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Study of corotational rates for kinematic hardening 
in finite deformation plasticity 

J. E. PAULUN (HANNOVER) and R. B. P~CHERSKI (WARSZAWA) 

THE AIM of the paper is to study corotational rates for kinematic hardening in finite deformation 
plasticity. The simple shear processes under both prescribed kinematical and shear traction 
boundary conditions were considered. This enabled a comparison to be made between existing 
theories~ and resulted in an analysis for eliminating the unwanted oscillations in the shear stress 
and unsatisfactory prediction of material behaviour in the case of simple shear traction. This 
was achieved by introducing an influence function w of accumulated plastic strain which pro
duces a retardation of the material spin W. The modified spin was then formulated for the 
three-dimensional case. The merits of the present proposal vis a vis the existing theories are 
discussed. 

Celem pracy jest zbadanie wsp61obrotowych pr~dkosci tensora napr~zenia i parametru wzmocnie
nia wyst~puj(lcych w teorii skonczonych deformacji plastycznych ze wzmocnieniem kinematycz
nym. Zbadano problem czystego scinania dany kinematycznie w pr~dkosci scinania oraz 
problem scinania dany w napr~zeniach kinaj(lcych. Umoi:liwilo to por6wnanie istniej(lcych 
teorii i pozwolilo zaproponowac modyfikacj~ wsp6lobrotowej pr~dkosci, kt6ra prowadzi do 
eliminacji niepoZ<\danych oscylacji napr~ienia scinaj~tcego. Usuwa ona r6wniez niezadowala
J<!CY opis zachowania si~ materialu w przypadku prostego scinania danego w napr~zeniach 
scinaj(lcych. Uzyskano to wprowadzaj(lc pewn<l funkcj~ wplywu w, zale:ln'l od zakumulowanego 
odksztalcenia plastycznego, kt6ra powoduje op6znienie spinu materialnego W. Nast~pnie 
okreslono postac zmodyfikowanego spinu dla przypadku tr6jwymiarowego. Przedyskutowano 
zalety przedstawionej propozycji w por6wnaniu z istniej(lcymi teoriami. 

UerrhlO pa6oThi HBJIHeTcH Hccne.n;oaamre cospal.I..laTeJihHhiX cKopocreH: TeH3opa HanpH>KeHHH 
H napaMeTpa ynpoqHeHHH, BbiCTyllalOI.I..lHX B TeopHH KOHeqHbiX llJiaCTHqecKHX ;::t;ecPOpMaQHH 
c I<HHeMaTHqeci<HM ynpoqHeHHeM. Hccrre;::t;oBaHhi 3a.n;aqa qHcToro c;::t;BHra, 3a;::t;aHHaH KHHe
MaTHqeci<H B CI<OpOCTH C;::t;BHra H 3a.n;aqa C;::t;BHra, 3a;::t;aHHaH B HanpH>KeHHHX C;::t;BHra. 3TO ;::t;aeT 
B03MO>KHOCTb cpaBHHTb Cyl.I..leCTBYlOI.I..lHe TeOpHH H ll03BOJIHeT npe;::t;JIO>KHTb MO;::t;HcPHKaQHlO 
COBpal.I..laTeJibHOH CI<OpOCTH, l<OTopaH npHBO;::t;HT I{ HCKJIIoqeHHlO JIHIIIHHX OCQHJIJIHQHH Ha
npH>KeHHH C;::t;BHra. J1CKJilOqaeT OHa TO>Ke Hey;::t;OBJieTBOpHTeJibHOe OIIHcaHHe IIOBe;::t;eHHH Ma
TepHaJia B crryqae rrpocroro c;::t;BHra, 3a;::t;aHHoro B HanpH>KeHHHX c.n;aara. 3To rronyqeHo, 
BBO;::t;H HeKoTopylO cPYHKQHlO BJIHHHHH W , 3aBHCHI.I..lYlO OT HaKOllJieHHOH IIJiaCTaqeCKOH .n;ecl>op
MaU:HH, KOTopaH Bbl3hiBaeT 3aMe;::t;JieHHe MaTepHaJibHOrO CIIHHa W. 3aTeM orrpe;::t;eJieH BH;::t; 
MO;::t;HcPHU:HpoBaHHoro CIIHHa ;::t;JIH TpeXMepHoro crryqaH. 06cy>K;::t;eHbl ;::t;OCTOHHCTBa rrpe;::t;CTaB
JieHHoro npe.n;norro>KeHHH no cpaBHeHHlO c cyl.I..leCTBYlOI.I..lHMH TeopHHMH. 

