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The effective conductivity of dilute suspensions 

L. G. LEAL and T. J. McMILLEN (PASADENA) 

THE effective thermal conductivity of a dilute suspension of particles in a Newtonian fluid is 
considered. In general, the effective conductivity may be shown to depend not only on the 
physical properties and concentration of the particles, but also critically on both the type and 
strength of any bulk flow which may be present. Two distinct types of flow effects are distin
guished; the flow dependence of the suspension microstructure (i.e., the statistical distributions 
of orientation and shape for the particles), and the flow dependence of the local temperature 
distributions at the microscale of the individual particles. Specific calculations are reported 
for suspensions of spherical drops, slightly deformed drops, and rigid prolate spheroidal particles 
all in the limit of small particle Peclet number. In the latter case, we include the influence of 
Brownian rotations. 

W niniejszej pracy rozwai:amy wplyw malych kropel zawieszonych w cieczy i sztywnych 
cz(lsteczek na efektywne przewodnictwo cieplne rozcienczonej zawiesiny, gdy material jako 
calosc poddany jest ruchowi prostego, liniowego scinania. Rozwazane S(l trzy odrc:bne przy
padki: CZ'lstki kuliste, lekko zdeformowane krople i sztywne elipsoidy obrotowe. W kazdym 
z tych przypadk6w na teoric: sklada sic: szczeg6lowa analiza zaburzenia pola temperatury w oto
czeniu typowej CZ'tstki, po czym nastc:puje proces statycznego usrednienia, pozwalaj(lcy na 
otrzymanie interesuj(lcych wielkosci makroskopowych przy wykorzystaniu pola lokalnej prc:d
kosci i pola temperatury. W rezultacie otrzymuje sic: jawne wyra:lenie na efektywne przewod
nictwo ciepla materialu uwazanego jako kontinuum zlozone. Gl6wnymi uproszczeniami w tej 
analizie, opr6cz slabej koncentracji CZ'tstki, S(l zalozenia o niskich (w tej mikroskali) liczbach 
Reynoldsa i Pecleta. 

B aacroH~e:H pa6oTe paccMoTpeao BJIHHllHe MaJihiX, B3BemeaHhiX B ~OCTH, romem. 
H :>KeCTKHX t.IaCTHQ Ha 3<l><l>eKTHBH;YJO TeWIOnpOBO,Il;HOCTL pa36aBJieH;H;biX B3Bece:H, KOr,IJ;a Ma
TepHaJI, KaK QeJioe, no,IJ;BepraeTcH ,ll;BH>KellHIO npocroro, JIHH;e:Haoro C,IJ;BHra. PaccMaTpHBa
IOTCH TpH OT,IJ;eJILHbiX CJiyt.Ia.R: c<PepHt.IeCKHe t.IaCTHQbi, JierKO ,IJ;e<l>OpMHpyeMbie KaWIH H >KeCT
KHe 3JIJIHnCOH,IJ;bl Bp~eHHH. B Ka»<,ll;OM H3 3THX CJiyqaeB TeOpHH COCTOHT H3 llO,Il;60pH;Oro 
aH;aJIH3a B03M~eHHH ITOJIH TeMnepaTypbl B OKpeCTH;OCTH THnHt.IHOH t.IaCTHQbi, 3aTeM H;aCTynaeT 
npoQeCC CTaTHCTHt.IeCKOrO ycpe,ll;H;eH;HH, ll03BOJIHIO~HH llOJIYt.IHTL HHTepecyro~He H;aC MaKpo
CKOITHt.IeCKHe BeJIHt.IHH;bi, HCITOJIL3yH noJie JIOKaJILH;OH CKOpOCTH H llOJie TeMnepaTypbi. B pe-
3YJILTaTe noJiyt.IaeTCH HBllOe Bbipa>l<ellHe ,IJ;JIH 3<l><PeKTHBH;OH TenJIOnpOBO,IJ;H;OCTH MaTepHaJia, 
paccMaTpHBaeMoro KaK CJIO>I<Hoe KOHTHHYYM. rJiaBllbiMH ynpo~ellH.RMH B 3TOM aHaJIH3e 
HBJIHIOTCH, KpOMe CJia60H KOllQeHTpaQHH t.IaCTHQ, npe,ll;nOJIO>KellHH 0 MaJibiX, B 3TOM MHKpO
MaCIDTa6e, t.IHCJiax Pe:HHOJIL,IJ;ca H IleKJie. 

1. Introduction 

A GREAT deal of effort has been expended in an attempt to understand and correctly 
model the mechanical or rheological properties of suspensions, macromolecular solutions 
and other non-Newtonian fluids. Equally important in many industrial processing ap
plications, however, is the constitutive behavior of such materials for heat or material 
transport in the presence of bulk gradients of temperature or concentration of molecular 
species. Unfortunately, by comparison with the enormous number of rheological inves
tigations, almost no research (either experimental or theoretical) has been reported on 
this important topic. Indeed, about all that can be said with certainty is that the simple 
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linear and instantaneous equations of Fourier and Fick relating heat or molecular species 
flux to the gradients of temperature or concentration do not hold in many non-Newtonian 
materials. 

