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The passage from a particle system to a continuum model

R.S. RIVLIN (BETHLEEM)

A THREE-DIMENSIONAL lattice is considered in which each cell contains a number of mass-points.
These mass-points undergo displacements under the action of forces. It is shown how, under
appropriate smoothness assumptions regarding the forces and displacements, as we move
from mass-point to corresponding mass-point in neighboring cells, a continuum model of the
director type can be formulated for the mechanical behavior of the system. Particular attention
is given to the identification of the “surface” of the system.

W pracy oméwiono trzy metody, ktore sg zwykle wykorzystywane przy wyprowadzeniu réwnan
ruchu dla punktu i warunkéw brzegowych mechaniki uogbélnionego kontinuum oraz dla przy-
padku, gdy deformacja opisana jest przez inne niz zwykle pole przemieszczenia lub pola do-
datkowe. S3 to metody wykorzystujace zastosowanie globalnych réwnan bilansu energii lub
uogdlnionej zasady d’Alemberta oraz réwnan pedu i momentu pedu. W dyskusji nacisk po-
fozono na te aspekty analizy, ktére wynikaja z rozwazan o charakterze ogblnym oraz takie,
ktore bezpodrednio lub poérednio narzucaja pewne zalozenia na fizykalng nature przyjmowa-
nych w teorii zmiennych kinematycznych. Wyciagnieto wniosek, ze dla wigkszoéci przypadkéw
te teorie, w ktdrych zmienne kinematyczne nie maja bezposredniego znaczenia odpowiadaja-
cego wlasciwemu ukladowi fizycznemu lub klasie ukltadow fizycznych, maja bardzo ograniczona
warto$é. Przedyskutowano zatem kilka dopuszczalnie wyidealizowanych prostych ukladéw
z punktu widzenia réznych typéw zmiennych kinematycznych, ktre moga mie¢ zastosowanie
do opisu deformacji i narzucaja ograniczenia na nature tych zmiennych implikowana przez
opisany uklad fizyczny, Wreszcie przeprowadzono probe zanalizowania ograniczenn nalozo-
nych na mechaniczne teorie uogélnionego kontinuum w ten sam sposdb, w jaki dokonano
przejécia od opisu ukladu wyrazonego w wielko$ciach okres§lonych w dyskretnych punktach
obszaru zajmowanego przez rozwazane cialo do opisu, w ktérym wielkodci te sg zastapione
przez pola okre§lone na tym obszarze.

