
Archives of Mechanics • Archiwum Mechaniki Stosowanej • 28, 3, pp. 353-368, Warszawa 1976 

Theories with carrier fields: multiple-interaction nonlocal 
formulations 

D. G. B. EDELEN (BETHLEHEM) 

THis paper examines the consequences of th~ following hypothesis: One can associate with 
any physical body a finite number of functions of position and time, called c.urier fields, that 
describe the microscopic properties of the body and are such that appropriately defined opera­
tors on the c.uriers describe the macroscopic properties of the body. The analysis is pursued 
in terms of two classes of problems. The first class consists of problems with a homogeneous 
variational principle for the carriers whose Lagrangian function contains bounded linear opera­
tors acting on the carriers. The second class replaces the homogeneous variational principle 
by an inhomogeneous one and the Lagrangian function is allowed to depend on non-linear 
operators appropriate to the representation of multiple interactions. Governing equations 
for the carrier fields are obtained for both classes of problems; these governing equations being 
general integro-differential equation~ on a Banach space of carrier functions. The equations 
for the carrier fields are then used in order to obtain equations for the macroscopic properties 
of the physic1l bodies under investigltion. These results allow the derivation and generaliza­
tion of the g.)verning equations for theories reported under the general headings of multi­
polar, micropolar, simple, director, and nonlocal field theories. In addition, the results pose 
the possibility of unification of these various theories and of obtaining an orderly transition 
from lattice dynamic~ to classic1l continuum mechanics. 

Praca niniejsza bada skutki nast~puj(lcej hipotezy: Dowolnemu cialu fizycznemu moi:na przy­
porz(!dkowac skonczon(l liczb~ funkcji poloi:enia i czasu, zwanych nosnikami p6l i opisuj(!cych 
mikroskopowe wlasnosci ciala. Analiz~ przeprowadzono na podstawie dw6ch klas zagadnien. 
Pierwsza klasa sklada si~ z zag1dnien charakteryzuj(!cych si~ jednorodn(l zasad<l wariacyjn(l 
dla nohik6w, kt6rych funkcj1 L1grange'a zawiera ograniczone operatory liniowe, dzialaj(lce 
na nosniki. W klasie drugiej jednorodn<l zasad~ wariacyjnq zast(lpiono zasad(! niejednorodn(!, 
przy czym funkcja Lagrange'a moze Zllei:ec od operator6w nieliniowych wlasciwych dla re­
prezentacji oddzialywan wielokrotnych. R6wnania podstawowe dla nosnik6w p61 otrzymano 
dla obydwu klas zag1dnien. Przyjmuj(! one postac og6Inych r6wnan r6i:niczkowo-calkowych 
w prustrzeni Banacha funkcji nosnik6w. R6wnania dla nosnik6w p61 wykorzystano nast~pnie 
do otrzymania r6wnan opisuj(!cych makroskopowe wlasnosci badanych cial fizycznych. Otrzy­
mane wyniki pozwalaj(! na wyprowadzenie i uog6Inienie r6wnan dla r6i:nych teorii znanych 
pod og6Inymi nazwami jako teorie multipolarne, mikropolarne, proste, ukierunkowane oraz 
jako teoria p61 nielokalnych. Ponadto wyniki te stwarzaj(l moi:liwosc unifikacji tych r6i:nych 
teorii i otrzymania prawidlowego prz~jscia od dynamiki siatek do klasycznej mechaniki konti­
nuum. 

HacroHm;aH pa6oTa H3yqaeT cne.n;cTBHH cne.n;yrom;eH: rHIIOTe3bi: 11poH3BOJihH;OMY <Pn:3WieCKOMY 

TeJiy MO}I{J{O COIIOCTaBHTh KOJ{eqJioe KOJIHqeCTBO cPYlJ.KI..\HH ITOJIOllieJ{H:.fl H: BpeMeJ{H, H;a3bi­

BaeMbie J{OCH:TeJIHMH: IIOJieH, H: OIIHCbiBaiOIU;H:e MHKpOCKOIIHqecKn:e CBOHCTBa TeJia. A.J{aJIH3 

npoae.n;ea H;a OCHOBe .D;ByX KJiaCCOB 3a,n;aq, 11epBbiH KJiaCC COCTOHT H3 3a,n;aq xapaKTepn:3y­

IOIU;H:XCH O.D;HOpO.D;HbiM BapHaQHOJ{J{biM npHH;QHllOM .D;JI.fl J{OCHTeJieif, cPJH;KI..\H.fl Jlarpaama 

KOTOpbiX co.n;epmHT orpaaHqeH;Hbie JIHHeHHbie onepaTopbi .n;eH:crayro:m;He aa aocHTeJIH. Bo 

BTOpOM KJiacce O,ll;H;OpO,!J;J{biH BapHai..\HOJ{J{biH npHH;QHn 3aMeH;eH H;eO.D;H;OpO.D;J{biM npHHQHnOM, 

npHqeM cPJH;KI..\H.fl Jlarpal{}l(a MO}I(eT 3aBHCeTh OT H;eJIHJ{eHHbiX orrepaTOpOB CBOHCTBeJ{J{biX 

