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Convergence of solutions of the equations of dynamic 
linear dipolar elasticity to the solutions of classical elastodynamics 

R. J. KNOPS and B. STRAUGHAN*) (EDINBURGH) 

THE problem of convergence of solutions of the equations of dynamic linear dipolar elasticity 
to the solutions of the equations of linear elastodynamics as the dipolar terms tend to zero. 
For bounded regions, it is established that, provided the solutions satisfy an a priori bound 
is studied there is L2-convergence in the sense of Holder. No definiteness assumptions are 
required on the respective elasticities. For unbounded regions, convergence exists in a specified 
L2-sen~e, but now the monopolar elasticities must be posithre semi-definite and the dipolar 
displacement suitably restricted at infinity. 

W pracy badane jest zachowanie si~ rozwiCl7:ania pOCZ<l:tkowo-brzegowego problemu dla linio­
wej dipolarnej sprcti:ystosci w przypadku, kiedy wsp6lczynniki reprezentuj'lc~ wyrazy "dipolar­
ne" mog'l: zd'li:ac do zera. Gl6wnym celem pracy jest okreslenie w jakim sensie rozwi'llanie 
Uei:eli istnieje) problemu "dipolarnego" iest zbiei:ne z rozwi'lzaniem odpowiedniego POCZ'ltkowo­
brzegowego problemu dla anizotropowego liniowo sprcti:ystego materialu, jei:eli wsp6lczynniki 
;'dipolarne" d'l:~ do zera. 

J(aaaaH pa6oTa HcCJie;::tyeT noae.rteaHe pemeHHH Haqa.m.uo-Kpaeaoii aa;::ta'IIH .rtJUI mmeiiHoii 
.rtHnOJIHpHoii ynpyrocrH a CJiyqae, J<or.rta J<o3<l><l>HIU~eHThi npe;::tcraamno~He ,.rtHnoJI.HpHbie" 
qJieHbl MOfYT CTpeMHTbCH J< E;ymo. rJiaBE;OH lleJibiO pa60Tbl HBJIHeTCH onpe;::teJieHHe B J<aJ<OM 
CMbiCJie peliieaHe (eCJIH ~eCTByeT) ,;::tHnOJI.HpHOH" 3a;::ta'IIH CXO):tHTCH J< peweHHIO COOTBeT­
CTBYIOllleH Ha'llaJILE;o-Kpaeaoii aa;::ta'IIH .rtJUI aHH30TpOnHoro, mmeiiHo ynpyroro MaTepHana, 
eCJIH , ,;::tHllOJIHpHbie'' K03<l><l>HIU1eHTbi crpeMHTCH K HY mo. 

1. Introduction 

THE behaviour of an anisotropic linear elastic material occupying a bounded or un­
bounded domain D of Euclidean 3-space is governed by the following system of equa­
tions, 

(1.1) 

where v; are the components of displacement about a reference configuration, e is the 
density, aiikh are the elasticities, fi is the body force per unit mass and T ( < ex:>) is a con­
stant. Here and throughout the paper standard Cartesian indicia! notation is employed, 
a superposed dot denotes partial differentiation with respect to time, and a subscript 
comma followed by a Latin letter, j say, denotes partial differentiation with respect to 
the spatial variable xi. 

Let fJI denote the boundary initial value problem formed by (1.1) together with the 
following boundary and initial conditions, 

(1.2) 

(1.3) 

v; = q;(x, t) on Ex [0, T], 

v;(x, 0) = g;(x), v;(x, 0) = h;(x), x E D, 
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432 R. J. KNOPS AND B. STRAUGHAN 

where E denotes the boundary (interior, exterior or otherwise) of Q and q;, gi and hi are 
prescribed functions of the indicated arguments. E is supposed smooth enough to justify 
our use of the divergence theorem. 

Several studies of qualitative properties of solutions to f!A for indefinite elasticities 
have appeared in recent literature; in particular, we mention the stability analyses of 
KNOPS and PAYNE [8, 9], which employ logarithmic convexity arguments. 