B paGore ofcy)KIeHBI TPH METOMR, KOTOPBIE OGBIYHO MCHOJIB3YIOTCA NPH BRIBOJE ypaBHEHHit
JABMJKEHUA [UIA TOUKHM M T'PAaHMYHBIX YCJIOBHI MeXaHMKH 00OOIIEHHOrO KOHTHHYYM, THE Je-
QopManusa ONMHCBIBAETCA Yepes NApyroe, YeM oObIYHO, MOJie epeMelleHHii HIH HYepes Jono-
HHTEJIBHBIE 110151, DTO METOABI Gasupyrolue Ha npumeHeHny rI06aIBHBIX ypaBHeHMit GanaHca
SHEpTHH, /M Ha paciiuperun npuHuuna TanamGepa, a Taroxe ypaBHEHHI HMITY/IECA H MOMEHTA
umnyeca. B obcyskaenuu o6paliieHo BHEMAaHHE Ha 9TH acleKThI aHAIM3a, KOTOPbIe BBITEKAIOT
M3 paccy»K/ieHnit obLIero XapakTepa H Ha Te, KOTOPbIE HEMOCPE/ICTBEHHO HIIH NOCPE/ICTBEHHbIM
06pa3om HaK/IaABIBAIOT HEKOTOPHIE MPE/NOIOKEHNA Ha HU3HUECKYIO PHPOAY NPHHUMAEMBIX
B TEOPHH KMHEMATHYECKHX nepemMeHHbIX. ClenaH BLIBOM, YTO A GOMBIIMHCTRA CITy4aeB 9TH Te-
OpMH, B KOTODBIX KHHEMATHYECKHE [IEPEMEHHBIE HE HMEIOT HEMOCPEICTBEHHOTO 3HAUECHMA, OTBE-
Y3Io1Iero CBOHCTBEHHOM (hH3HMUIecKOll cHCTeMe HIIM KiacCcy (DH3HYECKHX CHCTEM, HMEIOT OUYeHb
orpaHudeHHoe 3HaueHue. Mtak ofcyauM HECKONBKO OOMYCTHMO MOEANIM3HPOBAHHBIX MPOCTHIX
CHCTEM C TOYKH 3PEHHA PASHBIX THUIIOB KHHEMATHUECKHX IEPEMEHHBIX, KOTOPbIE MOTYT HMETh
TIpHMEHEHNE JUIA onucaHuA ReopMauMii M HAKIAABLIBAIOT OTPaHMUEHHsA HAa NPUPOAY STHX
MepeMEHHbIX, BEISBAHHYIO Yepe3 OMHCaHHYI (uapdecKyro cHcremy. Hakomen npeanpuHaTa
MOMBITKA AHANIM3a OrPAHHYEHHH HAIOMKEHHBLIX HA MeXaHHWdYeCKHe TeopHH 0GODILEeHHOro KoH-
THHYYM T4KHM cambIM 00pa3oM, Kak MPOBEMEH IePEXO[l OT OMMCAHHA CHCTEMbI, BBIPAKEHHOMN
B BEJIMYHHAX ONpEMeNeHHbIX B AUCKPETHBLIX TOUKAX o0JIacTH 3aHMMaemoOil uepe3 paccmaTpH-
ﬁmoe TEJIO, K OIHCAHHIO, B KOTOPOM 9TH BEJIMUHHbI 3aMeHEHbI [IOJIAMM OMPeIeNICHHBIMH B 9TOH
acTH.

1. Introduction

IN recent years many continuum-mechanical theories have been formulated in which the
deformation is described by one or more vector or tensor fields in addition to the usual
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displacement field. A succinct historical review of the differences between some of these
theories is given in the introduction of a paper by TiERSTEN and BLEUSTEIN [1]. In some
cases, the theory is presented on the basis of certain assumptions of a mathematical
nature, which may perhaps be regarded as axioms of the theory. Beyond a vague statement
that the continuum theory is intended to model media which have some structure, the
system which the theory models is ill-defined. Also, little, or no, indication is given of
the relation between the variables of the continuum theory and those of the physical
system modelled.

In 1964, GreeN and RIVLIN [2] presented a thermomechanical theory in which the
deformation field in a body was described by a number of tensors of various orders, in
addition to a conventional displacement field. While their theory was motivated heuristic-
ally by a physical model consisting of interacting “particles”, each of which consists of
a number of mass-points, the passage from the particle model to the continuum theory
was not made explicit. In later papers, GREEN and RIVLIN [3] and RIvLIN [4, 5] attempted
to achieve this passage with increasing degrees of explicitness. While none of these papers
presents a completely satisfactory procedure for making the transition from particle
model to continuum theory, certain points that are worth noting emerge.

It appears that in order to obtain a continuum model of the particle system, it is
necessary that the displacements undergone by corresponding mass-points in different
particles vary sufficiently slowly as we move from particle to neighboring particle. It
was argued by RIvLIN [5] that this indicates that the generalized continuum theories
which model the particle system cannot be applied to problems in which the applied
forces may vary rapidly on the scale of the structure. (It has been argued that the results
of the generalized continuum theories could be given meaning, in such cases, as predictive
of ensemble averages. However, such ensemble averages would, at any rate in the case
of linear theories, be equivalent to the solution of problems in which the applied forces
do not vary rapidly on the scale of the structure.)

It appeared also, from the discussion in [4, 5], that continuum theories which are
formally very different can model the same system and that unless the various fields in-
troduced in a continuum theory are clearly identified with variables describing the behavior
of the particle system, which it pretends to model, the theory remains empty of physical
significance.