The present paper is concerned with composite (or suspension-like) materials. In this 
case, typical dimensions of the suspended particles are large relative to the intermolecular 
length scales of the suspending material which is thus modelled as a continuum. When 
the suspension as a whole undergoes a non-uniform bulk flow, a local disturbance flow 
is induced in the vicinity of each particle and a local convective flux of heat or molecular 
species will result which can contribute to the effective transport rate for the composite 
material. As a consequence, the apparent conductivity or diffusivity of the composite 
may be quite different from that of either the discrete or continuous phase materials ; 
dependent not only on the material properties of the two phases, but also on the type 
and strength of any bulk flow which is present. 

If we consider the material as a whole, there are two distinct approaches available for 
the development of constitutive relationships. By far the most widely used is the contin
uum or phenomenological approach in which an initial hypothesis is made of the ap
propriate form of the constitute relationship for a particular material or class of materials. 
The vast majority of resulting models are characterized by excessive generality. Less widely 
applied is the structural model approach in which one attempts to deductively obtain 
the appropriate constitutive law starting from a description of the material on the scale 
of the individual suspended particles. This latter approach is difficult, but has the advan
tage of being a predictive theory in the sense of exposing relationships between micro
structure or dynamics and macroscopically observable material properties. Thus, although 
the requirements of mathematical tractability demand reasonably simple microstructure, 
the predictions for the resulting material are at least qualitatively correct. 

In the present paper, we use the structural model approach to determine the effective 
thermal conductivity for a dilute suspension of either rigid prolate spheroids, or slightly 
deformed drops. The suspension is assumed to be undergoing a steady, simple shear 
flow, with heat transfer occurring as a result of a constant temperature gradient in the 
cross-flow direction. In order to facilitate rigorous analysis of the problem, it is further 
assumed that the local Peclet number based on the length scale of the particles is small. 
Finally, in the case of the rigid spheroids, we allow for a significant degree of rotational 
Brownian motion but neglect other randomizing disturbance mechanisms. Although 
admittedly somewhat restricted, these model calculations do at least allow a useful first 
view of the effect of flow-induced particle orientation and deformation on the bulk thermal 
transport characteristics of a dilute suspension. 

2. Basic formulation and general properties of composite materials 

We consider a suspension of neutrally buoyant particles in the presence of a bulk 
shear flow and a bulk temperature field. The objective of the present theory is the develop
ment of a constitutive equation which describes the effective thermal conductivity for the 
suspension considered as an equivalent homogeneous material. 
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The point of view adopted is the conventional one in the field of suspension rheology. 
We assume that particles are sufficiently large that the suspending fluid may be treated 
as a homogeneous continuum; thus we assume that the minimum dimension I of the 
particles is large compared to the intermolecular scale rx of the suspending medium. The 
latter is then modeled as an incompressible Newtonian fluid in which a simple Fourier 
heat conduction law is applicable. 

At any arbitrary fixed point in the suspension, the local variables such as velocity, 
temperature, enthalpy or conductive heat flux are random functions of time whose values 
at any instant depend upon the proximity of suspended particles. In this sense, the des
cription of bulk or macroscopic quantities for the suspension is a problem of statistics. 
At the fundamental level, the most appropriate definition of the bulk variables is as an 
ensemble average of the corresponding microscale quantities for a large number of realiza
tions of the system. Instantaneous local values of the velocity, temperature, enthalpy 
and conductive heat flux may then be expressed as a sum of the ensemble averaged quantity, 
and an additional microscale or fluctuating component, i.e., 

U; = (u;)+ui, T = (T)+T1
, 

(2.1) 
h .= (h)+h 1

, 

where, by definition, 

(2.2) (ui) = (T1
) = (h 1

) = (qi) = 0. 

It is desired to define a bulk conductive heat flux Q; such that the thermal energy 
balance for the suspension, viewed as an equivalent homogeneous medium, takes the 
usual form 

(2.3) o(h) +<u~> o(h2._ + oQ, = o. 
at ax, ox1 

A convenient, if heuristic, method of determining the proper. definition of Q; for this 
purpose, is to simply apply the same ensemble averaging used in (2.1), to the exact, 
instantaneous thermal energy balance which is applicable for each realization of the 
system 

oh oh oqi 
(2.4) ~ +ur-~-+~ = 0. 

ut UXj uX1 

Taking account of (2.1) and (2.2), the result is 

(2.5) o<h> o<h> a I I 

-a~+(u;)ax;-+ oxi (q1+u1h) = 0. 

