possible. Accordingly, we must view the func-

tions J4(X*) occurring in the terminal condition (4.11) as undetermined until after
the fact.



THEORIES WITH CARRIER FIELDS: MULTIPLE-INTERACTION NONLOCAL FORMULATIONS 365

It is of interest to note that both (4.3) and (4.8) lead to equations of balance:
oL \! A}
4.12) f<a(a U@)> dV(X) = f{(m —a v (x)

- f (o) Naasto,

(4.13) -gir- f PAAV(X) = f{R“—q"}dV(X)— f S44N (X)dS(X).
B-

B* aB*

When the boundary conditions (4.4) and (4.9) are used, we then obtain

(4.14) f fon® . UA,)> av(x) = {{% :— ,,} av(X)— f TA4S(X),

4.15) 4 fP“dV(X) f {R1—q"}dV(X)— f TdS(X) (°).
aB*

We note a particular application of the macroscopic theory of the second kind which
has appeared in the recent literature. Let W(ZA—-X4) = W(||Z—-X]|) = W(E), where
W(&) is zero for & > u and W(£) > 0 for 0 < & < p, then W(Z#, X*) may be viewed
as a function that localizes the contribution of f(Z) about f(X) in

(4.16) Y= [ WZA-XAh,(Z4 XNFZ4aVE).
BU

We now take p = 1 and suppress the p occurrence in all terms. Further, if we expand
h(Z4, X4) = h(ZA—X4) in a power series in (Z4—X4), we then have

@17 Ot = D ha s (XA (BB
i=0
with
oy (Y4
(418) hB:..,B|(X ) = W Y“-XA’
(4.19) N = [w@A-xH1z4av(2),
BI

(4.20) (BB = [ W(ZA-X4) (ZB:—XP) ... (ZB—XBYf(Z4)dV(2).
B-

When (4.19), (4.20) are used in (4.8)-(4.10), we have

421) qg*= Z B, . 5 (X) {(RAYB1--Bi— § ((SA4YB1...By

i=0

— B,((PAyBi-Bry} — E 0 ahs,. p{ SAAYB-B,
=0

(°) The quantities {g4, T4} that appear in (4.12) and (4.14) are not necessarily the same as the quanti-
ties {q4, 74} in (4.13) and (4.15).

8 Arch. Mech. Stos. nr 3/76
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@.22) T4 = 3 Na(X)hs,..a(X) (S Y- Blope,
i=0
o0
(4.23) FA= N hBeB(PAYEB),_ . A=1,..,N.
i=0

The Egs. (4.21) are identical in form to what ERINGEN [6] refers to as the “master balance
equation”. Further, since the function h(X“4, Z#) is arbitrary (i.e. the explicit form of the
operator { ) need not be assumed in macroscopic theories of the second kind), we can
allow h(Z4, X4) to span a space of testing functions with respect to {Z4} for each fixed
{X*}. Under these conditions (4.21) through (4.23) can hold if, and only if, the coefficient
of each hp, p, vanishes separately. Thus, with

.
qa= Z hs,...s,g*BB,
=0

(4.24) T4= D hp,. 5T 4B,

i=0

f'd o Skﬂg...ﬂt ‘fAB;.,..BI’

i=0
and the corresponding“distributional” structure that is accordingly attached to ¢4, 74, #4,
we have

(4.25 g% = (R - 3,854 - 8,KP%), ...,

(4.26)  gABi-Bi = (RAYB1..Biy S(SB1AYBa.Bi_ § ( SAMNB...Bi — § (( PAYB:...Bi),
(4.27) FTA0 = N {84 3ps, ...,

(4'28) g’AB;,‘.Bl = NA('S'M)BlMBtIaB'!