The present paper takes up again this question of the passage from a particle system
to a continuum model. It differs from the previous papers in a number of ways. In order
to concentrate on other aspects of the problem, the implications which are inherent in
the consideration of the dynamical case (see, e.g., [5]) are avoided by considering only
quasistatic thermomechanical processes. Also, the physical model considered is a three-
dimensional lattice, each cell of which contains a number of mass-points. (In contrast,
the composite particles considered in [3, 4, 5] are geometrically related in an unspecified
manner.) This enables us to be much more explicit in underlining the difficulties associated
with the passage from particle system to continuum model and particularly with the identifi-
cation, in the particle system, of the surface of the body in the continuum model. It is not
maintained that the identification achieved here is completely satisfactory and it is perhaps
not possible to achieve such identification without some heuristic elements remaining.
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2. Generalized coordinates and forces

In classical continuum-mechanical theories, it is considered that the deformation of
a body is fully described if the vector position x at time ¢ of a generic particle of the body,
with respect to a fixed origin, is specified as a function of its vector position X at some
reference time.

In generalized continuum-mechanical theories we consider that, in order to describe
the deformation fully, we must specify, not only the dependence of x on X and ¢, but
also the dependence of p other variables &, (x =1, ..., u) on X and 7. The quantities
&, may be scalars or the components in some coordinate system of vectors or tensors.
We shall call &, the generalized displacements of the particle.

Again, in the Piola-Kirchhoff formulation of classical continuum mechanics, we
consider that the force system acting on a body of the material considered consists of body
forces f per unit mass and surface forces F, per unit surface area measured in the reference
configuration of the body. The power 2 of these forces is given by

@.1) ? = [of-xdv+ [F-xds,
v 5

where g is the material density in the reference configuration, ¥ is the domain occupied
by the body in its reference configuration, and § is the surface of this domain.

In the generalized continuum-mechanical theories, the force system acting on the
body consists not only of the force fields f and F, but of further force fields conjugate
to the generalized displacements &,. It is assumed that the power 2 of the forces acting
on the body is given by

2.2) ?= [ot-xav+ [F-xdS+3 [epubudV+3 [ @.E.5.
14 5 | 4 S

2 denotes summation over « = 1, 2, ..., u. The forces ¢, are the generalized body forces
and the forces @, are the generalized surface forces.

3. The energy balance

In the energy balance approach to the derivation of the point equations, it is assumed
that thermal energy is supplied to the body in addition to the energy supplied by the
work of the conventional and generalized forces. We assume that the heat supply takes
place through the surface of the body at a rate Q, per unit area measured in the reference
configuration, and throughout the volume of the body at a rate g, per unit mass. The
rate 2 at which heat is supplied to the body is thus given by

(3.1) 2= f 0qdV+ f Qds.
vV s
It follows from the First Law of Thermodynamics that
(3.2) P+2=U+T,

where # is the internal energy of the body and 7 is its kinetic energy.
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We assume that the forces exerted by one part of the body on another are short-range
forces, so that the internal energy is additive and may, accordingly, be expressed in the
form

(3.3) @ = [ geav+ [ Eas.
v Y

We shall, for the moment, consider only quasistatic deformations, so that 7 = 0 in
(3.2). The various rates in the equations developed may be considered to be measured
with respect to a time-like variable, rather than with respect to real time. An appropriate
time-like variable results from any sufficiently smooth monotonic mapping which maps an
infinite interval of real time onto a finite interval. Alternatively, we could replace the
rates, in the various equations, by infinitesimal variations. In the interests of succinctness,
we shall adopt the former course. Also, we shall assume that effects arising from surface
tension are negligible, so that in (3.3) we may take E = 0,

With 9 = 0 and 2, 2 and % given by (2.2), (3.1) and (3.3) respectively, we obtain,
from (3.2), with E = 0,

34)  [oiav = [of-xav+ [F-xds
s

4 Vv
+3 [opubadv+3 [@.bds+ [ogav+ [ Qas.
v s Vv s

This is the global equation of energy balance for quasistatic deformations of the body
considered. Our object is to obtain from it point equations.