Comparing (2.3) and (2.5), it follows that 

It may be seen that the bulk conductive heat flux consists of an ensemble average of the 
instantaneous, microscale conductive heat flux, plus an additional "convection" term 
which accounts for the transport of heat by means of the local fluctuating velocity 
and enthalpy fields . 
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To proceed further from a theoretical point of view, it is necessary to replace the 
ensemble averages in (2.6) with more easily calculable spatial (volume) averages. For 
this purpose, it is assumed that there exists in the suspension a volume V, containing 
a statistically significant number of particles, whose linear dimensions of O(V1

' 3} are 
therefore much larger than the particle length scale /, but smaller than the length scale 
L over which significant variations occur in the bulk velocity or temperature gradients, 
or in the concentration of particles. The volume averaged variables, such as 

((qi)) = ~ J qidV 
V 

are then equal to the ensemble averaged variables and are thus independent of the size 
and shape of V. These volume averaged quantities clearly vary only on the scale of O(L). 
They are thus point quantities with respect to the overall macroscopic description of the 
material. The local, fluctuating variables, e.g. qi, vary at random over distances of 0(/) 
as a result of the assumed random location of the particles in the suspension. 

With the conditions of local homogeneity on the scale of O(L) satisfied, the ensemble 
averages of (2.6)1 can be replaced exactly with volume averages to give 

(2.6h 

Expressing the averaging symbols in terms of the appropriate volume integrals, and 
assuming that the suspending fluid and particles both satisfy a simple Fourier law for 
heat conduction, this latter expression can be rewritten as 

1 f 1 j' (2.7) Qi = -V kl VTdV- V k2 VTdV 
V-1:.Vo IVo 

+ ~ eC11> f uiT'dV + ~ eC12 > f ui T'dV. 
V-IV0 IVo 

Here, k 1 and k 2 are the thermal conductivities of the suspending fluid and particles, res
pectively, and C11> and C12> are their heat capacities. The volume of a typical particle 
in the averaging volume V is denoted as V0 , and l:V0 therefore represents the total volume 
of particles in V. Finally, utilizing the definition of the bulk temperature gradient 

((VT)) = ~I VTdV = ~ I VTdV+ ~ f VTdV, 
V V-.!:Vo IVo 

the expression (2. 7) becomes 

(2.8) Qi = -kl((VT))+ (kl~k2) fvrdV+ (C1
2

>;C1l>) I uiT{dV+eC11>((uiT')). 
I~ I~ 

The first term on the right-hand side is just the conductive heat flux which would exist 
in the absence of the particles if the same temperature gradient were maintained. The 
remainder of the terms thus represent the additional contributions to the bulk conductive 
heat flux due to the presence of the particles. 

The expression for Q1 may first be considered for a composite material which is not 
flowing. In this case, the last two terms in (2.8) are identically zero, and the bulk con-
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ductive heat flux differs from that of the suspending fluid only when k 1 =1: k 2 , as expected 
on simple physical grounds. When k 1 =1: k 2 , however, the microscale temperature field, 
and thus Qi, depend not only on the particle conductivity, but also on their geometry, 
concentration and orientation distribution. Detailed results have been obtained by many 
investigators for this case of conduction through a motionless, composite material, ap
parently beginning with MAXWELL (1873) and ending, most recently, with RocHA and 
ACRIVOS (1973), who considered dilute composites with particles of arbitrary shape, and 
JEFFREY (1973), who considered non-dilute concentration effects in a composite of spherical 
inclusions. It may be noted that for k 2 /k 1 = 0(1), the purely conducting composite will 
respond to changes in the imposed temperature field on a time scale which is the same 
magnitude as would occur for the suspending fluid alone. Furthermore, for a given thermo
dynamic state, the effective thermal conductivity of the composite is a unique property 
of the material. 

In the presence of a bulk flow, the situation becomes much more complicated. Not 
only are the geometry, concentration and orientation of the particles important, but the 
bulk conductive heat flux, Qi, depends critically on both the type and strength of the 
flow. Indeed, even when the thermal properties of the dispersed and continuous phases 
are identical, the presence of the last term in (2.8) strongly suggests that the existence 
of bulk flow may alter the bulk conductive flux Qi from that of the motionless composite; 
that is, the bulk conductive flux Q; is a function not only of the material, but also of the 
flow. 

In the general case, the presence of a flow has two conceptually distinct, though coupled, 
effects. The first is the direct effect of convection on the local temperature distribution, for 
a given microstructural configuration (i.e., for particular distributions of particle shape, 
orientation, and position). As the local temperature distributions are altered by changes 
in the bulk flow strength, the flow type, or the bulk temperature profile, so too are 
the contributions from all the integral terms in the expression (2.8) for Q;. It may be 
noted that these changes in Q1 due to changes in the local temperature fields will generally 
show a transient (or memorylike) character. The local disturbance velocity field is establish
ed instantaneously for a given microstructure (the microdynamics is assumed to be in
ertialess and natural convection is neglected). However, the local temperature field only 
changes on a finite time scale which depends on the thermal properties of the two phases, 
as well as the nature of the flow. 

