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The Bauschinger effect in cyclic plasticity 

TH. LEHMANN (BOCHUM), B. RANIECKI and W. TRf\MPCZYNSKI 
(WARSZAWA) 

THE SIMPLE plastic shear and simple plastic tension tests of 21CrMoV57 steel are performed 
The specimens are loaded monotonically and cyclically under controlled amplitude of plastic 
strains at room temperature. Using the technique of successive unloading, the standard physical 
quantities and the stress jump corresponding to opposite directions of plastic straining are meas­
ured. The jump represents, in a certain sense, the Bauschinger effect. For ellipsoidal yield 
surfaces the results obtained enable a direct verification of kinematic hardening laws. 

Przeprowadzono pr6by plastycznego prostego scinania i prostego rozci(!gania stali 21CrMoV57. 
Pr6bki poddano obci(!zeniom monotonicznym i cyklicznie zmiennym przy danej i kontrolo­
wanej amplitudzie odksztalcen plastycznych, w temperaturze pokojowej. Obok standardowych 
wielkosci fizycznych przesledzono zmiany w czasie nowej wielkosci - r6:inicy pomi~dzy rze­
czywistym napr~zeniem w podstawowym prograrnie i napr~zeniem uplastyczniaj(!cym material 
przy przeciwnym kierunku obci(!zania. Taka wielkosc reprezentuje efekt Bauschingera. Cel ten 
osi'lgni~to stosuj(!c technik~ kolejnych odci(!zen. Wyniki umozliwiaj(! bezposredni'l weryfi-
kacj~ niekt6rych r6wnan ewolucji dla parametr6w wzmocnienia. ' 

IlpoBe,ll;eHbi HCIIbiTamm nnacntttecl<oru upocToro c~aHra H npocroro pacr.fnKeHH.R CTa.JIH. 

21 CrMoV 57. 06pa3~hi no~seprHyThi MOHOTOHHtteCI<HM H ~HI<JIHt.teci<H nepeMeHHhiM Ha­
rpy}l{eHH.RM, npH 3a~aHHOH H I<OHTpOJIHpyeMOH 2MflJIHTY ~e flJiaCTHt.teCKHX ~ecpopMa~HH, 
s I<OMHarnoH: TeMnepaType. KpoMe craH~apTHhiX cpH3Htteci<HX aeJIHttHH npocJiemeHhi H3Me­

Hemm BO speMeHH HOBOH BeJIH'lHHhl - pa3HH~hl Me>K~Y ~eHCTBHTeJibHhiM Hanp.R>KeHHeM 
B OCHOBHOH nporpaMMe H Hanp.R>KeHHeM nepeBO~H~HM MaTep~a.JI B flJI2CTHt.teCI<Oe COCTO.RHHe, 
npH o6paTHOM HanpaaJieHHH HarpymeHHH. Tai<a.R aeJIHttll:Ha npe~cTaBJI.ReT 3cpcpei<T Eaynnm­

repa. 3Ta ~eJib ~oCTHrHyTa, npHMeHHH TeXHHI<Y nocJie~osaTeJihHhiX Harpy>KeHHH. Pe3yJih­
T2Thi ~aiOT B03MO>KHOCTh Henocpe~CTBeHHO npoaepHTb Hei<OTOpbie ypaBHeHH.R 3BOJIIO~ 

~JI.R napaMeTpoa ynpot.IHeHHH. 

1. Introduction 

THE BEHAVIOUR of plastically strained solids under monotonic and cyclic loading is very 
complex, even when all the rate effects are neglected. Therefore, new concepts to include 
into the theoretical frame some observed strain history effects [1-4] are recently introduced. 
One of such concepts is based upon the assumption that, apart from the traditional yield 
surface in the stress space, there exists one or more surfaces in a space of the tensors de­
scribing the motion of the centre of the yield surface. This tensor is sometimes identified 
with a phenomenological measure of microstresses. The evolution law for microstresses 
and the law of evolution for the isotropic part of hardening are usually postulated first, 
and then they are jointly verified by means of the data obtained from the measurements 
of global strain-stress curves. 