We assume that the forces exerted by one portion of the body on another in contact
with it are of the same types as the applied surface forces considered, so that equation
(3.4) may be applied to any portion of the body, if appropriate interpretation is given
to ¥, S and to the forces f, F, ¢, D,. We shall apply it to an infinitesimal tetrahedral
element of the body which, in the reference configuration, has edges parallel to the axes
of a rectangular cartesian coordinate system x and slant surface with unit outward normal
N. We denote the ordinary force exerted at “time” ¢ on the slant surface by F and on that
initially perpendicular to the axis x, by F,. Similarly, we denote the generalized force,
conjugate to the generalized displacement &,, acting on the slant surface by @, and that
acting on the surface initially normal to the axis x, by @,,. Both the ordinary forces
and the generalized forces are measured per unit area of surface in the reference configu-
ration. We also denote the rate at which heat flows into the tetrahedral element at “time”
t through the slant surface by Q and the rate at which it flows through the surface initially
perpendicular to x, by Q4. Again, the rates are measured per unit area in the reference
configuration. It then follows from (3.4), in the limit as the tetrahedral element becomes
vanishingly small, that(*)

(3.5) F-FiNo) %+ D (Bu—PuuN)E+AQ— QN4 = 0.

This relation is valid at each point of the body. We can accordingly use it to substitute
for (F- %+ ) ®.£,+0Q) in (3.4). We thus obtain, on using the divergence theorem to

(') The Einstein summation convention is adopted for upper and lower case Latin subscripts.
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replace surface integrals by volume integrals, and applying the result to an infinitesimal
element,

(6) 08 = @f+F0) %+ D @batPus et @4+0u ) +Fa Kot D Pusbia.
We can proceed no further without making some assumption regarding the manner
in which the various quantities involved are affected by a superposed rigid motion.
Plainly, ¢, Q and ¢ are unaltered by such a superposed motion. The superposition of
a translation u, say, on the assumed deformation changes x to x+ua, while leaving f, F,
F4, 04, and x 4, unchanged. We shall assume, in the present paper, that the u variables

. . 1
&, are the components & in a rectangular Cartesian system x of » = TH vectors Eg

(8 =1, ..., 7). These vectors are called directors. Correspondingly, the generalized forces
¢ and D, are the components ¢ and D of » vectors ¢4 and » vectors®; (f = 1, ..., 7)
respectively. It follows from the definition of @, that these are the components D%}
in the system x of 3» vectors ®;,, say. We shall assume that the vectors &z, ¢35, ®; — and
therefore @5, — are material vectors, so that if the body considered is subjected to a rigid
rotation such that the particle at x moves to ax, where a is a proper orthogonal trans-
formation, E;, ¢s,®; and ®;, change to aFg, ads, a®; and a®,, respectively. We shall
further assume that the superposition of a translation u on the assumed deformation
leaves E; and the generalized forces conjugate to §; unchanged. The forces ¢, and ®;
are called director body forces and director surface forces respectively.
With this choice of the generalized displacements, we can rewrite (3.6) as

(B.7) o0& = (ofi+Fu.)xi+ Z 8P+ PR DEP +0q+Quat+ Fakia+ Z@fﬂ‘f}’},

where x;, &P, F4, ..., denote the components in the rectangular Cartesian system x
of the vectors x, Eg, F, .... Here and subsequently, E denotes summation over f =
=1,..,%

Similarly, we can re-write (3.5) as
(3.8 (Fi=FuN)xi+ ) (PP - OPNIEP+Q—Q,N, = 0.

If a translation u, with components u; in the system x, is superposed on the assumed
deformation, then (3.7) becomes

(B9) 0k = (efi+Fu) GHi)+ ) (0P +0PL )EP
+04+QuatFukiat+ D OLED
From (3.7) and (3.9), we have
(3.10) ofitFaa=0
and
0t = D (et +PDIEP+0q+QuatFusiat D, OLE
In a similar manner, we find from (3.8) that
(3.11) Fi—F4N,=0
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and

> @P- DN YEP+0—QuN, = 0.