.D;JIH rrpe.n;craBJieHHH MH;oroKpaTH;biX B3aHMo.n;eikTBHH. OcaoBH;bie ypaaaeH;HH ,n;JIH aocHTeJieil 

llOJieH nonyqeJ{bi .D;JI.fl o60HX KJiaCCOB 3a,n;aq; npHHHMaiOT OJ{H BH.D; o6:m;HX HH;TerpO-.D;HcPcPe­

peH;QHaJihJ{biX ypaaaeaHH: B 6aaaxoBOM npocrpaacrae <PyaKQHH HOCHTeJieH:. YpaaaeH;HH 

.D;JI.fl J{OCHTeJieH llOJieH HCIIOJib30BaHbi 3aTeM ,!J;JI.fl llOJiyqeH;H.fl ypaBH;el{loili, OIIHCbiBaiO:IU;HX 

MaKpocKonHqecKHe caoH:craa HCCJie.n;yeMbiX cPH3HqecKHX Ten. ITonyqeaHhie pe3yJibTaThi no3-

BOJIHIOT BbiBeCTH H o6o6:m;HTh ypaBHeHH.fl .D;JI.fl pa3H;biX TeOpHH H3BeCTH;biX no.n; o6:m;HMH H;a3-

BaHHHMH, KaK MYJI:bTHnOJIHpH;bie, MHKpOllOJIHpHbie, npOCTbie, aarrpaBJieaHbie TeOpHH, a TaiOKe 
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354 D. G. B. EDELEN 

KaK Teopu:H :aeJIOWUihHhiX noJieii. KpoMe 3Toro 3TH pe3yJI&TaTbi C03,ll;aiOT B03MO>KHocr& y:au:­
Q>u:Kauu:u: 3THX pa3HbiX Teopu:H u: no~eHHH npaaHJib:aoro nepexo,ll;a oT .ll;H:aaMn:KH peweToK 
K KJiacCHqeCKOH Mexa:au:Ke KO:aTH:ayyM. 

1. Variational considerations and carrier fields 

THIS underlying concept that is common to all of the theories considered in this paper 
can be stated loosely as follows: One can associate with any physical body a finite number 
of functions of "position" and "time", called carriers, such that all microscopic properties 
of the body are determined by these carriers. There are several contexts in which we shall 
use this concept, and indeed, the bare statement of the concept is either tautological or 
vacuous unless it is closed within a very carefully stated physical domain of discourse. 

The first thing we do is to state the necessary analytic preliminaries and common 
mathematical context. The usual three-dimensional number space is denoted by E3 and 
the points of E3 are labeled by their coordinate values {ZA} relative to a fixed Cartesian 
coordinate cover (Z) of E3 • Let B denote an open arcwise connected subset of E3 and 
let B* denote the closure of B with respect to the Euclidean topology of E3 • We assume 
that B* has a nonzero Euclidean volume measure J dV(Z) and that oB*, the boundary 

B* 

of B*, is closed and is a regular two-surface in £ 3 with the possible exception of a finite 
number of edges and vertices. The directed surface measure of oB* is denoted by 
{dSA(Z)} ~ {NA(Z~dS(Z)}. Let T denote a given closed interval [t0 , 11] of the real 
line&/. We define the point set D* by D* = B* x T with the naturally induced product 
topology. 

The symbol !7)1 (D*; N) is used to denote the (closed) normed linear space of N-tuples 
of functions { q> A(Xk, t) }, A = 1, ... , N, of class C1 on D* with the norm 11 11 of uniform 
convergence for each q>A(XA, t) and each first derivative oAq>A = oq>AjiJXA, or(/> A= 
= aq>Afot. 

We shall also require certain collections of linear operators. Let W(XA-ZA) and 
hp(X·4, ZA), p = 1, ... ,M be defined for all {XA} and all {ZA} in B* and be such that 

(1.1) <f>p(XA, t) = (/)p = f W(XA-ZA)hp(XA, ZA)j(ZA, t)dV(Z), 
B* 

(1.2) (f);(XA, t) = <!>~ = f W(ZA-XA)hp(ZA, XA)f(ZA, t)dV(Z) 
B* 

exist (and are finite) for all functions f(ZA, t) of class C defined on D*. It will be seen 
in what follows that it is natural to refer to ( ); as the (variational) dual of ( )p. In 
general, ( )p will be used to construct a "descriptor of a macroscopic property" from 
a carrier function q> A(ZA, t): 

(1.3) <q>A>p = f W(XA-zA)hp(XA, zA) $A(zA, t)dV(Z), 
B* 

http://rcin.org.pl
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while ( >: will occur in the governing field equations for the quantities { 4> A}· The func­
tion W(eA) will usually vanish outside of some small neighborhood of {eA} = {0}, in 
which case, (/)p may be viewed as an "averaging operator" with weight function hp( , ) 
over the support of W(ZA-XA). 