The second major flow effect on the bulk conductive heat flux Q; is due to the flow 
dependence of the microstructural configurations. We have noted previously that the bulk 
conductivity of the material is sensitive to both the shape and orientation distribution 
of the suspended particles. For rigid nonspherical particles, there is a flow-induced rota
tion which causes the orientation distribution to change from its form in the motionless 
composite. For deformable particles, there is the additional effect of hydrodynamically 
induced particle deformation. In any real suspension these flow-induced changes in the 
microstructure are resisted by one or more "restoring" mechanisms, like rotational Brown
ian motion or particle elasticity, which tend to maintain the equilibrium or rest con
figuration which would exist in the absence of flow. Thus the microstructural state, and 
Q, depend on both the flow type and the flow strength relative to the strength of the 

http://rcin.org.pl



488 L. G. LEAL AND T. J. McMILLEN 

restoring mechanism. In addition, the hydrodynamically induced changes in microstruc
ture associated with such effects as the rotation and deformation of the particles are all 
deterministic (initial-value) processes, and thus provide a second mechanism by which 
the bulk conductive heat flux will exhibit a "memory" for past microstructural states of 
the material. The fact that the microstructure always tends to return to its rest state on 
a finite time scale A. -l insures that this memory-like contribution to Qi is "fading" in the 
sense that the dependence on recent microstructural states is stronger than the dependence 
on earlier states. 

In summary, these general considerations indicate that the constitutive behavior for 
conductive heat flux of a composite, suspension-like material, in the presence of flow, 
will exhibit dependence both on the instantaneous flow type and strength, as well as the 
histories of the bulk deformation, and temperature distributions. Indeed, from a broader 
viewpoint, it may be suggested that many other fluid-like materials which are rheologically 
complex (polymer solutions, for example), will also exhibit similar flow-induced com
plexities in the constitutive relations for the conductive heat or diffusive mass flux! 

3. Calculations of the bulk conductive heat flux 

In order to provide more detailed results, it is necessary to evaluate the expression 
(2.8) for specific imposed bulk flows and specific types of particles. Unlike the theories 
for motionsless composite materials, however, relatively few such calculations have yet 
been completed. The main difficulty is that one must determine the detailed local tempera
ture distribution at the scale of the suspended particles. In general, this would require 
solutions of the full microscale thermal energy and momentum balances, both inside 
and outside the particles, an impossibly complicated task. 

We consider here only the much simplified case of dilute suspensions in which both 
thermal and hydrodynamic particle-particle interactions are neglected. Furthermore, we 
assume that the microscale disturbance flow is creeping (i.e., the Reynolds number, 
Pye I fl, is identically zero), so that the local velocity field near a single particle can be 
determined exactly. Finally, all of the particles will be assumej to be identical; under 
these circumstances the temperature distribution around any single particle is identical 
with that around any other particle and the sums over particle volume in (2.8) can be re
placed by a single integral over one particle multiplied by the volume fraction of sus
pended particles. In this case, (2.8) becomes 

where ni is the outer unit normal to the particle surface, tJ> the volume fraction of sus
pended particles, and V0 the volume of a single particle. The limits S*, V* and V on the 
integrals indicate integration over the surface (S*), the volume (V*), and the complete 
disturbance velocity and temperature domain (V) of a typical particle. 
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In order to proceed further, it is necessary to consider specific forms for the imposed 
bulk velocity and temperature fields, and thus calculate the local temperature field in the 
vicinity of a suspended particle. The only case which has so far been considered is a steady 
bulk shear flow 

(3.2) ((u)) = yy, ((v)) = ((w)) = 0 

and a steady linear bulk temperature profile 

(3.3) ((T)) = ~y. 

The governing equation for the local temperature field in the two phases [Eq. (2.4] ap
propriately nondimensionalized, has the general form 

(3.4) 

both inside and outside the particle. Here, u represents the appropriate creeping flow 
solution of the Navier-Stokes equations and Pei is the Peclet number for the particular 
phase {i) 

The boundary conditions are that the temperature and heat flux inside and outside the 
particle match at its surface, and that T-. txy as lrl -. oo. Analytic solutions of (3.4), 
subject to these conditions, can be obtained either in the asymptotic limit Pe -. 0, cor
responding to conduction dominated heat transfer or in the limit Pe -. oo, in which 
convection effects dominate. 

The problem of interest is to determine the influence of the bulk flow on the bulk 
conductive heat flux, Qi. It may be noted that the limit Pei -. 0 necessarily restricts the 
convective contributions to Qi to small magnitude corrections of the results for a mo
tionless composite. NIR and ACRIVOS (1975) have therefore attempted analytical solu
tions of (3.4) for Pei ~ 1, where the flow contributions to Qi may be large, of O(Pei) 
with 0 < m ~ 1. Unfortunately, even for rigid, spherical particles the solution is difficult 
and not yet fully complete. For nonspherical or deformable particles where the flow
induced particle rotation causes the microscale temperature problem to be fully time
dependent and three-dimensional, the large Pe case appears completely intractable, even 
for steady imposed bulk velocity and temperature distributions. Thus, the detailed calcu
lations which we shall describe in the remainder of this paper deal exclusively with the 
regime 

Pei ~ 1. 