We now superpose on the assumed deformation an arbitrary rigid angular velocity,
leaving the instantaneous configuration of the body unchanged. For the resulting deforma-
tion, equations (3.10), and (3.11), become respectively

B.12) ok = D) (4P +PLIEP +2utP) +0q+0u.4

+ F (X a+ 9245 %;,4) + 2‘5%’@ A+92,59)
and
ZI (W]‘¢58()NA)(égﬁ)'*'QIjEjﬁ))'i'Q_QANA =0,

where ||2,]| is an arbitrary constant skew-symmetric matrix. Equations (3.10), and
(3.11); remain unchanged.
From equations (3.12), (3.10); and (3.11), we obtain

(3.13) 2] 3 6P+ PR IEP+ Faxsat D, 0DER) = 0
and
9‘12 (d}iﬂ)_@f}NA)é}ﬂ) =

The relations (3.13) are, of course, equivalent to
G14) (P +PLIEP+Fuxsat D PREP)
= Y (@b +PLNEP + Fuyxiat D PYED

and

2 (@P—DYNYEP = 2 (PP — PPN ) EP.

4. Elastic materials

For simplicity we consider only isothermal, homothermal, thermomechanical processes.
We consider the class of elastic materials in which, for such processes, in (3.7), the specific
internal energy &, the ordinary forces F,; and the generalized forces @ depend only
on the deformation gradients x; 5 and on the generalized displacements & and their
first spatial derivatives &), thus:

e = &(x;,8, &7, &),
(41) Fy = FAi(xJ.Bs ﬂﬁ)' Ej.ﬂg)s
¢5¢yl) = ¢2?(xj.8 y Ejﬂ)! E}J.ag) =
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Now, for isothermal, homothermal processes in an elastic material, we can define
the specific entropy n by the relation

4.2) 7 =q|T,
where T is the absolute temperature and % is a function of x; 5, &7 and £§f} only; i.e.
43) 1 = n(x;.8, & &%).

We note that for such processes Q4 = 0. Introducing (4.2) and Q, = 0 into (3.10),,
we obtain

4.4) o = D) (0P +OL)EP+Fusiat D OPER,

where w is the specific Helmholtz free energy defined by

4.5) w=e¢e—Tn.

From (4.1),, (4.3) and (4.5), we see that for isothermal, homothermal processes,
(4.6) w = w(xi4, P, £03)

so that

i = Gyt { s P+ e "‘9}‘

From (4.4) and (4.7), we have
d . P/
3.7:; )xi.A'l' 2(9‘)5&’4'(5:34 Qae;;,)fw

+ 3 (o eqg) 2 -

We note from (4.1) and (4.3) that, for isothermal processes, the coefficients of X; 4,

&P and EP) are independent of these quantities. Assuming that the latter quantities can
be chosen independently, we obtain from (4.8)

(4.8) (Fat_ 4

aw ow ow
= (ﬂ
agpr Fa=eg— 00 = ey

(4.9) PP +PP, =0

We also have (cf. (3.10),)
(4.10) efi+Fua=0.

For reasons which will appear later, we will now consider the modification in these
results which follows from the assumption that the directors E, satisfy the constraint

4.11) Z AE® =0,

where the A’s are constants. We may use the Lagrange method of undetermined multi-
pliers to remove the effect of this constraint, in passing from (4.4) and (4.7) to (4.9), by
rewriting (4.4) as

@12)  ew =D (pP+ORIEP+Fusiat D OREO+1: D, WEP+Lui D) L,
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where y; and (,; are the components of arbitrary undetermined tensors of first and
second-order respectively. It then follows from (4.12) that

ow
0P+ DR, = Ty + 2i 4,

(4.13)
aw
R = 93—5?;_ +Caidp.

aw
3.'{;_‘ ’

Fy=p

5. A physical model

We consider the domain ¥ to be occupied by a three-dimensional lattice consisting
of N identical cells. Each cell consists of » mass-points with masses m; (f=1,...,%),
which interact with each other and with the mass points in the other cells. The mass m
of a cell is given by

(.1) m= Y m,

where ¥ denotes summation over § =1, ..., 7.