Since such data are insufficient for unique separation of kinematic and isotropic harden­
ing, the investigation of new concepts requires measurements of some additional 
physical quantity. The objective of this work is an experimental determination of such 
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a quantity; it is defined as the difference between the stress tensor associated with the 
actual plastic strain-rate vector in . the basic program, and the stress tensor which would 
correspond to plastic strain rate vector which has an opposite direction. This difference 
represents, in a certain sense, the Bauschinger effect. It is believed that the obtained results 
will be useful for the verification of existing theories and that they will stimulate new 
ideas. 

2. Motivation of the experiment 

i) Denote by S the deviatoric part of stress tensor a, Sil = ail- ~ilakk/3. Most of the 
theoretical models in cyclic plasticity (cf. e.g. [1-4]) employ the notion of a yield function 
(, which can be written in the following form 

(2.1) f(Sil-a.ii, H)= 0, f(O, H)~ 0, 

where ex (au = 0) is sometimes identified with a macroscopic measure of microstresses. 
The letter H denotes symbolically the set of other possible parameters which describe the 
history of plastic strains. 

The experimental investigations concerning the possible shape of yield surfaces and 
its properties under simple loading programs and under cyclic loading have been per­
formed in a number of papers [5-7] (the review may be found in [8]). In the latter case the 
position and the shape of the yield surface were determined only at some chosen instants 
of a cyclic loading program. The obtained resu.lts are still insufficient for satisfactory 
·verification of the law of kinematic hardening. 

The basic theoretical problem is not only the description of the shape of the yield 
function but a~so the description of the motion of this surface through appriopriate choice 
of hardening parameters and the deduction of the evolution laws for the parameters. The 
basic difficulty consists in the fact that the hardening parameters, in particular the par­
ameter ex, have no universal operational definition. Each attempt to give an experimental 
definition of the parameter ex must be connected with a definite approximation of the 
description of all the yield surfaces generated by a given program of cyclic loadings. The 
complexity of phenomena observed under cyclic loadings constitutes an additional diffi­
culty in searching the adequate evolution laws. Jt is not surprising, therefore, that in many 
theoretical treatments one frequently adopts rather drastic approximation through the 
assumption that all yield surfaces possess the centres of symmetry. The Huber-Mises 
spheres are particular examples of such surfaces. The tensor ex may then be identified with 
the radius-vector of the centre of symmetry, and the basic aim of the theoretical models 
is a possibly accurate description of the motion of the yield surface in S-space. 

Suppose that, in some experimental program, the deviator · of plastic strain efief; = 0) 
is controlled. The derivation of an adequate law of evolution for ex could be simplified 
if during an experimental program, apart from the actual stresses S and strains some 
other quantities would be measured. The example of such quantity is discussed below. 

ii) The equation of the family of yield surfaces (2.1) can be presented in the equivalent 
parametric form 

(2.2) S;i-ai.i = nuR(n, H). 
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where nii is the unit "vector" of directions in Su-space 

(2.3) 

Four independent components of nil constitute the set of parameters of the equation 
(2.2) of a 4-dimensional yield surface in S-space. For regular yield conditions R is a differ­
entiable function of nu and H. Without losing generality it can be assumed that f occur­
ring in (2.1) is so chosen that 

of __y_ = 1 asij a sij (f = 0). 

The associated plastic flow law can then be written in the form 

(2.4) 

Consider the process of proportional plastic straining 

(2.5) 

such that eP(O) = 0, eP(O) > 0, and assume that initially (t = 0) the specimens are in 
annealed state 

H= 0, a.11 = 0 for t = 0. 

Substituting (2.5) and (2.2) into (2.4) one obtains the formal relationship between mil 

and nil 

(2.6) 

from which it follows that mil is a unique function of n for every H provided that eP does 
not change the sign. In the case of analytical yield function it can be assumed that n is 
also a unique function of m. 

Neglecting the time intervals during which the response of a material is purely elastic, 
one can use the length A of plastic strain trajectory as an independent variable instead 
of the real time, 

(2.7) 

From the equation (2.6) it follows that in those points of the trajectory where eP changes 
its sign, not only S' but also n undergoes jumps. However, ex and H have to be continuous 
functions of A since they represent a history of plastic straining and they do not change 
in the elastic domains. This observation motivates the application of techniques of "suc­
cesive unloadings" for the measurement of SiJ-jumps in the course of plastic straining. 
Knowledge of the evolution of S' -jump contains additional information that enables 
a more direct verification of any evolution law for a. 