2. Theories with a homogeneous variational principle with linear operators for the carriers 

Almost every physical theory on the "microscopic" level possesses a homogeneous(!) 
variational principle. For this reason and because the homogeneous variational structure 
provides a convenient basis for computation and understanding, we shall first examine 
theories with a homogeneous variational principle that involves linear operators on the 
carrier fields. 

We assume that the carriers of the theory are an N-tuple of functions { (/) A(ZA, t)} 
that belong to !01 (D*; N). The physical interpretations that may be attached to these 
carriers will vary from theory to theory, and, in fact, there may be no simple physical 
interpretation that can be attached to the carriers in certain instances. In this respect, 
the remarks of RIVLIN [1] are very much to the point. It is, however, helpful to have 
something definite in mind, and so we shall think of the carriers { (/) A(ZA, t)} as represent­
ing distributions of, say, mass, momentum, energy, etc., on the microscopic level of 
a material body. With this view in mind, it is natural to introduce operations on the 
carriers that will lead to the macroscopic quantities which may be associated with the 
macroscopic properties of material bodies. We accordingly introduce the quantities 

(2.1) (4>A)p(XA, t) = J W(XA-ZA)hp(XA, ZA)$A(ZA, t)dV(Z), 
B* 

where we assume that the functions W(XA-ZA) and hp(XA, ZA) are given functions whose 
choice is dictated by the physics involved(2). 

Physical theories with homogeneous variational principles also involve space and 
time derivatives, and so we must provide for their occurrence in the theory. As far as 
time derivatives are concerned, (2.1) gives 

(2.2) 

and hence there is no problem with time derivatives. For space derivatives, however, 
(2.1) gives 

(2.3) OA($A)p := · 0~A ($A)p(X8
, !) # (OA (/)A)p, 

except for very special choices of the functions W and hP. Hence we must make a choice 
between oA($A)p and (oA4>A)p. It can be shown (see Appendix) that a variational for­
malism with the choice oA($A)p has a number of deficiencies which are not evidenced 

e) A variational principle is said to be homogeneous if it is of the form of L = 0, while of L = 
= J T~' OrJ,., is referred to as an inhomogeneous variational principle. 

(2) The interested reader can easily generalize (2.1) and the resulting theory so as to include integra­
tions with respect to t, provided due care is exercised in order to avoid causality problems. 
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with the choice (oAf/>A.)p, and hence we elect the latter. This choice is also that which 
occurs in the nonlocal calculus of variations [2, 3, 4]. 

The variational theory assumes the existence of a Lagrangian function 

(2.4) L = L(XA, t; f/> A (XA, t), atf!> A(xA, t), aBf!> A(xA, t); <fl> A>1, at<fl> A>1, 

<a .. fl>A)1; ... ; <fl>A)M, at<fl>A)M, <oAfl>A>M) 

of class C2 e) in its 4 + 5N(l +M) arguments. This function defines an action functional 
by the relation 

(2.5) J[{f/>A}](L) = f f LdV(X)dt. 
T B* 

We assume that the carrier fields f/> A take given values on part of the boundary of D*. 
If (oD*)1 denotes the part of oD* on which f!>A is given, then we write 

f/> Al(oD*)1 = gA, 

where each gA is a given function on the domain (oD*)1. Since the boundary of D* con­
sists of oB* X T and the body at times t = to and t = t1' the above given boundary 
conditions translate into 

(2.6) 

where uA, vA and wA are given functions of the indicated domains. We define (oD*)1 
for each A by the requirement oD* = (oD*)1 u (8D*)1, (oD*)1 n (8D*)1 = cp, so that 
we have 

oB* = (8B*)1 u (8B*)1, (8B*)1 11 (8B*)1 = cp, 

B* .= (B*)1,o u (B*)1.o = (B*)1. 1 u (B*)1.1, 

(B*)1.o n (B*)1.o = (B*)1. 2 11 (B*)1,; = cp. 

The field equations and the boundary data of the theory then obtained from (2.6) and 
the following requirement (variational principle): 

(2.7) 

must hold for all {cfJA(XA, t)} E P}1(D*; N) such that cpA(XA; t)l(oD*)1 = 0, where o(ll ID 
is with respect to the norm 11 11 of P} 1 (D*; N). (The more customary statement, where 
it is also required that {cfJA(XA, t)}l "D*A = 0, only gives Euler equations, not Euler 

(u )2 

equations and boundary conditions). Since the Lagrangian function for these theories 
involves only linear operators of the carriers as arguments, namely ( f/> A) P, ot( f/> A) P, 

( 8 A f/> A) P, the resulting theories will be referred to as theories of type one. 