Each mass-point is in Brownian motion about some ambient position. Let X{” be
the ambient vector position, with respect to a fixed origin, of the fth. mass-point of the
Pth. cell. Let X® be that of the center of mass of the Pth. cell. Then,

(5.2) mX® = 3 mpXgh.
We write

(5.3) EP = XP-XO,
Then

(5.4) D mEP = o.

We now assume that forces are applied to the various mass-points. Let the force ap-
plied to the fth. mass-point of the Pth. cell be m;fi". As a result of the application of
these forces, the ambient vector position, with respect to the fixed origin, of this mass-
point is x§7 and that of the center of mass of the Pth. cell is x®. Then

(5.5) mx" = Zmﬂxﬁp’.
We write

(5.6) B = x{P—x(P.
Then,

(€h)) D mpEP = 0.

The power 2 of the applied forces acting on the N cells is given by

N
(5.8) 2= D NmptP i,

p=1
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The resultant applied force mf‘® acting on the Pth. cell is given by

(5.9) mf® = ¥ my .
We define ¢ by

(5.10) PP = L P,
Then

(5.11) N g = 0.

Introducing (5.6) and (5.10) into (5.8), and using (5.1), (5.7) and (5.11), we obtain
N N
-l .
(5.12) P = Dm0+ N Ny ED.
P=1 P=1
The moment M$” of the applied force acting on the fth. particle in the Pth. cell, about
the fixed origin, is given by

(5.13) M§P = max{? x f§P.

With (5.6), (5.10), (5.7) and (5.11), it follows that the resultant moment M‘? of the forces
applied to the Pth. cell is given by

(5.14) M® = MMP = mx®x P+ 3 mEP x ¢,

6. The deformation, forces and power

Let S be the boundary of the domain ¥ occupied by the lattice of cells in the reference
configuration. We now divide the domain ¥ into an inner domain ¥, and a thin layer
Vs sitting at the boundary S of V. We assume that the force applied to the Ath. particle
of a cell varies slowly as we move from cell to neighboring cell in V;. However, it may
vary rapidly as we move from a cell in ¥; to a neighboring cell in Vs.

Let S be a closed surface, which is piece-wise smooth and has slowly-varying curva-
ture on some scale large compared with the cell dimensions, lying entirely in the closed
domain ¥, but as close as possible to V. The surface S will, in the continuum formula-
tion, be the surface of the body considered in the reference configuration, and the domain
¥ bounded by S will be the domain occupied by the body in the reference configuration.
Let V¢ be the complement of V in V.

We define the partial density o of the Sth. mass points, in the reference configuration by

(6.1) 050 = my,

where v is the volume of a cell in the reference configuration. The material density p of
the body in the reference configuration is then given by

(6.2) o=mlv= g

20 Arch. Mech. Stos. nr 3/76
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We define vector fields x(X), E5(X), £(X) and ¢4(X) over the domain ¥ which satisfy
the following conditions:

(6.3) [ xdX = ox®, f EpdX = 0B, g€, =0,
(6.4) ’ f g;'dX = mf®,

(6.5) .,f obpdX = myéD, D ¢ =0,

(6.6) [olxxts X ExdsldX = mx®x 10+ 3 moE® x ¢,
©.7) ’efg{i-f+ D & dp)dX = mx® AP+ Y mEP 10,

where v, is the domain occupied by the Pth. cell in the reference configuration.

Equation (6.3), ensures that the average of the ordinary displacement field over a cell,
in the continuum model, is equal to the displacement of the center of mass of the particles
in the cell. Equations (6.3),,; ensure that the average of the fth. director field §; over
a cell gives the vector position of the fth. particle in the cell, with respect to the center
mass of the cell, and that the constraint condition (5.7) is satisfied. The condition (6.4)
ensures that the resultant force acting on a cell is the same in the continuum and particle
models. With (6.4), (6.1) and (6.2), the conditions (6.5) ensure that the resultant of the
field g f+ 0@, over the cell, in the continuum model, is equal to the force acting on the
pth. particle.