The present work again involves f!A; however, we shall consider the behaviour of the 
solution to an analogous boundary initial value problem for a linear dipolar, elastic 
material when the coefficients representing the "dipolar" terms are allowed to approach 
zero. We wish to determine in what sense, if any, the solution of the "dipolar" problem 
converges to the solution of f!A, as the "dipolar" coefficients tend to zero. 

2. Basic equations 

The dipolar theory we consider is a special case of a general multipolar theory devel­
oped by GREEN and RIVLIN [6]. An application of the linear dipolar theory of GREEN 

and RIVLIN [6] to the torsion of a circular cylinder was given by GREEN and NAGHDI [4] 
whose notation we now use. 

The equations of motion are 

(2.1) 

where ui are the components of displacement about a reference configuration. rii are 
dipolar inertia terms, rii represent a symmetric tensor (associated with the stress), E<ki>i 

are the components of dipolar stress which are symmetric in the first two indices, Fii is 
the dipolar body force and e and/; are given by (1.1). 

[In fact, rii is related to the monopolar stress, O'ii' as follows 

rij £: r<ki>i.k-aji+e(Fji-rji)]. 

The inertia coefficient satisfies (see GREEN and NAGHDI [5]), 

(2.2) 

where mii is a symmetric tensor such that mii~ik~ik ~ m- 1 ~ii~ii for a positive constant m. 

We assume the Helmholtz free energy function, A, can be written in the following 
form 

(2.3) 
1 1 

(!A = 2 aijkhU;,jUk,h+bijkhmUi,jUk,hm+ 2 CijkhmnUi,jkUh,mn' 

where aiikh are defined in (1.1) and biikhm and ciikhmn are functions of x, such that 

(2.4) Cijkhmn = ChmniJk • 

Constitutive equations for rii and E<ki>i then follow from Eqs. (8) and (9) of 
GREEN and NAGHDI [4] and are: 

(2.5) 

and 

(2.6) 
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CONVERGENCE OF SOLUTIONS OF THE EQUATIONS OF DYNAMIC LINEAR DIPOLAR ELASTICITY... 433 

To enable the convergence problem to be concisely stated, we introduce some further 
notation. Let !l' and !l' e be the operators 

(2.7) 

and 

(2.8) 

where 

(2.9) 

(2.10) e i ji = akmji Uk,m + eb jimnq Um,nq, 

and s(> 0) is a constant. (In (2.8)-(2.10), a linear dependence on e is introduced in the 
"dipolar" terms. The coefficients mib biikhm and ciikhmn are different from the correspond­
ing ones in (2.2) and (2.3), therefore, by a factor of e. 

To define a boundary initial value problem for the dipolar elastic material we sup­
pose the displacement, Uj, and the dipolar tractions, Tii .= nk.Ekii' are specified on .E, 
where nk are the components of the unit outward normal on .E. (Other boundary condi­
tions are considered, by e.g. GREEN and NAGHDI [4].) The boundary initial value problem 
so obtained, which we denote by d, can then be represented as follows: 

Problem d 

fi'eui = efi in Q X (0, T], 

(2.11) 
ui = qi (x, e, t)} 

( ) 
on .Ex [0, T], 

Tii = qii x, e, t 

ui(x, 0) .= gi(x), ui(x, 0) = hi(x), 

where qii are prescribed and we have taken the dipolar body force to be zero. 
81 can be conveniently rewritten as follows: 
Problem 81 

in Qx (0, T], 

(2.12) vi= qi(x, 0, t) on .Ex [0, T], 

vi(x, 0) = gi(x), vi(x, 0) = hi(x). 

Clearly, when e = 0 the differential equation in (2.11) becomes the differential equa­
tion for a classical linear elastic material, as in (2.12). (However, problem d is not equiv­
alent to problem 81 when e = 0). The object of the paper is to investigate in what sense, 
if any, the solution to d approaches the solution to 81, as e ~ 0. Since no definiteness 
of the elastic coefficients is assumed this, therefore, is an improperly posed singular per­
turbation problem which arises naturally in solid mechanics. Improperly posed singular 
perturbation problems of a somewhat different character have recently been studied by 
PAYNE and SATHER [17] and ADELSON [1]. 