Three specific cases are considered: a dilute suspension of spherical drops; a dilute sus
pension of drops which are slightly deformed by the shear flow; and a dilute suspension 
of rigid prolate spheroids in the presence of rotational Brownian motion. 
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3.1. A dilute suspension of spherical drops (Pe ~ 1) 

In the first case we consider perfectly spherical neutrally buoyant drops of radius a 
which are composed of a Newtonian fluid with viscosity t-t2 , thermal conductivity k 2 

and heat capacity CP
2

• The suspending fluid is also Newtonian with viscosity, thermal 
conductivity and heat capacity # 1 , k 1 and C Pt, respectively. The analysis of the micro scale 
temperature distribution in this case involves a straightforward application of the methods 
of matched asymptotic expansions, using the velocity fields calculated by "TAYLOR (1932) 
for the creeping motion of a spherical drop in a simple shear flow of the suspending fluid. 
The details of this calculation are reported by LEAL (1973), and will not be repeated here. 

When the integrals in (9) are evaluated using the calculated microscale temperature 
distributions, an explicit expression for the bulk conductive heat flux is obtained, 

(3.5) Q, = -k. ii-k. iitl> [ (k, -k.)k,: 2kl + ( 1.176 (~2;;;;;;, 

+( 2t-t•+ 5t-t2 )(o.12 2t-tt+ 5t-t2 -0.028 k 2 -k1 ))Pef12 +0(Pen]. 
#t+#2 #t+#2 k2+2kl 

We restrict attention to the component of Qi in the cross stream direction of the bulk 
temperature gradient. The effective conductivity k*, corresponding to (3.5), is simply 

(3.6) k* = _&. 
Cl 

Of particular interest is the case k 1 = k 2 where 

(3.7) k* = k 1 [1 +0.12<1>( 
2
#1 +St-t2 

)

2 
Pei'2]. 

#1 +#2 

As suggested in the previous section, the effective conductivity is enhanced by the existence 
of the shear flow, even when the thermal conductivities of the two phases are identical. 
Indeed, as the difference between k 1 and k 2 is increased, the flow contribution to k* 
increases rapidly, regardless of whether k 2 > k 1 or k 2 < k 1 • The pure conduction con
tribution to (3.6), on the other hand, either increases or decreases as k 2 is increased or 
decreased relative to k 1 • Furthermore, as shown both by (3.5) and (3.7), the degree of 
flow enhancement depends not only on the physical properties of the two fluids, but also 
on the shear rate, through the dependence of k* on Pe1 • Finally, an interesting feature 
of the analysis leading to (3.5) is the fact that the first flow-induced contribution to k* 
is O(Pef12) in spite of the fact that there are nontrivial modifications of the local tempera
ture field at O(Pe1). Since this result would appear to be due to the special symmetry in
duced in the temperature field by the assumed sphericity of the drop, one may ask whether 
any fundamental change would occur in the predicted flow rate dependence of k* when 
account is taken of deformations of the drop to non-spherical geometry. Specifically, we 
may ask whether even very small deformations of shape might not lead to significant 
modifications of k* when compared to the O(Pd'2) terms for the perfect sphere. From 
a more applied point of view, the problem is to determine the circumstances in which 
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(3.5) provides an adequate first estimate of the flow enhancement of k* for real emulsions, 
where small deviations from the spherical shape are inevitable even for large values of 
the surface tension or droplet viscosity. 

3.2. A dilute suspension of slightly deformed drops (Pe ~ 1) 

In order to investigate the influence of particle deformation on the conductivity of 
a dilute suspension, we now consider the case of neutrally buoyant drops which are 
slightly (order e) deformed by the ambient shear flow. Following the earlier work of 
TAYLOR (1932), the analysis is restricted to the two limiting cases of dominant interfacial 
tension forces (e "' ayfl 1 /(f ~ 1), and dominant internal (drop) viscosity effects (e "' 
"' 1/). ~ 1). Here, A. is the ratio fl 2 ffl 1 , (f the interfacial tension and a the undeformed 
drop radius. The local temperature field is obtained as a double expansion in Pe1 and e. 
The details are reported by McMILLEN and LEAL (1975). At 0(1) in e, the solutions are 
those obtained by LEAL (1973). The solutions at O(e) were carried out to O(ePe 1) for the 
case of deformation dominated by interfacial tension forces and to O(ePe3

'
2

) in the 
viscosity dominated limit. 