The condition (6.7) ensures that the power of the forces acting on a cell shall be the
same in the continuum and particle models, if the force fields f and ¢;, per unit mass
of the continuum, are taken to be conjugate to the displacement fields x and &, respectively.

The condition (6.6) ensures that the resultant moment of the forces acting on a cell
shall be the same in the continuum and particle models, if the moment, about the fixed
origin, of the vectors f and ¢, are defined to be xx f and (x+§) x ¢4 respectively.

We note that if we assume that the fields x, Eg, f and ¢, in (6.3)-(6.7) behave in the
same way under superposed rigid motions of the body as do the fields x, &;, f and ¢
introduced in Sect. 3, then the behavior of x®, E{P, f* and ¢§” implied by (6.3)-(6.7)
is that which is appropriate to their physical meaning.

Let AV be the sub-domain of ¥ which sits on the element AS of the surface S. We
assume that the dimensions of A4S are large compared with those of a cell. We now define
fields F and ®; on S, such that

(6.8) ' [Fax = [ ofax,
as av
(6.9) J®pdX = [oppaX, Y@, =0,
a8 av

(6.10) d's"g{xxF+ Zgﬁx¢ﬁldx=d_£g{xxf+ Y & xdp}aX,
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6.11) A_gfg‘i-F+ PR AL E Jg{ﬁ £+ VE; ¢y axX.
We note that if we assume that the fields F and ®; in (6.8)-(6.11) behave in the same
way under superposed rigid motions of the body as do the fields F and ®; introduced
in § 3, then equations (6.8)-(6.11) are consistent with the behavior of the fields f and
@5 assumed in (6.4)-(6.7) and hence with their physical meaning in the particle model.

Using the relations (6.3)-(6.11), we obtain from (5.12) the following expression for
the power # of the forces applied to the body:

(6.12) ? = Vfg(i-w Z‘f-;ﬂ-%)dwﬁj'(i-n Y& @)ds.

This is the expression which underlies the analysis in Secs. 3 and 4.

7. The specific internal energy and heat flux

Having given physical meaning, in terms of the particle model, to the ordinary and
director body and surface forces, we must now give physical meaning to the other quanti-
ties — the specific internal energy &, the specific entropy 7, the absolute temperature T,
the specific Helmholtz free energy w, and the heat flux fields ¢ and Q@ — which occur
in the continuum theory developed in Secs. 3 and 4. However, unlike the ordinary and
director deformation, body force and surface force fields, these have no counterparts in the
particle model when it is discussed on a cell-by-cell basis.

We can, however, give them physical meaning in the particle model in the following
manner. The internal energy of an aggregate of cells is the sum of the kinetic energies
of the particles in them and the potential energy due to the interaction of these particles.
There is also an interaction energy associated with the forces between the particles in this
aggregate and the remainder of the body. For the purpose of our discussion, we shall
assume that this interaction energy is small for particles which are separated by distances
large compared with the cell dimensions. Then, provided that the aggregate of cells con-
sidered has dimensions sufficiently large compared with those of a single cell, we can
neglect the energy of interaction of the aggregate with the remainder of the body. Now,
provided that the aggregate of cells is thermomechanically almost homogeneous(?), on
some scale which is large compared with the cell dimensions, we can replace the total
internal energy of the aggregate by the integral over the mass of the aggregate, of a specific
internal energy, which is a scalar field.

Similar considerations enable us to replace the total flux of heat entering the aggregate

(*) We consider that an aggregate of cells is thermomechanically homogeneous, if all of the following
conditions are satisfied:
(i) Eg (B =1, ...,v) is independent of the cell chosen;
(i) (x® —x(@)—(X(P)—X(@) is independent of P and Q for pairs of cells which are similarly located
with respect to each other, in the reference configuration;
(iii) the time average of the kinetic energy, due to thermal motion, of the fth. particle is independent
of the cell chosen, for =1, ...,».