We do not always expect solutions to problem 81 to behave as solutions to problem 
.91, no matter how small e may be. For example, even when the potential energy in problem 
81 is a coercive bilinear form, the zero solution need not be stable in the C0 norm. (This 
is discussed in detail by KNOPS and WILKES [11], section 6, who use an example of 
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R. T. SHIELD and A. E. GREEN [18], to demonstrate the so-called focusing effect). How­
ever, when the potential energy in problem d is a coercive form it can be shown that 
the zero solution to d is stable in the C0 norm, and so the local "peak" behaviour ex­
hibited in the example of SHIELD and GREEN is not possible, no matter how small 8 may 
be. (Similar remarks were made by KOITER [12] who based his analysis on a different 
model which, however, also included strain gradients). It is of interest, therefore, to know 
how solutions to d behave as 8 --+ 0. In fact, by imposing a suitable a priori bound 
on the solutions to d and f!l, we shall show how to establish convergence in an appro­
priate sense as 8 --+ 0 of solutions to the improperly posed problem d to those of the 
improperly posed problem f!l. 

The remainder of the paper is divided into two parts. In the first part, Sect. 3, we 
study problems d and f!l when Q is a bounded domain of R 3 • In this case our approach 
to convergence employs logarithmic convexity arguments and is based on work by PAYNE 
and SATHER [17] who studied an elliptic equation which in its reduced form is the back­
ward heat equation. The second part, comprising Sect. 4, is devoted to a similar con­
vergence study when Q is exterior to a compact set in R 3 • The approach here essentially 
relies on a method originally developed by GRAFFI [3]. 

3. Convergence when Q is a bounded set 

In this section Q is a bounded domain of R 3 • Let now Dr be the space-time domain 
Q x (0, t) and let 11· lint be defined by 

(3.1) llqll.bt = f eqiqidxd'Yj' 
Dt 

for functions qi E L 2 (Dr), i = 1, 2, 3. 
Suppose now there exist classical solutions, ui and vi to problems d and f!l, respect­

ively, and in addition, these solutions are smooth enough to justify the· analysis which 
follows. We define w1 by 

(3.2) 

and introduce the constant P given by 

(3.3) pl = J {emjk([aiqrsVr,sL1+e/;)jk+bijmn11 Um,nq-8- 1eE<ki>i.k}x 
Dt 

+2T2 f :t {emjk([aiqrsVr,sl.q+e/;),k+bijmnqUm,nq-8- 1eL'(kj)i,k} 
Dr 

X ~ {emjt([aiphdVh,d].p + (!/;),1 +bijphdUp,hd- 8-l e.E(pj)i,d} dX dt • 

We may now state the main theorem of this section. 
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THEOREM 1. Let W; be defined by (3.2) and suppose u; and V; belong to the class of func­
tions for which P (defined by (3.3)) is finite. Then there are positive constants M, ex, ~' 
with 0 < cx ~ I, such that 

(3.4) J e(w;w;+emjkWi,jWi,k)dxd'Yj ~Me«, 
Dt 

provided 0 ~ t ~ T- <5. In particular, as e -+ 0, 

llu-vllnt-+ 0, 

provided 0 ~ t ~ T- <5, where u; and V; are classical solutions to d and 81, respectively. 
Theorem 1 shows that, provided P is bounded a priori and t belongs to a compact 

subinterval of [0, T), then as e -+ 0 a solution to the dipolar problem d converges to 
a solution to the classical elasticity problem 81 in the Dt norm defined by (3.1). 