The basic program 0- C of plastic straining is shown in Fig. Ia. The program is inter­
rupted at point A where the specimen is unloaded and reloaded into reverse direction 
until the conventional small value 'Y), say 'YJ = 0.5 · 10- 3

, of the incremenr of eP is achieved. 
In such a way one can in an experimental program identify the stress vector st (Fig. I b). 
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FIG. 1. Theoretical basis of unloading technique for hardening parameters determination. 

Its one end lies at the yield surface at point B' where the plastic strain-rate vector has the 
direction opposite to that prescribed in the basic program. The interpretation of S- SR 
and S + SR follows from (2.2) and from the fact that a is continuous at point A 

2Y = S-SR = nR(n, H)-nRR(nR, H), 
(2.8) 

2D = S+SR = 2a+nR(n, H)+nRR(nR, H). 

Two from the five tensorial quantities occuring in (2.8) (Y and D) can be measured. Two 
equations (2.8) are not sufficient for a unique determination of the remaining three quan­
tities. Nevertheless, the experimental determination of Y and n considerably enriches 
the possibility of verification of any theoretical idea. 

iii) Consider the simple example. If actual yield surfaces are approximated by quadratic 
surfaces possessing the centre of symmetry (ellipsoides), then Fu occuring in (2.6) and R 
occuring in (2.2) are odd and even functions of n, respectively 

(2.9) F( -n, H)= -F(n, H), R( -n, H)= R(n, H). 

From (2.9) 1 it follows that nR = -n. Hence 

Y = (S-SR)/2 = nR(n, H), 
(2.10) 

D = (S+SR)/2 =a, 

on account of (2.8) and (2.9h. Thus, for prescribed eP(t) the measurement of Y and n 
gives full information concerning the changes in a, n and R, irrespectively of the specific 
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form of the quadratic function which describes the yield surfaces. In particular, if the 
successive yield surfaces are approximated by Huber-Mises spheres, then the length of 
radius R is independent of n, R = R(H) and n = m (sgn eP). 

iv) Let us define the projections of Y and n onto m as follows: 

(2.11) 
Y = IYijmijl = I(Su-smmul/2 ~ o, 

so that 

(2.1 2) s .. m .. = {.n+ Y where (Su- S~)mu > 0, 
'J 'J .n- Y where (Sli-S~)mt1 < 0. 

In the case of quadric surfaces the interpretation of Y and .n_ follows from (2.10), 

Y = lmiJniJI R, .n = rxumu. 

Thus .n is the projection of ex on the direction mih whereas Y equals the principal radius 

of an ellipsoide whenever lm11niJI = 1. 
The objective of this paper is the experimental determination of Y and .n, during cyclic 

and monotonic loading of a specimen under controlled plastic strain. The experiments 
concern two simplest cases: 

a) simple plastic shear, 
b) simple plastic tension (compression). 
In the case (a) the only non-zero components of mtJ and ef1 are 

mu = m 2 1 === Vl/2, 
(2.13) y2 

ef2 = e~ 1 = -
2
- eP(t), yP = 2ef2 • 

Here yP denotes the technical measure of the angle of plastic shear. Since the only non­
zero components of stress deviator are sll, s22 = slb s33 and 

where r is the shear stress, then 

(2.14) 
vr y = j/3!(<- r•)J/2, 

v ~ -, = j/3(<+<")/2. 

In the case (b) the non-zero components of mli and e[j are 

(i.I5) 
m11 = ~ ~ , m22 = m, = --} ~ ~ ' 

ef, = V ~ e'(t), e~2 = e~3 = -} V ~ e'(t), ef1 = •', 

where cP denotes the axial plastic strain at simple tension. Denoting by a the axial stress. 
the non-zero components of S become 

Su = 2aj3, S22 = S33 = aj3 
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and from (2.11) one obtains 

(2.16) 
~ ~ y = f(O'-O'R)f/2, 

~-;-n = (O'+O"R)/2. 

Note, finally, that elimination of eP(t) from (2.15) and (2.13) gives the known relationship 
between yP and eP 

yP = yJeP 

and that the frequently used effective plastic strain e~ = (2ef.Jef.Jf3)112 in the case of a simple 
loading program (2.5) can be · expressed in terms of eP(t) as folows: 

•! = fe'f ~; . 