(3) This continuity requirement can be relaxed in many instances without significant changes in the 
final results. It is assumed here primarily in the interests of simplicity and convenience. 
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Since the Lagrangian function (2.4) contains the functionals <~A> p' Or(~ A> p' <a A~ A> p 
as arguments, we could use the nonlocal variational calculus [2, 3, 4] to obtain the field 
equations and boundary conditions(4

). It is illustrative, however, to proceed directly. 
The first thing to do is to evaluate (f+u)p. When (2.1) is used, we have (f+u)P = 

= (f)P +(u)P. It then follows from (2.4) and (2.5) that (2.7) is satisfied if, and only if, 

I UP(XA, t) <f>p(XA, t)dV(X) 
B* 

= J f UP(XA, t)W(XA-zA)hp(XA, zA)J(zA, t)dV(Z)dV(X). 
B* B* 

Since the domains of the Z-wise and X-wise integrations are the same, we can interchange 
their orders by standard theorems in analysis so as to obtain 

(2.9) f UP(XA, t) <J>p(XA., t)dV(X) 
B• 

= f f UP(ZA, t)W(ZA-XA)hp(ZA, XA)f(XA, t)dV(Z)dV(X) 
B* B* 

= f < UP>;<xA, t)f(XA, t)dV(X), 
B* 

where ( ) ; is the variational dual of < ) P that is defined by (1.2). When this result is 
used to rewrite (2.8), we obtain the requirement that 

M 

+ (a(~~ <PAl + £; <a(a,%,A)) a,,/JA<XA t,) 
M 

+ (a(a~~A) + J; <a(a~;A)p >}At/JA(XA, t)}dV(X)dt 

must hold for all {f/>A} E EJ)1(D*; N) which vanish on (oD*)1. 

(
4

) This is accomplished by the trivial modification in the definition of < ) p: 

J r A A A A 
<f >p == ~(t-•) . W(X -z )hp(X , z ) f(Z, •)dV(Z)d•. 

T B* 
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Although it is not essential, since discontinuities may be accounted for by introducing 
the appropriate supports for the discontinuities (this leads to the "jump conditions" on 
the field variables), we shall assume that all of the terms in (2.10) are sufficiently continu­
ous that we may perform the indicated integrations by parts. We then have that 

M M 

0 _ f f{Y!:_ + ~< aL )t -aA( aL + ~( aL )t) 
- (}(})A LJ (}((}) A)p p 0(0 A (j) A) L.J 0(0 A (j) A)p p 

T B* p=l p=l 

(2.11) 

M 

+ JJ NA(X)(a(:A~Al + J; <a<a~~A>,:>}/>A(XA, l)dS(X}dl 

M 

+ J{(a(:,~,J + J;<a(a,~~A),)>]<t>AW,t)}l::dV(X) 
must hold for all {4>A} E Pl1 (D*; N) which vanish on (oD*)1. Now, a subset of all 
{4>A(XA,t)} belonging to Pl1 (D*;N) consists of those {4>A(XA,t)} which are such that 

{cj>A(XA, t)}laB• = 0, {cj>A(XA, to)} = 0, {cju(XA, t1)} = 0 . 

When this set of elements of Pl 1 (D*; N) is used in (2.11 ), the fundamental lemma of the 
calculus of variations shows that (2.11) can hold if, and only if, {(})A(XA, t)} satisfies the 
N Euler-Lagrange equations 

(2.12) O= a~ -aA(a(:AL<PJ-a,(a(%,~.J) 
M 

+~{<a<~>.>: -aA(a<a~~A>/ -a,(( a(a,~~A>,l >]}. A= I, ····N 
P=l 

at all points interior to B* x T. When (2.12) is then used to simplify (2.11), we have the 
requirement that 

(2.13) o = j J NA(x")(a<:A~.J + ~ <a<a~~A)}A<XA, 1)dS(X)d1 

f {( aL ~ ( aL t} )1'1 

+ B' a(a,tli,J + f:t a(a,(tPA),) >, </>A(XA, 1) l,,dV(X) 

must hold for all {cj>A} e Pl1 (D*;N) which vanish on (oD*)1. If we now consider those 
elements of Pl1 (D*;N) which satisfy the requirement {4>A(XA,t)}laB• = 0, then (2.13) 
reduces to 

J{( aL ~ aL t) }'1 

B' (a,tli,J + f:; < a(a,(tPA)p) >, <f>A(XA, 1) '• dV(X) = 0. 
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Since 4> A vanishes on (oD*)1, it vanishes on (B*)1, 0 and (B*)1, 1 . Hence the fundamental 
lemma of the calculus of variations yields the initial and terminal conditions 

on (B*)1.o, 

(2.14) 

on (B*)1, 1 . 

The conditions on (B*)1,0 and (B*)1. 1 are given by (2.6). Finally, taking {<PA(XA, t)} = 
= {<PA(XA)} and applying the fundamental lemma of the calculus of variations on the 
three-manifold oB* X T, we obtain the boundary data 

(2.15) 

The boundary data on (oB*)1 is given by (2.6). The Euler-Lagrange equations, the initial 
data, the terminal data and the boundary data are thus given by (2.12), (2.14), (2.15) 
and (2.6), respectively. 