Before proving the theorem we establish an auxiliary lemma. 
LEMMA I. The quantity E8(t) defined by 

(3.5) Ee(t) = ~ J {e(emikwi,jwi.k+w;w;)+a;i"hwi,jwk,h}dx, 
fJ 

satisfies the following equation 

(3.6) -E8(t) = J {ewi[e(mikvi,k).i+ (biimnqUm,nq),j]-w;eE<ki>i,ki}dxdfJ. 
Dt 

P r o o f. The proof of the lemma follows immediately from the following equation 
which, in turn, follows directly from (2.11) and (2.12), 

(3.7) few;- ee(mikwi,k),j = ee(mikvi,k),j+ e(bijmnqUm,nq),j- ,E<ki>i.ki· 

Proof of Theorem I. We define the quantities F(t), .F(t) and ~(t) as follows 

(3.8) 

(3.9) 

(3.10) 

F(t) = J e(w;w;+emjkWi,jWi,k)dxd'Yj, 
Dt 

.F(t) = F(t)+eP2
, 

t§(t) = 1og.F(t)+ct 2
, 

where c is a constant to be specified. 
Our object is now to show that~ is a convex function oft on (0, T). Hence, we com­

pute the first and second derivatives ofF, with respect to t, denoted by F'(t) and F"(t), 
respectively. Now, 

(3.11) 

and 

§"' = F'(t) = 2 f e(w;w;+emikwi,iwi,k)dxd'YJ, 
Dt 

(3.12) .F" = F"(t) = 2 J e(w,w;+w;w;+emikwi,jwi,k+emi"w,,jw;,k)dxd'YJ, 
Dt 

where the symmetry of mii and the initial conditions have been employed. 
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The kinetic energy, K(t), is defined by 

(3.13) K(t) = ~ J e(wiwt+Emjkwt,jlh,k)dx, 
D 

and we use this in (3.12) after using the divergence theorem and substituting for the first 
and third terms on the right of (3.12) from (3.7) to see that 

t 

(3.14) F" = 4 J K('Y))drJ +2 J Wt[(aijkh wk,h),j + ee(mjkvi,k),j+ e(bijmnqUm,nq),j 
0 Dt 

t 

(3.15) = 8 J K('Y))d'Y)+2 J {wie[e(mikVt,k),j+(bijmnqUm,11q),j]-willE(ki>i,ki}dxd'Y) 
0 Dt 

t 

-4 J (t-'Y)) J {t:wi[e(mikvi,k),i+ (biimnqUm,nq) ,i]- willE<ki>i,ki}dxd'Y), 
0 D 

where we have integrated by parts in the second term on the right in (3.14) and then used 
the lemma to substitute for the Ell(t) terms. 

We next integrate the last term in (3.15) by parts with respect to t and obtain 

t 

(3.16) F" = 8 J K('Y))d'Y)-2 J {EWt[e(mikvi,k).i+(bijmnqUm,nq),tj]-willE(ki>i,ki}dxd'Y) 
0 Dt 

I 

+4 J (t-'Y)) J Wt :'Y) {e[e(mikvi,k),j+(btjmnqUm,nq),j]-ll.E<ki>i,ki}dxd'Y). 
0 D 

Then, we integrate by parts with respect to the spatial variables in the last two terms 
in (3.16) and use the arithmetic-geometric mean inequality to see that 

t 

(3.17) F" ~ 8 J K('Y))d'Y)-3E f Wt,jWt,jdXd'Y)-E J {[emikVa,k+bijmnqUm,nq] 
0 ~ ~ 

-E- 1~<ki>t,k} {[emipVt,p+btjprsUp,rsl-e-\.E<Pi>i,p}dxd'Y)-2T2e J 1'YJ {[emikvi,k 
Dt 

Finally, we use (3.3), (3.8), (3.9) and the lower bound for m1i in (3.17) to arrive at 

t 

{3.18) F" ~ 8 f K('Y))d'Y)-a~, 
0 

where 

(3.19) a= max{3me-t, 1}. 
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To establish the convexity of <'§, we observe that 

(3.20) 

and so using (3.18), 

t 

(3.21) 9'2<'§" ~ {8F(t) J K(17)a17 -4[ J e(wiwi+smjkwi,jwi,k)dxd?Jr} 
0 Dt 

t 

+ 8e J K(?])d?]P2 + (2c-a)§"2
• 

0 

The first term on the right of (3.21) is non-negative by virtue of the Cauchy-Schwarz 
inequality. Hence, if we choose c = a/2, it follows that 