Using the microscale temperature solutions, the effective conductivity, k*, can again 
be evaluated from (3.1) and (3.6). For the case of surface tension controlling deforma
tion, we obtain 

(3.8) k* = 1 <~>{ 3(m-1) ( 1.176(m-1)
2 

5A.+2 [o 12 15A.+~I 
k 1 + m+2 + (m+2) 2 + A.+l · A.+1 I 

-0.0281 =~ ~ iJ) Pet'2 +l(m, A, •)•Pe1 +0(e2)+0(PeD+O(ePet'2)+ ... } , 

where m and rare the ratios k 2 /k 1 and Cp)Cp
1

, respectively. /(m, A., r) is a rather complex 
function of the three physical property ratios m, A., r, which is given explicitly by 
McMILLEN and LEAL (1975). It may be noted that /(m, A., r) = 0 for equal values of the 
conductivities, m = 1 (1). For the case of internal viscous forces controlling deformation 

we find 

k* _ 13(m-1) ( _ (m-1) (m-1)2
) 312 _ (m-!l_ 

(3.9) k
1 

- 1 +<I> m+l + 3.00 0.14 (m+l) + 1.176 (m+l)2 Pe1 3.6 (m+l) 2 e 

( 1 411 m(m-1)
2

1( r )
312 I (m-1)2) 3t2 2 ( 2) 0( p 2) I + · (m+lP m -1 -0.168 (m+l) 2 ePe1 +O(e )+0 Pe1 + e e1 + .... 

In this case, the terms which arise due to drop deformation are of order e and e Pe~12 , 
and are thus never more than small corrections relative to the contributions of 0(1) and 
O(Pe~12) for the case of a perfect sphere, Eq. (3.5). In contrast, however, the deformation
induced convective contribution to k* in the interfacial tension dominant limit is of 
O(ePe1). In this case the relative magnitudes of the flow-induced contribution for a sphere 
which is O(Pe~12), and for a slightly deformed sphere where there is an additional term 

(1) It may be shown, by consideration of the structure of the general expression (2.8) and the asym
ptotic solutions of (3.5) for Pe1 ~ 1, that the O(Pe1) contribution must vanish in all cases when kz = k1. 
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of O(sPe1), depend critically on e and Pe1 (for each fixed m :1: 1). Clearly, however, the 
perfect sphere result can be significantly modified or even dominated completely in some 
circumstances by the deformation-induced flow contribution. Let us now examine the 
results, (3.8) and (3.9), in more detail. 

For the case of deformation dominated by viscous effects, we may note first that the 
pure conduction term induced by the change from spherical shape is always negative 
(except for m = 1 where it is zero). This is easily understood by noting that the drop 
deforms with its principle axis of contraction in the cross-flow (y) direction and of ex
tension in the flow (x) direction. Thus, in cases where k 2 > k1 (i.e., m > 1), the pure 
conduction enhancement of k* is decreased as the dimension of the drop in the direction 
of heat transfer is decreased. On the other hand, when k 2 < k1 so that the pure conduc
tion effect of the drops is to decrease k*, the change becomes smaller as the drop deforms. 
The flow-induced contribution to k* is always strictly positive in the case of a perfect 
sphere. However, the deformation-induced correction, O(ePe~ 12), may be either positive, 
negative, or zero, as shown in Fig. 1, depending on the magnitude of the thermal con-

FIG. 1. The O(ePe~' 2) term in the eff~ctive conductivity when viscous forces control deformation, as a func
tion of the conductivity ratio, m= k 2 /k 1 , for several values of the heat capacity ratio, T = C,)C,

1
, 

a: T = 3, b: -r = 2, c: T = 1, d: T = 0.5, e: T = 0. 

ductivity ratio, m. In any case, the flow contribution associated with small deformations 
is always dominated by the contribution for the sphere and the complex results inherent 
in Fig. 1 are no more than qualitatively suggestive of the more important changes which 
may occur when larger deformations of shape occur, as will often happen in the real 
system. 
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For the case of deformation controlled by surface tension forces, the drops deform 
along the principle axis of strain of the undisturbed shear flow, thus elongating along 
an axis 45° from the flow (x) direction. As noted previously, the flow-induced contribu
tion for a sphere is always positive (i.e., k* is enhanced by the existence of flow). However, 
the dominant deformation-induced contribution to k* is the flow term, of order s Pe1 , 

which can be either positive or negative depending on the values of m, A., and T. The 
general characteristics are demonstrated in Fig. 2, where /(m, A., T) is plotted as a function 
of m and A for three values of T. We again note that /(m, A, T) = 0 for m = I. The 
limiting case, m --+ 0, is of special interest and can also be evaluated analytically provided 
care is taken to hold Pe2 fixed (and small) so that the constraints Pe1 , Pe2 ~ 1 are not 
violated. In this case, 

(3.10) k* f 3 [ 1 k;"' 1+~\-2 + (-9.382A2 -17.640A-24.543)+-:r(1.341A2 

+ 7 .096.1+ 2.940) J 32g:\ )2 + O(m''2 Pd'2
) + .. .}. (m -+ 0). 