The reader should carefully note that the Euler-Lagrange equations and data we have 
just obtained are equations for the determination of the carrier fields { (P A(XA, t) }. This 
point is of fundamental importance in later sections, since this formulation determines 
the macroscopic quantities ( (P A) P, 

oL 
iJ((PA)/ 

oL oL 
o(oA(PA)p' o(o,((PA)p) 

only, after we solve the integro-differential systems of equations (2.12), (2.14), (2.15) and 
(2.6) for the carriers {(PA}· 

It is quite easily seen that the Euler-Lagrange equations (2.12) may be interpreted 
as local equations of balance. In fact, integrating (2.12) over an arbitrary part P of B*, 
we obtain the local balance laws 

M 

f
. {aL ,., ( oL )t\ 

= P (J(PA + f:t o((PA)~ PfdV(X) 
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However, if P is the whole body B*, then (2.15) holds and we have 

M 

{a(~Lr/)_J +:?. <a(O~~A))]NAdS(X). 
If (aB*)1 = <f>, then the global law of balance (2.17) is quite different from the local law 
(2.12). As an example, suppose that M = N = 1, $ 1 (XA, t) = $, and 

( 
aq> ')

2 
AB( C) aq> aq> RAB C aq> < aq> ) 

2L = (!o Tt -a X -aXA ()XB +p (X) ()XA -()XB 1' 

then (2.12) gives the field equation 

()lq) 1 (} { AB BA aq> AB< aq> ) < BA aq> >t' 
eoai2 = 2 axA (a +a )axB- f1 axB 1- f1 axB d' 

Thus, when (1.1) and (1.2) are used with 

W(XA-zA)h 1 (XA, zA) = K(XA, zA), 

we have 

alq) 1 a { AB BA aq> } 
(!o7}j2 = 2 aXA (a +a ) aX8 

1 a J {RAB RBA( ( )} a(f>(Z, t)d ( ) - 2 ()XA p (X)K(X, Z)+p Z)K Z, X az8 - V Z . 
B 

3. Theories with non-linear macroscopic operators of multiple interactions 
and an inhomogeneous variational principle 

The theories developed in the previous section were based upon the assumption that 
the macroscopic independent variables of the Lagrangian function obtain from linear 
operators 

<J>p = J W(XA-zA)ho(XA; zA)f(ZA)dV(Z) 
B* 

acting on the carrier fields and their derivatives: they are of type one. Although theories 
based upon this assumption provide a structure for describing a large class of physical 
phenomena, they are not adequate in all instances. We therefore consider theories of 
type two which are significantly more general. 
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Let each of the functions 

g!(XA, ([) A(XA, t), aB([) A(XA, t), at([) A(XA, t); zt, ([) A(Z1, t), oB([) A(zt, T), 

[}t([)A(Zf, t); ... ; Zff, (/)A(Zff, t), [}B([)A(Zff, t), o,<J>A(Zff, t)), 

a=l, ... ,Q, p .=I, ... ,R 

be of class C 2 in each of its indicated arguments. For each (X", t) in D*, we define the 
functionals k~ by the relations 

(3.1) k!(XA, t; {<P A}) = J f J g!dV(Zl) ... dV(Zp). 
B* 

These functionals correspond with the quantities < )p of the last section. 
Let L(XA, t; <PA(XA, t); oB<PA(XA, t); o,<PA(XA, t); k!) be a function of class C2 in all 

of its arguments and define the functional JR by 

(3.2) JR[{<PA}] (L) = J f LdtdV(X). 
T B* 

In addition, we postulate the existence of given functions {qA(XA, t)} on B* x T, {TA(XA, t)} 
on (oB*)1x T, {JA(XA)} on (B*)1, 0 and {ffA(XA)} on (B*)1, 1 • (Since the data (2.6) 
are assumed, it would be inconsistent to assume that TA is given on (oB*)1, etc.). These 
functions are used to construct the linear functional 

(3.3) j[{<PA}] = J f qA(XA, t)cpA(XA, t)dV(X)dt 
T B* 

+ f f TA(XA, t)c/JA(XA, t)dS(X)dt + f ,rA(XA)cJ>A(XA, tl)dV(X) 

T ( oB*)1 (8•)1.1 

r JA(XA) c/JA(XA, fo)dV(X). 
(B~h.o 

The field equations and the data for the theory now obtained from the inhomogeneous 
variational statement require that 

(3.4) 

shall hold for all {4>A(XA,t)}E~1 (D*;N) that vanish on (oD*)1. 

The generality of the above formulation is such that there is little purpose in pro­
ceeding directly. Accordingly, we shall make use of the results of the nonlocal variational 
calculus given in [2, 3, 4, 5]. Define the operators Yfr by the relations 

(3.5) Yfr(U(XA, Zf, ... , Z~-u Z~, Z~+l' ... , Zff)) 

= u (Z~, zt, ... , z~-1, xA, z~+l' ... , z:). 

These operators are then used to construct the extended Lagrangian function fR by 

Q R P 

(3.6) fL' ""' L + .2; .2; .2; f f f .Jt"' Ut! g!) dV(Z ,) ... dV(Z,). 
a=l p=l r=l B* 
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It may then be shown that the condition (3.4).is satisfied for all {4>A(XA, t)} E !7fi 1 (D*;N) 
that vanish on (oD*)1 if, and only if, the carrier fields {(J>A(XA, t)} satisfy theN nonlocal 
Euler equations 

at all points interior to D* = B* x T, the data (2.6), and 

(3.8) T"' = NA(X"){ O(OA~A~x•, I))} 
on (oB*)1, 

(3.9) 

on (B*)1.o and, 

(3.10) 

on (B*)1.t. 