Thus, e~ = JePj at simple tension and e~ = JyPI/Y3 at simple plastic shear. 

3. Experimental investigation of Y 1 and n 1 changes during cyclic loading 

The experimental programs were performed at room temperature on thin tubes (outer 
diameter 24 mm, wall thickness 2 mm, gauge length 38 mm) made of 21CrMoV57 steel. 
Tension-compression and torsion in opposite directions of cyclic programs were made 
using the Schenck tension-compression-torsion machine connected "on line" with the 
HP 1000 computer (Fig. 2 machine and computer sponsored by Stiftung Volkswa­
genwerk). Force and moment acting on the specimen, elongation and torsion of the 

Extensometer 

Tension 
Servo-Motor 

Coupling 

Torsion 
Servo-Motor 

Fore~ 

Moment 

~----------~ 0/A 
CONVERTI=Riolt--~ 

A/0 

HP 

1000 

FIG. 2. The schematic diagram showing the testing machine and the computer inter-facing. 

specimen, and other possible 35 measurements were read by a computer, then elaborated 
and the results obtained were used for the continuous machine control. The shortest time 
of information path: machine-computer-machine of the program used was 0.01 s. 

http://rcin.org.pl



THE BAUSCHlNGER EFFECT IN CYCLIC PLASTICITY 649 

All experimental programs were controlled by a computer programmed in FORTRAN 
computer language. In this case it was a symmetric cyclic program for a fixed plastic 
strain amplitude with a set of unloadings (loading in the opposite direction in order to 
determine the opposite point of the yield surface). The program was performed at a con­
stant effective strain rate e: = 3.4 · I0- 4 Is, and the actual stresses versus the logarithmic 
plastic strain coordinates were calculated and plotted (e = ln(ll/0 ), a = PIF,, where 
/ 0 - gauge length, Fa- current specimen cross-section, P- force). Yielding was deter­
mined by the offset definition of= 0.0005, what will be discussed later (Experiment 1). 

Two si~ilar programmes were performed consisting of monotonic and cyclic loading 
by two kinds of stress states realised during the tension-compression tests and the reversed 
torsion tests of thin tubes. Details of the second program are shown below: 

Symmetric cyclic torsion program 

I 

II 

III 

a) monotonic torsion, monotonic torsion with unloadings (Experiment I); 
b) symmetric cyclic torsion program for different plastic strain amplitudes: 

cyclic loading for strain amplitude yP lv'f = ± 0.5%, 

cyclic loading for strain amplitude yP tv3 = ± 1.5%, 
monotonic torsion with unloadings; 

cyclic loading for strain amplitude yP ly} 
cyclic loading for strain amplitude yP I v3 
monotonic torsion with unloadings; 

± 1.5%, 

±0.5%, 

cyclic loading with gradually increasing plastic strain amplitudes: yP ly3 = ± 0.5%, 
± 0.8%, ± 2.0%, ± 2.5%, ± 3% (every strain amplitude change took place after reaching 
a stabilized loop for the former amplitude value); 
IV 

cyclic loading with gradually decreasing plastic . strain amplitudes: yP IYf = ± 3%, 
±2%, ±I%, ±0.5%; 
v 

VI 

plastic pre-deformation yP 1113 = 2.2%, 

cyclic loading for strain amplitude yP lv3 
monotonic torsion with unloadings; 

plastic pre-deformation yP ly3 = 9.2%, 

±0.5%, 

cyclic loading for strain amplitude yP lv'3 ± 1.5%, 

cyclic loading for strain amplitude yP ly'3 = ± 0.5%, 
monotonic torsion with unloadings; 
Material behaviour was investigated for different cyclic loading histories, both at the 

steady state and during the transition periods. Here we shall present only the results 

6 Arch . Mech. Stos. nr 6{85 
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obtained for cyclic torsion. They are very similar to those obtained in the tension-com­
pression tests in the sense, that curves 

V; Yversus<' and y-~--n: versus •' 

for a cyclic tension-compression program are qualitatively similar to curves 

V; Yversusy'/j/3 and y·; n versusy'/ V3 

obtained in the cyclic torsion program. 