It is particularly noteworthy that the deformation-induced contribution in this limit com
pletely dominates the largest flow contribution which occurs for a spherical drop. Thus, 
as suggested in the preceding discussion, the presence of even a small deformation of 
shape can cause a fundamental change in the dependence of k* on the flow and material 
parameters. It would thus appear that care must be taken in attempting to correlate ex
perimental data for any suspension in which the particles are not exactly spherical with 
theoretical results for a suspension of spheres. 

3.3. A dilute suspension of rigid prolate spheroidal particles with rotational Brownian motion (Pe ~ 1) 

As a final example, we consider the case of a dilute suspension of rigid spheroidal 
particles which are subjected to significant rotational Brownian motion. Unlike the 
previous example, the degree of departure from spherical shape is not restricted. Indeed, 
we assume that the ratio of major to minor semi-axis length, which we denote as r,, 
can vary from I (sphere) ~ rP < oo (a highly elongated rod). 

In the absence of Brownian motion, the rotational motion of the particles is periodic 
and described by the familiar orbit equations of JEFFREY (I923). JEFFREY also calculated 
the quasi-steady Stoke's velocity field for an arbitrary instantaneous orientation and rate 
of particle rotation. Unfortunately, however, Jeffrey's solution was obtained using a 
Cartesian axis system fixed in the particle, and is extremely inconvenient for use in (3.5). 
Thus, in the present work, it was necessary to re-solve the problem using prolate spheroidal 
coordinates to obtain a more convenient form. The microscale heat transfer problem is, 
of course, time-dependent as a result of the particle rotation, however the limiting case 
Pe ~ I can still be solved using a straightforward perturbation scheme provided car~ is 
taken to include the rotation-induced time-dependent terms at each order in Pe. The 
final result for Q, is of the general form 

(3.11) 

16 Arch. Mech. Stos. nr 3176 
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c 

-17 
FIG. 2. The O(ePe1) term, I(m, A., T), in the effective conductivity when interfacial tension forces control 
deformation, as a function of the conductivity ratio, m = k 2 /k 1 , and the viscosity ratio, A. = p 2 /p1 , 

for several values of the heat capacity ratio, T = Cp)Cp
1

• Detail A: T = 0.5; Detail B: T = 1; Detail C: 

T = 2. 

where 01 and c/> 1 are the polar angles defined in Fig. 3. In order to proceed further, this 
orientation dependent expression must be averaged over all possible orientations taking 
account of the orientation distribution of the particles. If the orientation distribution 
function is denoted by N(0 1 , c/> 1), the quantity of interest is 

:lt 2:1t 

(3.12) Q, = f d()t f sin()t ocf>JN(()t, cf>t)Q,(()t, cf>t)l. 
0 0 

In the absence of Brownian motion or other disturbance effects, the orientation distri
bution is determined in a dilute suspension by the motion about Jeffrey orbits. The action 
of rotary Brownian motion is a randomizing influence on the particle orientation. Thus, 
with Brownian motion present, the distribution of orientations represents a compromise 
between the hydrodynamic-induced distribution associated with the undisturbed Jeffrey 
orbits and the uniform distribution which results from unopposed Brownian rotation. 
The probability distribution function for particle orientation is governed by a modified 
Fokker-Plank equation. Solutions of this equation, including a partial list of references 
to earlier work may be found in Leal and HINCH (1971) and HINCH and LEAL (1972). 
We consider here only the limit of strong Brownian motion, D fy ~ 1, where D is the 

16* 
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y 

FIG. 3. The orientation angles 01 and t/1 1 for the rotating particle. 

rotational Stokes-Einstein diffusion coefficient for the particles. In this case, the orienta
tion distribution function takes the general form 

(3.13) 

Substituting (3.13) into (3.12) one obtains 

(3.14) 

The first term, Q8, is the pure conduction contribution with a random orientation distri

bution. The second term, Qg, represents the first effect of non-random orientation on the 

pure conduction contribution(Z). Finally, the first flow-induced term, Q~, occurs at 

0 ( Pe 1 1). It is significant that the flow-induced contribution to Q, is identically zero 