20*
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of cells, otherwise than through its boundary, by the integral over the mass of the ag-
gregate of a scalar heat flux field ¢. Since we are restricting our discussion to processes
which are thermomechanically nearly homogeneous, on some scale which is large com-
pared with the cell dimensions, identification of the absolute temperature T presents
no problem. Then, from (4.2) and (4.5), we have definitions of the specific entropy and
specific Helmholtz free energy.

The surface heat flux Q of the continuum formulation can also be identified in the
particle model. We consider the subdomain AV of ¥ which sits on the element of area
AS of the surface S. Then _£_ QdX is the rate at which heat enters AV, i.e. the rate at

A

which the total kinetic and potential energy of AV increases (neglecting the potential
energy of interaction of the particles in AV with those outside A¥) minus the power of
the applied forces acting on the particles in 4V and of the forces on these particles due
to their interaction with particles outside AV. In order that this heat flux shall be ex-
pressible as the surface integral of a scalar field, it is necessary that the process considered
be thermomechanically nearly homogeneous on some scale which is large compared
with the cell dimensions, as we move over the surface S. We note that the concept of
thermomechanical homogeneity involved here is somewhat different from that used in
discussing the body fields. Here homogeneity is required only as we move parallel to S,
while inhomogeneity is allowable in a direction normal to S. (In this definition of Q,
we neglect the small heat flux due to the possible passage of energy into AV through its
periphery. If we took this into account, we would have to introduce, in the continuum
model, a heat flux field in the surface, measured per unit length in the surface.)

The total kinetic and potential energy of 4} (neglecting the potential energy of in-
teraction of the particles in AV with those outside AV) becomes, in the continuum formu-
lation, the surface energy E, per unit area, associated with the surface element 4AS. This
is usually negligible for solids.

We have already shown how the expression (6.12) used in the continuum formulation
for the power of the applied forces can be given meaning in terms of the particle model.
With the meanings given to €, ¢ and Q in this section, we can now obtain the global
energy balance equation (3.4). This equation may, of course, be applied to any portion
of the body, with the assumption, which has already been made, that the interactions
between the various portions of the body are short range interactions and the dimensions
of the domain considered are large enough to validate the separation of the domain into
a “surface” and an interior. We are therefore limited to applying equation (3.4) to por-
tions of a body, whose dimensions are large compared with those of a single cell.

It follows that in the argument leading to equations (3.5) and (3.6), we cannot make
the dimensions of the elementary volume considered vanishingly small. However, we
can still arrive at these equations provided that the process considered is thermomechanic-
ally nearly homogeneous over the portion of the body considered.

The remainder of the discussion of Sect. 3 and 4 then follows without the necessity
for further consideration of the particle model to give it validity.

We can gain some insight into the meaning, in terms of the particle model, of the
assumption (4.1),, which is made in the continuum formulation, that the specific internal
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energy ¢ depends on x; 5, &7, &7}, from the following considerations. We assume that
the fields x and E vary sufficiently slowly as we pass from cell to neighboring cell that
we can make the approximation

xi(X+a) x x;(X) +apx; p(X),

EPX+a) & EP(X)+apéf(X),

where a is the translation vector which, in the reference configuration, brings a cell, say
the Pth. cell, into coincidence with a neighboring cell, say the Qth. cell. Then, from (6.3),

(7.1)

I
@ xP = = faﬂx,..,(xwx,

v,

EP-EM = - | aatBBO0aX.
Up
It is then evident that provided that x(X) and E4(X) vary sufficiently smoothly and slowly
as we pass from cell to neighboring cell, the dependence of ¢ on x;5 and £ implies
that, in the particle model, ¢ depends on the relative displacements of the particles in
one cell with respect to those in neighboring cells. (Indeed, if the continuum theory de-
veloped in § 4 is to model the particle system considered in this section, it would seem
appropriate to restrict the dependence of & on x;,p, £/, and & to dependence on x;, 5+
+&% and &) The dependence of ¢ on &® implies that ¢ also depends on the dis-
placements of the particles in the individual cells with respect to their centers of mass.

(1.2)
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