Experiment 1. Monotonic torsion with unloadings (Fig. 3) 

The specimen was loaded by torsion at the constant effective strain rate e~ = 

= 3.4-10- 4 /s. After every effective plastic strain increment L1e~ = 0.008, the torque 

i t.f1 [kpfmm 2) 

70 r 

50 ~ 

L.O 

30 

20 

10 

n:1 (of = 00001) 

n:, (of = 00002} . . 
n: , (of"' 0.0005) 

0~----------~------------~----------~---
5 10 15 0 Pj{J [%} 

Y, [kp/mm 2J 

30 ~.........,.::---:.:--;.;--:.:--;.---.---· Y1 (of = 00005 l 

20 Y1 (of= 0.0002) 
0 0 0 

10 ~ 
I • 

• Y1 !of = 00001) 

I 

0 5 10 

FIG. 3. n1 and Y1 loading curves for monotonic torsion and different yield definitions. 
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direction was reversed and a yield point for the new strain direction was determined, the 
yield "offset definition" of= 0.0005 being assumed. Once this point was reached, the 
former torque direction was restored. Having found such two points on the yield surface, 
it was possible to define the Y and n values (see Sect. 2). This type of "successive unload­
ings procedure" was used to define the yield surface position for different loading his­
tories what is shown in Fig. 4 (without elastic strains). After the effective plastic strain 

ffrr= oA -Y = n:, 

v, rr, 

a 

FIG. 4. Application of unloading technique for monotonic torsion. 

increment Lis: = 0.008 (point A), the torque changes its direction to opposite and the 
slope of the unloading curve is measured. At point B (due to the rheological effects) it is 
equal to the Young modulus for this material and straight line a of the same slope is 
determined. The distance between the successive points at the unloading curve (or loading 
in "opposite" direction) and this line is then calculated. When it is equal to the "offset 
definition" the yield point is found and the torque changes its directions to the initial one. 

The monotonic stress-plastic strain curve is shown in Fig. 3. Using the unloading 
technique at every LisP = 0.008, it was possible to establish the loading path for both 
n 1 and Y1 , where n 1 and Y1 are related ton and Y (Sect. 2) by the formulae 

n 1 = V3/2 n, Y1 = Yy3[i. 

They characterize the position of the centre of a yield surface and its radius, respectively. 
It may be noticed that already at yP fl13 ~ 0.1, the value of Y1 reaches its maximal 

constant value and further hardening is caused merely by increasing n 1 • In Fig. 3 the n 1 

and Y1 paths are shown for the "offset ~efinition" of = 0.0001 ( x) and of = 0.0002 ( o ). 
During the experimental program controlled by of = 0.0005, the yiel~ points correspond­
ing to the other definitions mentioned above were also measured. Similar character 
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of the n 1 and Y1 loading paths, independent of the "offset definition", is observed. Scatter 
of expeirmental data for of= 0.0001 shows that the unloading technique described 
above is not suitable for "small" yield definitions. 

Experiment 2. Cyclic torsion with plastic strain amplitude yP/y'3 = ±0.03 

In Fig. 5 is shown a typical stress-strain curve (without elastic strains) for a virgin 
material under cyclic loading with constant strain amplitude. Solid line shows the first 
three half-cycles, and the dashed one- the stabilized loop in the 17th and 18th half 

~1:[kpfmm2] 

-

n:1(of=0.0005l 

n:1(of • 0.0002) 

n:, (of:: 0 0001 l 

FIG. 5. Stress-strain curve and n 1 curve for cyclic torsion with constant plastic strain amplitude 

yP !{3 = ± 0.03. 

cycles. The characteristic feature of the behaviour is that the main cyclic hardening occurs 
during the first three half-cycles. As before, using of= 0.0005 and the offset "unloading 
technique", it was possible to determine the variation of n 1 from the beginning up to the 
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- -- - ---------- --------- - --- - - - -------

stabilized loop. It was observed that cycles with unloadings lead to a slight material weak­
ening. Consequently, every cycle with unloadings was followed by 3 cycles without 
unloadings, and so on up to the steady state. This solid line shows the n 1 curve during 
the first three half-cycles, and the dashed one represents the stabilized loop in half-cycles 
No 17 and 18. Similarly as in the case of the stress-strain curve, the general shape of the 
n 1-path changes abruptly during the first three half-cycles, and then remains almost con­
stant up to the steady state. It is possible to distinguish two stages at this curve: 

immediately after changing of the load direction, . when small plastic strain changes 
are accompanied by considerable stress variation; 

when considerably large strain changes are accompanied by small stress changes,. 
and the transition period between these two stages. They can be compared with the elastic 
and plastic ranges of the global stress-total strain curve. Similar qualitative results, with 
different n 1 to Y1 ratios were obtained for other offset definitions: of = 0.0001 ( x) and 
of = 0.0002 ( o ). In Fig. 5 n 1-paths for these definitions are shown only for stabilized 
loops. 