(4.29) I o PO i

(4.30) FBi Bl = <Pﬁ>.8....3i|“_h’

where S denotes complete symmetrization with respect to the B-indices. The S{S8:4)

come from the fact that

d Fhy*) |
Oahs,. B = x4 ( TEP .. GTP |yAoya = hp, B

and that hp, p; are completely symmetric in the B’s. The Eqs. (4.25), (4.26) are identical
with those given by ERINGEN [6). However, the constitutive relations and the state variables
that must be used to augment the system (4.25)-(4.26) cannot be the classical ones, since
the carriers are now quite arbitrary, and in fact there will be no simple quantity such as
“displacements” and “displacement gradients” which could possibly serve as state variables.
This follows from the fact that “averages” of displacement gradients are no longer gradients
of macroscopic displacements; i.e.,
0aDy)p # 04Dy, s0 that 9p(0, P, # 0,{sP,) in general.

There is another obvious alternative which does not require such an arbitrary structure

for 1,(X4, X*): we simply take /,(Z*; X4) to be the set of functions {1 = hy, Z41—X4: =
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= hy,, (Z4—X1) (ZA42=X42) = By, 4,5 ooy (Z0=XA) (ZA2—XA) ... (ZAr—XA7) = By, 4.}
In this case, however, (4.8) yields only N equations of the form

(4.31) g = 2 {(RABv..BiyBy..Bi_ 3 ( SAAB...BiyBy...Bi _ ) ( PABu...BiyB...Bi)}

i

rather than separate equations for each choice of the B indices as is given in (4.25),
(4.26). Setting each collection of terms with the same B indices equal to given functions
which are such that (4.31) is satisfied would be sufficient, but is not necessary.

Particular note should be made of the results in [7], in which it is shown that the
theoretical structure obtained for linearized, nonlocal, isotropic, elastic solids can be used
to obtain an exact fit of the acoustical and optical branches of elastic shear waves within
one Brillouin zone. These results provide a simple continuum model of periodic one-
dimensional lattices and their associated dynamics, and suggests the breadth and general-
ity of nonlocal theories. The results are also highly suggestive that nonlocal theories may
provide theoretical constructs whereby an orderly transition from lattice dynamics to
classical elasticity may be effected. This is further substantiated by the results established
in [8] concerning nonlocal formulations of the Rayleigh surface wave problem and the
correlations between the theory and known experimental dispersion relations for such
surface wave phenomena.

Appendix

This appendix examines variational theories in which spatial derivatives occur in the
form 8,{®,), rather than in the form {d,®»,. We accordingly assume the existence
of a Lagrangian function

(A1) L= LXA 1; P4(X4, 1), Da(X4, 1), 3D a(X4, 1); <D gDy,
9D 01, 0P 015 s P P> O P DM 06l P oy
of class C? in its 4+ 5N(1+ M) arguments which defines the action functional
(A.2) TSN @) = | [Lavxya.
T B*

Then, for simplicity, field equations and the boundary data are obtained from the require-
ment that J[{@,+¢4}] (L) = J[{P4}] (L)+0(l|{¢4}Il,) must hold for all {p.(X*, 1)}e€
€ 2,(D*; N). On introducing the notation

L oL JL
e B e
(k=55 24 355 (+t5)
for the local Euler-Lagrange derivative [2] and using the same arguments as used in
Sects. 2 and 3, we obtain the field equations

M
(A3) 0= {elL},, + Z<{eIL}<aA>,>E

p=1

M
oL e e e
i ; f -am(zf)mz XF)hy(ZE—XF)N ((ZF)dS(Z),

éB*

B*
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the boundary conditions

L
(94D |ane

The reader should carefully note that there are no boundary conditions involving
L ; instead, these terms now occur in the field equations (A.3). If terms like
4Py

JdL
904 Pa)p)
erties of a body, then field equations of the form of (A.3) with boundary conditions
(A.4) would usually be unacceptable. It is for this reason that we based the previous

analysis on Lagrangian functions whose general form is given by (2.4).

(A.49) 0 N(XP).

or integrals of such terms are to be identified with the macroscopic prop-
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