(2) It may be noted that the 0 ( ~ ) departure from a random orientation distribution produces no 

pure conduction contribution to Q,.. 
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in the limit of a purely random orientation distribution. Detailed expressions for the 

various coefficients Q{ in (3.14) may be found in McMillen's Ph. D. thesis (1976). 
In addition to its effect on the orientation distribution function, rotary Brownian 

motion also contributes to the bulk conductive heat flux in a mor.;! direct way. Physically, 
this direct effect is due to the random particle rotations acting on the mean tem
perature field in the presence of an orientation distribution function N(0 1 , f/> 1) which 
is not uniform. In the low Pe limit considered here, we model this direct contribution 
by including an effective angular velocity of the particles which is associated with the 
diffusion process across statistical population gradients in the orientation probability 
space. A similar direct effect has also been included in most (though not all) calculations 
of the bulk stress in suspensions (cf. HINCH and LEAL, 1972, or the recent review by 
BRENNER, 1972). It should be noted, however, that the existence of a direct Brownian 
motion contribution has never been conclusively justified to the best of our knowledge. 
We are presently attempting to provide such a justification for the thermal conductivity 
problem. For present purposes we shall follow the preponderance of prior workers and 
include the direct contribution without rigorous justification. Following the above dis
cussion, we thus calculate the contribution to Qy resulting from an effective particle an
gular velocity, -DV(logN). To O(Pe), the microscale temperature distribution induced 
by this motion is uncoupled from that which arises due to the hydrodynamically induced 
particle rotation in the absence of Brownian motion effects. The resulting expression for 
Qy, when averaged in the manner of equation (3.12), has the general form 

(3.15) 

The overall bulk conductive heat flux in the cross-flow direction is thus 

(3.16) Qy = Qy+Qy. 

The behavior of Qy is best depicted by considering the various terms in (3.14) and 

(3.15) individually. We begin with Q8/( -k1 a) which is plotted in Fig. 4 as a function 
of FP for various values of m. Of particular note is the strong dependence of the magnitude 
of this random orientation, pure conduction contribution to Qy on the value of m, for 
moderate values of FP, and the rapid approach, for small to intermediate values of m, 

to its asymptotic value for FP~ oo. In fact, when m= 10, the value of ( -Q8/(ka) for 
FP = 20 is already within 4°/o of its final, large particle aspect ratio value, 4.09. Finally, 

it may be noted that the contribution (Q8/- ka) becomes very large when both m and 
F are large. For m large, but fixed, and FP~ oo, the limiting value is m/3, independent 
of FP. On the other hand, for FP large but fixed, and m ~ oo, we obtain the limiting value 

~ r;, independent of m. We now turn to the term ( -Q~/k1 a) which represents the first 

influence of nonrandom orientation on the pure conduction contribution to the effective 
conductivity. The most striking feature in this case is the very small magnitudes, and 
very weak dependence on either m or FP below m "' 10. For m < 1, there is a very small 
negative value which increases to zero for m = 1 and then begins again to decrease to 
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1(} 50 100 
Axis ratio (A/8) 

FIG. 4. The pure conduction, random orientation, contribution Q8J( -ka.) as a function of the particle 
axis ratio FP = A/B, for various values of the conductivity ratio m = k 2 /k 1 • 

negative values. For m > 10, where the change is significant, this behavior simply reflects 
the decreasing fraction of particles which are aligned in the cross-flow (y) direction as 
the hydrodynamic induced rotation begins to have a significant influence on the orienta
tion distribution function. As shown earlier by HINCH and LEAL (1973), alignment in 
the flow direction becomes increasingly significant as rp is increased, all else being equal, 
thus accounting for the increasing large negative valu~ of ( -Qgfa.k1) as FP is increased. 

Finally, we have also obtained expressions for Ql and Qf. The general form in both cases 

(3.17) Ql +Ql = Pe, (~ )<m-l){((m:'A,) + m:2A2 + (m+A,~(m+A2) + (m:~,)2 
rJ.s ) T ( a.6 rt.7 rJ.s rJ.9 

+ (m+A 2)2 m+ (m+A 1) + (m+A 2) + (m+A 1)(m+A2) + (m+At)2 

rt.1o ) a.u a.12 a.13(l-m) rt.14(1-m) a.ts(l-m)} 
+ (m+A 2)2 r+ (m+A 1) + (m+A~)+ (m+A 1)(m+A2) + (m+A 1) 2 + (m+A2)2 · 

Here, A 1 , A 2 and the a./s are shape factors, with A1 and A2 always > 0, and the a./s = 0 
when FP = 1. Unfortunately, the shape factors a.i are extremely complicated functions 
of FP and thus they have not yet been evaluated numerically. However, it can be seen 
that the complete flow-induced contribution (3.17) vanishes for m = 1, as was also true 
for the O(Pe) contributions in the case of a spherical drop. Furthermore, in the limit 

m -+ 0, a finite contribution of 0 { ~ Pe2 ) will be obtained. Finally, it may be noted that 
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05.-------------------------------------------------------------, 

M-O 

50 100 
Axis ratio(A/8) 

Fto. 5. The pure conduction, non-random orientation, contribution Qtf( -ka.) as a function of the particle 
axis ratio FP = A/B, for various values of the conductivity ratio m = k 2 /k 1 • 

the Brownian motion and hydrodynamic contributions to Q, both require nonuniform 
orientation distribution to be effective, i.e., the terms are O(y/D) in both cases. More 
detailed results based on (3.17) will be given by McMILLEN (1976). 
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