No n 1 hysteresis loop decay is observed, and the shape of the n 1-path for the steady 
state is similar to the stress-strain curve (in the steady state cycles Y1 = const). 

13'1 [kpfmm2] 

FIG. 6. Stress-strain and :n: 1-curves for two increasing plastic strain amplitudes. 

http://rcin.org.pl



654 TH. LEHMANN, B. RANIECKI AND W. TRJ\MPCzvNSKI 

Experiment 3. Cyclic torsion with gradually increasing plastic strain amplitudes yP ;)if= ± 00.5, ± 0.008, 

± 0.02, ± 0.025, ± 0.03 

The specimen was cyclically loaded with gradually increasing plastic strain amplitudes 
yP I v3 = ± 0.005-:- ± 0.03. Every strain amplitude change took place after reaching the 
steady state cycle for the former amplitude value. In Fig. 6 are shown the stress-plastic 
Strain CUrveS and the nl-CUrVeS for plastic Strain amplitude rov'3 = ±0.008 and yPjJ/3 = 
= ± 0.02. Solid line denotes the first cycle, and the dashed one - the stabilized loop. 
It is seen that, even though the steady state for smaller amplitude is reached, a further 
cyclic hardening for a greater amplitude (yP jy3 = ± 0.02) takes place, what is visible 
on both the stress-plastic strain and n 1 curves. 

In Fig. 7 is shown the comparison between the monotonic and cyclic skeleton curves 
for stress values, as well as for the values of n 1 and Y1 • In the case of cyclic curves 
Jy3Txylmax, !n1!max and IY1lmax are presented for stabilized loops and different plastic 

30 

20 -- Monotonic load 

• • • o o Points on skeleton curve 

10 

0 5 

Y1 [kpjmrn2] 

30 0 0 0 

~--------- Y, 

20 

10 

L_ --- ___ _ _________J____ _ _ _ _ 
----- - --- ------~-

0 5 10 Plastic strain 
amplitude 

FIG. 7. Comparison between monotonic and skeleton curves for stress, n 1 and Y1-values. 
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strain amplitudes. It is seen that the shapes of monotonic and skeleton curves, for both 
n 1 and Y1, are similar. Cyclic curves are shifted in the direction of higher stress values. 
It may also be supposed that Y1 cyclic curve also reaches its constant value for a certain 
strain amplitude. Unfortunately, due to technical limitations, this assumption could not 
be proved experimentally. 

Experiment 4. Cyclic torsion with gradually decreasing plastic strain amplitudes yP tv3 = ± 0.03, ± 0.02, 
± 0.01' ± 0.005. 

The specimen was cyclically loaded by gradually decreasing plastic strain amplitudes 
yP jy3 = ± 0.03 ~ ± 0.005. As before, at each stage of loading stable loops were reached. 
In Fig. 8 are shown the stress-strain curves and the n 1 curves for plastic strain amplitudes 
yP ;y3 = ± 0.02 and yP ;}13 = ± 0.01. Solid lines show the values during the first cycle, 
and dashed lines- for stabilized loops. After reaching steady state for a higher ampli­
tude (yP fl/3 = ± 0.02) further cyclic softening for smaller amplitude (yP ;}13 = ± 0.01) 
is observed at both the stress-strain and nrcurves. 

D1 [ kp/mm2] 

fiG. 8. Stress-strain and ::rr1 curves for two decreasing plastic strain amplitudes. 
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01max 

TI, max 

Increasing plastic strain 
ooo- amplitude progrom : 0.5,0.8.15,20,2.~ 

x x x _ _ Decreasing plastic strain 
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· .~Y, 
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FIG. 9. Comparison between skeleton curves for stress, :n1 and Y1 values in the case of increasing and 
decreasing plastic strain amplitudes. 