(3.22) <'§" ~ 0, 

and so <'§ is a convex function of t on (0, T). Jensen's inequality may then be used to 
show that (see PAYNE and SATHER [17], p. 222, for details) 

(3.23) 

where M is a positive constant independent of e and ~ is an arbitrary positive constant. 
The theorem now follows with the aid of (3.8) 
R e m a r k s. 1. If the potential energies in problems .91 and PA are coercive bilinear 

forms then it is possible to establish stronger convergence than that of Theorem 1. Indeed, 
making use of a Sobolev embedding theorem, convergence can be established in L 6 rather 
than L 2 measure. In this case a logarithmic convexity approach is unnecessary and a 
standard energy technique is sufficient. 

2. It is possible to present an analogous development of the results in this paper for 
the more general dipolar theory of GREEN and RIVLIN [7] (see also MINDLIN [14, 15]). 

3. It may be possible to use problem .91 to establish existence of solutions to problem 
PA when the elasticities are merely non-negative. This would then be a naturally occurring 
example of the method of quasi-reversibility. See Lattes and Lions [13] and Payne [16]. 

4. Convergence in the exterior problem 

In Sect. 3 we have shown that a solution to the dipolar problem which belongs to 
a suitably restricted class will converge, in an L 2 sense, to the solution to the analogous 
problem for a classical linear elastic material. No definiteness assumptions were imposed 
on the potential energies although the (spatial) domain was restricted to be bounded. 
In this section we shall establish a similar convergence result when the domain is ex­
terior to a compact set in R 3 • However, we find it necessary to impose a semi-definiteness 
condition on the potential energy appearing in the classical elasticity model and to also 
restrict the class of dipolar solutions by imposing a weak requirement on the behaviour 
for large spatial distances, although, again, no definiteness is assumed of the correspond­
ing dipolar potential energy. 
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The domain Q is here taken to be the complement in R 3 of the closure of a bounded 
region Q 0 • The boundary of !J0 is denoted byE and it is assumed that E is smooth enough 
to permit applications of the divergence theorem. 

Let 0 be a fixed origin of coordinates in R 3
• We denote by Q: the open ball, with 

centre 0, radius R, and we denote by rR the boundary of Q:, R > 0 (R2 = xixi). 

Moreover, let R be the smallest value of R such that (Q~)- 2 !J0 . Then, for 

R ~ R, we define QR by 

(4.1) 

Finally, we suppose the elasticities of the classical theory, aiikh' satisfy the following 
boundedness and definiteness conditions, 

(4.2) 

(4.3) 

laiikh(x)l ~M, Vx E !J, 

aijkh,ijckh ~ 0, vcjj, 
where M(< oo) is a prescribed constant, and the density is bounded below on Q, i.e., 
there is a constant em(> 0) such that 

(4.4) e(x) ~ em, for all X in Q. 

To establish convergence of solutions of problem .91 to solutions of problem 111 when 
Q is an exterior region we find it necessary to impose a condition on the "extra" terms 
introduced by the dipolar theory. To state this condition, which essentially restricts the 
behaviour of the solution to .91 as R -+ oo, we define 4>i by 

(4.5) 

and then for each fixed T introduce the function J(R) where 

T 

(4.6) J(R) = (J (T-t) J e- 2 t4>i4>idxdtf
12

• 

o nR 

We then require J to satisfy the following condition, 

(4.7) J (2R) -+ 0 as R -+ oo . 
R 

We shall show that (4.7) may be regarded as representing a class of solutions to .91 which 
converge to solutions of 11, as s-+ 0 (Theorem 2). 

Before stating our main theorem we present a preliminary lemma. 
LEMMA 2. Let H be a non-decreasing function on (0, oo) and let G be a non-decreasing 

continuously differentiable function on (0, oo ), which satisfies the following inequality, 

(4.8) G'(R)-kG(R)+eH(R)G1
'
2 (R) ~ 0, 

lor constants e, k (> 0), where G' = dG/dR. Then, G satisfies the following estimate, 

(4.9) ( 
-kR) H

2
(2R)e

2 
( ( -kR)) G(R) ~ exp -

2
- + k 2 1-exp -

2
- . 