These field equations and boundary-initial data may be viewed to advantage in terms 
of Lagrangian functions that represent multiple interactions. The reason for this is that 
we may take for a typical Lagrangian function as one which assumes the form 

~a ( 00~ r + 1 G, (X•', Zf)<P(Zf)dV{Z,) 

+ f f G2(XA, Zt, Z1)(J)(Zt)(J>(Zt)dV(Zt)dV(Z2)+ ... 
B• 

+ f f f G3(XA, Zt, Zt, Zt)(J>(Zt)(J>(Zt)(J>(Z~)dV(Zt)dV(Z2)dV(Z3)+ ... 
B• 

and interpret the double integral as a two-point interaction, the triple integral as a three­
point interaction, etc. 

We note in passing that these equations reproduce the results obtained in Sect. 2 
under the identification of k! with ((/}A)p, .... In fact, under this identification, (3.6) 
yields 

(3.1l) !l' = L+ < oL )t + < oL >t + < oL >t' 
o((J)A)p p o(oA(/)A)p p o(o,((J>A)p) " 

and (3.7) reproduces the field equations (2.12) for qA = 0 in (3.7). Thus, if we substitute 
(3.11) into (3.7)-(3.10), we obtain the governing equations and data for the case with 
linear operators governed by the inhomogeneous variational principle (3.4). There is 
thus no need to redo the cases considered in Sect. 2 for inhomogeneous variational prin­
ciples. 
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4. Macroscopic formulations 

The formulations given in the previous sections may be referred to as microscopic, 
since the field equations and data are for the determination of the (microscopic) carrier 
fields { (/) A(XA, t)} rather than macroscopic quantities such as the quantities k~, ( )P 
or ( )~. Although such formulations give a complete system of governing equations, 
there is an undesirable feature of the microscopic formulation when we attempt to use 
it in posing and solving macroscopic problems. This comes about because the equations 
of the microscopic formulation must be solved for the carrier fields { q> A(XA, t)} and 
then these fields must be used to determine the macroscopic quantities. If the carrier 
fields are indeed physically measurable quantities, then the above procedure is an ac­
ceptable one although the equations which must be solved are a somewhat formidable 
array of integro-differential equations. On the other hand, if the carrier fields are not 
physically measurable quantities (wave functions, etc.), then we would certainly prefer 
to have governing equations for macroscopic systems that involve the physical macro­
scopic variables directly; in fact, this is the preferable situation whenever we wish to 
give a description of a macroscopic system. 

There are three distinct avenues by which we can obtain governing equations for 
macroscopic systems from the results given above. The first of these is to assume that 
the carrier fields {(J} A(XA, t)} are actually macroscopic variables such as mass, displace­
ment, magnetization, etc. The Euler-Lagrange field equations and the boundary and 
initial conditions obtained above are then the governing nonlocal macroscopic equations 
of the theory. Although this alternative is a familiar one, since it is equivalent to a for­
mulation using a classical variational principle (the only difference from classical theories 
being the fact that the Lagrangian function L can now depend on integrals of the dependent 
variables), we lose a certain degree of generality since we no longer have quantities which 
can represent the underlying microscopic properties of material bodies. 

The second alternative arises from the assumption that the basic quantities of the 
macroscopic theory are taken to be a 4NM-tuple of functions { UAp(XA, t), UA.Ap(XA, t) }, 
A = I, ... , N, p = I, ... , M, A = I, 2, 3. For the theories considered in Sect. 2, the 
carrier fields {(J)A(XA, t)} are now considered to be arbitrary to within the constraints 

(4.1) 

Further, since the macroscopic theory is to involve only the macroscopic variables 
{ U Ap, U AAp}, we assume that the Lagrangian function has the form 

(4.2) 

and that (oD*)1 = <f>. When (4.1) and (4.2) are used in conjunction with the microscopic 
equations (3.7)-(3.IO) with the appropriate modifications for the special nature of the 
g~s (i.e. ga = g~), the assumption of underlying carrier fields with an inhomogeneous 
variational principle yields the following system of macroscopic equations of the first kind: 
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(4.4) on (oB*)1, 

(4.5) on (B*)1.o, 

(4.6) on (B*)1, 1 • 

Macroscopic theories of the first kind thus preserve the existence of a definite Lagrangian 
function L and the functions Wand hp which define the operators ( >t. Furthermore, 
the macroscopic Euler-Lagrange equations (4.3) are of the second order with respect 
to timewise differentiation and so the data (4.5) and (4.6) are well posed. 