In Fig. 9 the skeleton curves for stresses, n 1 and Y1 values in the case of increasing 
plastic stra~n amplitudes (solid line- Experiment 3) are compared with those for decreas­
ing strain amplitudes (dashed line- Experiment 4). It can be seen that the n 1 and Y 1 

values for cyclic amplitude yP jy3 = ± 0.03 for a virgin material (flrst amplitude in the· 
program with decreasing amplitude values) and for a material with the history described 
in the Experiment 3 are the same. Discrepancy between the solid and dashed lines indicates 
the influence of the cyclic loading history at higher amplitudes on the material behaviour 
under cyclic loading at smaller amplitudes. However, no such influence on the values 
of Y1 was observed. 

Experiment 5. Influence of cyclic history on the material behaviour under monotoning loading 

Virgin specimen was cyclically loaded with plastic strain amplitudes yP /J/ 3 = ± 0.015 
and then yP jy3 = ± 0.005 up to the stabilized loop, and afterwards monotonically twisted 
until rupture, at a constant strain rate e: = 3.4 · I0- 4 js. Using the unloading technique· 
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FIG. 10. Comparison between stress-strain, n1 and Y1 monotonic torsion curves with corresponding curves. 
after cyclic pre-straining with plastic strain amplitude yP Jyf = 0.005. 

it was possible to determine the monotonic n1 and Y1 curves. In Fig. 10 they are compared 
with the corresponding curves obtained for a virgin material. Due to cyclic pre-loading,. 
material hardening in stress, n 1 and Y1 values is observed. Their maximal values at stabil­
ized loops for the strain amplitude yP !v3 = 0.005 are denoted by I v3-rxylo.s, lnt! 0 •5 

and Y?· 5
• Now, shifting the monotonic curves obtained for monotonic torsion after pre­

cycling program to the points corresponding to [-{3-rxvio.s, /n1 /0 • 5 and Yf· 5 on such curves. 
obtained for virgin material (r*, ni, Y{), it can be seen that these curves coincide. 

Experiment 6. Influence of plastic prestrain on the subsequent cyclic behaviour 

The specimen was plastically prestrained up to yP I v3 = 0.092 and then cyclically 
loaded with plastic strain amplitude yP fl/ 3 = ± 0.015. The stress-strain and n 1 cyclic 
curves are shown in Fig. 11. After hardening caused by plastic prestrain, cyclic relaxation 
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FIG. 11. Stress-strain. and n 1 cyclic curves for plastic strain amplitude y" ;y3 = ± 0.015 after plastic pre­
strain y" I v3 = 0.092. 

of stresses and n 1 in the prestrain direction is observed. However, in the opposite prestrain 
direction the shapes of the stress-strain and the n 1 curves remained almost unchanged 
from the very beginning. 

-4. Concluding remarks 

Summing up the results obtained, the following conclusions may be drawn : 
1) When the succesive actual yield surfaces are approximated by ellipsoids, the values 

-of n 1 and Y1 measured here may directly be identified with the hardening parameters. 
The presented experimental results illustrate the evolution of these parameters for two 
.cyclic and monotonic simple paths in the plastic strain space. They supply new information 
which can stimulate new theoretical ideas. 

2) General shape of the n 1 path during cyclic loading is established during the first 
full cycle, and then it changes but slightly to reach a stable loop. Shape of this loop is 
similar to the stress loop (Y1 = const), and no decay of the n 1 hysteresis loop is observed. 

3) Shapes of the monotonic and skeleton curves for stresses, n 1 and Y b are similar, 
the cyclic ones being shifted in the direction of higher stresses. 

4) No effect of the strain history on the value of Y1 at steady state is observed. The 
value of Y1 under cyclic loading at a steady state depends merely on the strain amplitude. 

5) Slight quantitative influence of the cyclic history on the subsequent cyclic behaviour 
is observed in jn1 lmax and ;}13-rxylmax values at fixed plastic strain amplitudes. 

6) Cyclic loading after plastic pres train leads to the relaxation of stresses and n 1 in 
co-prestrain direction; in the counter-prestrain direction the shapes of the stress-strain 
and n 1 curves remain almost constant from the beginning of the cyclic program. 
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