The proof of the lemma is omitted, since it follows easily from the proofs of similar 
lemmas in [10] and [19], (see also [2]). 
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The domain Q R x [0, T] is denoted by D R • 

THEOREM 2. Let ui and vi be classical solutions to problems .91 and PI, respectively, 
with aiikh satisfying (4.2) and (4.3). Let wi be defined by 

(4.10) 

Then, if condition (4.7) holds, ui ~vi as e ~ 0, in the following precise sense 

(4.11) J e-2tew1widxdt ~ 0, e ~ 0. 
Dt/a 

Proof. The proof of this theorem uses a technique due to GRAFFI [3], which was 
adapted to elasticity in [10]. Graffi's technique was also further developed by CANNON 
and KNIGHTLY [2], and the present work employs ideas similar to those used by the 
above writers. 

We start by computing .!l'wh using (2.11), (2.12) and (4.5): 

(4.12) 

Introducing "Pi by "Pi = e-twi. (4.12) may be rewritten as 

(4.13) .ft''lfJi+e(2ipi+"Pi) = e-tec/Ji· 

These equations are now multiplied by ipj, integrated over QR and the boundary condi­
tions together with the divergence theorem are used to find 

(4.14) 2 J e-ipi?jlidx+ ~ ~ J {e(,Pi,Pi+'lfJ,'IfJi)+aiikh"Pi.i"Pk,h}dx 
DR DR 

= J niaiikhipi"Pic.hdS + e J e-tcpi1p1dx. 
rR DR 

The first term on the right of ( 4.14) is bounded by means of the Cauchy-Schwarz 
and arithmetic-geometric mean inequalities together with ( 4.2), ( 4.3) and ( 4.4). Thus, 
we have (cf. [10]), 

[ . dS 3M J~ ( .. . niaiikh"Pi"Pk,h ~ ~ aiikh"Pi,i"Pk.h+f!"Pi"Pi)dS. 
r f!m r 

R R 

(4.15) 

On inserting this estimate into ( 4.14) and integrating the resulting equation twice with 
respect to time, after having applied the Cauchy-Schwarz inequality to the last term 
on the right of (4.14), we obtain 

T 

(4.16) 
2

1 J {e(ip/pi +"Pi "Pi)+ aiikh"Pi.i"Pk,h}dxdt ~ ~~~- J J (aiiu"Pi.i"Pk.h 
D (!m 0 r 

R R 
T 

+e,P;ipi)dSdt+ 
8~~~

2

- ( feipiipidxdtr
12

( f (T-t) f e- 2tc/Jicpidxdtr
12

• 

DR 0 DR 

We define F( R) by 

(4.17) F(R) = J {e("Pi"Pi+ip~~~) +aiikh"Pi.i"Pk.h} dxdt. 
DR 
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Then, recognizing the term on the right of (4.16) involving ~i is J(R), as defined by 
( 4.6), we may deduce from ( 4.16) that 

(4.18) F(R) ~ 3~~ F'(R)+ ( 2 ~;~
2

)-F(R) (F(R)) 1
'
2

, 
em em 

where F' = dFfdR. 
Lemma 2 is now applied with k = e 1~2 f3TM and H(R) = (2/3T112 M) J(R). We the­

refore obtain 

(4.19) ( -kR) [ ( -kR)J 4e2 

F(R) ~ exp -
2

- + 1-exp -
2

-
9

TM2k 2 .F
2 (2R). 

Using (4.17), (4.3) and rewriting (4.19) in terms of wi, it is easily seen that 

(4.20) J e- 2 tewiwidxdt ~ exp(- cxR)+e2 [1-exp(- aR)],8J2 (2R), 
DR 

where ex = e 1~2 f6TM and .8 = 4T/em· 

Finally, we set R = 1 fe, (e- 1 ~ R), and (4.11) follows with the aid of (4. 7). 
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