Macroscopic formulations of the second kind can be obtained under quite different 
circumstances. For formulations of this kind, the Lagrangian function, the operators 
k~ and the carriers { 4> A} are all assumed to be arbitrary to within the constraints 

A( B ().fi' 
R X 't) = o(4>A(XA, t)) ' 

(4.7) sAA( B ) o!l' 
x '

1 = o(oA4>A(X8 , t))' 

A( B ) o.fi' 
P x ' 1 

= o(ot4>A(X8 , t))' 

where {RA, SAA, PA} is a 6N-tuple of functions of {XA, t} that is identified with the 
macroscopic variables of the theory. With these assumptions, the requirement of con­
sistency with the microscopic equations (3.7)-(3.10) yields the following system of macro­
scopic equations of the second kind: 

(4.8) qA = {RA-oASAA_(JtpA}, 

(4.9) TA = NA(X8 )SAAiaB•, on (oB*)1, 

(4.10) JA(XA) = pAit=tp on (B*)1.o, 

(4.11) g-A(XA) = pAit=tp on (B*)1.1· 

Macroscopic theories of the second kind do not preserve the notion of a Lagrangian 
function and the field equation ( 4.8) are only of the first order with respect to differentia­
tion with respect to time. Satisfaction of both the initial conditions (4.10) and the terminal 
conditions (4.11) will not, in general, be possible. Accordingly, we must view the func­
tions ffA(XA) occurring in the terminal condition (4.11) as undetermined until after 
the fact. 
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It is of interest to note that both (4.3) and (4.8) lead to equations of balance: 

(4.12) !r 1 <a(a~tA): dV(X) = j {<a~/ -q+V(X) 

- J < a~L ) t NA(X)dS(X), 
aB• AAp p 

(4.13) :t f pAdV(X) = f {RA-qA}dV(X)- f SAAN.._(X)dS(X). 
B* B* aB• 

When the boundary conditions (4.4) and (4.9) are used, we then obtain 

(4.14) ;t 1 <a(O~tAp)>: dV(X) = 1 {< 0°~• >: -q+V(X)- .[ TAdS(X), 

(4.15) :t f pAdV(X) = f {RA-qA}dV(X)- f TAdS(X) (6
). 

P B* M• 

We note a particular application of the macroscopic theory of the second kind which 
has appeared in the recent literature. Let W(ZA-XA) = W(IIZ-XID = W(;), where 
W(;) is zero for ; > p, and W(;) > 0 for 0 ~; < p,, then W(ZA, XA) may be viewed 
as a function that localizes the contribution of f(Z) about f(X) in 

(4.16) <!>~ = J wcz·•-x .. )hp(Z·\ xA)f(Z .. )dV(;). 
B* 

We now take p = 1 and suppress the p occurrence in all terms. Further, if we expand 
h(Z..._, XA) = h(ZA-XA) in a power series in (ZA-XA), we then have 

(4.17) 

with 

00 

(/) t = .2; hB~ ... Bt(XA) (f)B~ ... Bt 
i=O 

ajh(YA) ] 
(4.18) hB~ ... BtCXA) = oYBl ... oYBt yA=xA' 

(4.19) (/)0 = J W(ZA-XA)f(ZA)dV(Z), 
B* 

(4.20) (f)81 =Bt = J W(ZA-XA) (ZB1-XB1) ... (ZBt_XBt)f(ZA)dV(Z). 
B* 

When (4.19), {4.20) are used in (4.8)-(4.10), we have 
00 

(4.21) qA = .2; h1l1 ... Bt(X) {(RA)Bt ... Bt-oA(SAA)B~ ... Bt 
i=O 

00 

-Or( (PA)Bl ... Bt)}- .2; a AhEl ... Bt(SAA)Bl ... IJt, 
i=O 

(
6

) The quantities {qA, TA} that appear in (4.12) and (4.14) are not necessarily the same as the quanti­
ties {qA, TA} in (4.13) and (4.15). 
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(4.22) 

(4.23) 

()J 

f!A = }; NA(X)hB1 ... ntCX) (SAA)B1 ... B1laB•, 
i=O 

00 

..rA - ~ hBl ···BI<PA)B1···BII .11 - I N 
..:r - .L..J I= to' - ' • ··' • 

i=O 

D. G. B. EDELEN 

The Eqs. (4.2I) are identical in form to what ERINGEN [6] refers to as the "master balance 
equation". Further, since the function h(XA, ZA) is arbitrary (i.e. the explicit form of the 
operator < ) need not be assumed in macroscopic theories of the second kind), we can 
allow h(ZA, XA) to span a space of testing functions with respect to {ZA} for each fixed 
{XA}. Under these conditions (4.2I) through (4.23) can hold if, and only if, the coefficient 
of each hB1 ••• B1 vanishes separately. Thus, with 

(4.24) 

00 

qA = }; hB1 ... BiqAB1 ... BI, 
i=O 

00 

f!A = ~ hB B f!ABt ... Bt ,L.; 1··· I ' 
i=O 

00 

trA = ~ hB B JAB1 ... B1 
..T ,L.; 1· · · I ' 

1=0 

and the corresponding"distributional" structure that is accordingly attached to qA, f7A, JA, 

we have 

(4.25) qAO = (RA)O-iJA(SAA)O-iJ,(<PA)o), ... , 

(4.26) qAB1···Bi = <RA)B1 ... B; + S(SBtA)Bz ... B;_ jJ A<SAA)B1···Bi- o,(<PA)Bt ... Bi), 

(4.27) f/Ao = N,..(SAA)olaB•, ... ' 

(4.28) f7AB1 ... Bt = NA(SAA)Bt ... B;laB•, 

(4.29) JAO = (PA)0lt=to' ···, 
(4.30) JBt ... B; = (PA)B1 ... B;\t=to, 

where S denotes complete symmetrization with respect to the B-indices. The S(SB1A) 
come from the fact that 

a h - _a_( oih(YA) I ) - h 
A B1 ... B; - iJXA iJYB1 ... iJYBi yA=xA - B1 ... BIA 

and that hB1 ... B; are completely symmetric in the B's. The Eqs. (4.25), (4.26) are identical 
with those given by ERINGEN [6]. However, the constitutive relations and the state variables 
that must be used to augment the system (4.25)-(4.26) cannot be the classical ones, since 
the carriers are now quite arbitrary, and in fact there will be no simple quantity such as 
"displacements" and "displacement gradients" which could possibly serve as state variables. 
This follows from the fact that "averages" of displacement gradients are no longer gradients 
of macroscopic displacements; i.e., 

< 0 A(/> A) p =/: 0 A<(/> A) p SO that 0 B< 0 A(/> A) p =/: 0 A< 0 B (/>A> in general. 
There is another obvious alternative which does not require such an arbitrary structure 

for lzp(XA, XA): we simply take hp(ZA; XA) to be the set of functions {I = h0, ZA1_XA1 = 
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= hA
1

, (ZAt-XAt) (ZA2-XA2) = hA
1
A 2, ... , (ZAt-XAt) (ZA2-XAz) ... (ZAr-XAr) = hA, ... A,}. 

In this case, however, (4.8) yields only N equations of the form 

(4.3l) qA = .2; {(RABt ... Bi)Bt ... Bi-oA(SAABt .. . B;)Bt ... Bi-or((PABt .. . Bi)Bt···Bi)} 
i 

rather than separate equations for each choice of the B indices as is given in ( 4.25), 
( 4.26). Setting each collection of terms with the same B indices equal to given functions 
which are such that (4.31) is satisfied would be sufficient, but is not necessary. 

Particular note should be made of the results in [7], in which it is shown that the 
theoretical structure obtained for linearized, nonlocal, isotropic, elastic solids can be used 
to obtain an exact fit of the acoustical and optical branches of elastic shear waves within 
one Brillouin zone. These results provide a simple continuum model of periodic one­
dimensional lattices and their associated dynamics, and suggests the breadth and general­
ity of nonlocal theories. The results are also highly suggestive that nonlocal theories may 
provide theoretical constructs whereby an orderly transition from lattice dynamics to 
classical elasticity may be effected. This is further substantiated by the results established 
in [8] concerning nonlocal formulations of the Rayleigh surface wave problem and the 
correlations between the theory and known experimental dispersion relations for such 
surface wave phenomena. 

Appendix 

This appendix examines variational theories in which spatial derivatives occur in the 
form oA(([)A)p rather than in the form (oA(/>)p. We accordingly assume the existence 
of a Lagrangian function 

(A. I) L = L(XA, t; ([)A(x·~t, t), d>AcxA, t), oB([)A(XA, t); (([)A)l, 

Or((/> A>H oB((/> A>l; ... ; ((/>A) M, Or($ A) M, oB((/> A) M, 

of class C2 in its 4+ 5N(1 +M) arguments which defines the action functional 

(A.2) J[{([)A}] (L) = f f LdV(X)dt. 
T B* 

Then, for simplicity, field equations and the boundary data are obtained from the require­
ment that J[{(/>A+cf>A}] (L) = J[{([)A}] (L)+o(ll {cf>A}II 1) must hold for all {cf>A(XA, t)} e 
e !1) 1 (D*; N). On introducing the notation 

{eiLh = ~~-a A (-a(~~~)}- a, ( a:t~)} 
for the local Euler-Lagrange derivative [2] and using the same arguments as used in 
Sects. 2 and 3, we obtain the field equations 

M 

(A.3) 0 = {eiL} 41A + 2 ( {ejL}<41.1)p)b 
p=l 

M 

+ Jl J a(aA~~A),) (Z'}W(z•-x•)h,(z•-x•)NA(Z'}dS(Z), 

8* 
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the boundary conditions 

(A.4) 

The reader should carefully note that there are no boundary conditions involving 
aL 

instead, these terms now occur in the field equations (A.3). If terms like o<oA.(/JA>p ' 
aL 

a ea A.<(/J A)p) 
or integrals of such terms are to be identified with the macroscopic prop-

erties of a body, then field equations of the form of (A.3) with boundary conditions 
(A.4) would usually be unacceptable. It is for this reason that we based the previous 
analysis on Lagrangian functions whose general form is given by (2.4). 
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