1. Introduction 

THE QUESTION of unwanted oscillatory stresses generated by simple shear to large deforma
tion in plastic materials with kinematic hardening and Zaremba-Jaumann derivative 
raised by NAGTEGAAL and DE JoNG [16] was analysed by several authors and remains 
the subject of discussion. Recently, LEE eta!. [10] and 0NAT ([17, 18]) as well as DAFALIAS 
([3, 4]) and LORET [13] proposed appropriate modifications of the corotational rates of 
kinematic hardening tensor (back-stress) a and Cauchy stress a. Similar questions were 
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discussed also by FRESSENGEAS and MoLINARI [6]. Different aspects of proper choice of 
the objective stress rate in finite deformation problems were studied recently by ATLURI 
[I), JOHNSON and DAMMANN [8] and Moss [15] as well as by SIMO and PISTER [20] and 
SOWERBY and CHU [2I]. The growing body of the literature devoted to this subject becomes 
visible. 

In [10] the modified corotational rate is expressed by means of the spin of material 
"lines which are instantaneously coincident with the principal direction of ex having the 
largest absolute eigenvalue. 0NAT ([17, 18]) defined the modified corotational rate by 
means of the spin equal to the antisymmetric part of Dex multiplied by a constant, where 
D is the rate of plastic deformation. The proper choice of the constant leads to the non
oscillatory solution of simple shear problem. Similar expression for the corotational 
rate was obtained independently by DAFALIAS ([3, 4]) and LORET [13], who interpreted 
it as the corotational rate associated with material substructure. The qualitative analysis 
of the solution of the simple shear problem presented in [I 7] and [18] as well as in [4} 
and [13] shows that in non-oscillatory solution the shear stress is unbounded and increases 
monotonically when the deformation increases. At the same time the normal stress ap
proaches an asymptotic upper bound, and the principal directions of ex tend towards the 
bisector directions of the x 1 - x 2 coordinate axes. This differs from the solution given in 
[IO] where the both components of stress are unbounded and increase monotonically 
with shear strain, while the maximum principal direction of ex inclines towards the axis x 1• 

The observed qualitative discrepancies reveal that the problem is not completely 

explained and requires further elucidation. Furthermore, in most of papers an example 
of simple shear process under prescribed kinematic boundary conditions was considered 
only. This led the authors to the overhasty conclusion that the proposed modifications 
of corotational rate provide satisfactory results in general. According to our opinion 
this is not always true. 

The aim of' the paper is to study critically the discussed theories and propose a suitable 
form of corotational rate for kinematic hardening in finite deformation plasticity. The 
unified analysis of the system of differential equations, describing the problem of simple 
shear, led us to the conclusion that a retardation of the material spin W provides a non
oscillatory solution. This was achiewed by means of an influence function w decreasing 
with the shear strain, y. The function w was specified in such a way that the angular veloc
ity y, corresponding to the spin W in simple shear, is reduced to the angular velocity J> 
of a single material line element. The influence function w, formulated in the simple shear 
process, was applied in the generalization to three-dimensional case, and modified 
objective corotational rate associated with material substructure was obtained. The analy
sis of the results for simple shear and also for simple shear traction shows that the theory 
proposed herein reveals some advantages in comparison with the other theories under 
consideration. It has been shown, in particular, that these theories fail in the proper 
prediction of the shear stress-shear strain characteristic and of the Swift effect correspond
ing to torsion of thin-walled tube which is modelled by the simple shear problem under 
prescribed shear traction boundary conditions. This hitherto overlooked fact seems to 
be important for proper formulation of corotational rate of kinematic hardening in finite 
deformation plasticity. 
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2. Basic equations of rigid-plastic material with kinematic hardening 

For the sake of clarity consider the simplest constitutive model of finite plastic deforma
tion in the well-known form of rigid-plastic material with the Huber-Mises yield critetion 

(2.1) F = ~ (s-a)· (s-a)- a5 = 0, 

where s represents the deviator of the Cauchy stress a, a is the deviatoric kinematic harden
ing tensor (back-stress), and the constant a0 corresponds to the tensile yield strength .. 

The incompressible plastic deformation is described by the associated flow rule 

(2.2) D = ).(s-a), 

and the evolution equation for the Prager type kinematic hardening 

0 2 h (2.3) a = T D, 

where h denotes the plastic tangent modulus, and 

(2.4) 

represents the Zaremba-Jaumann type corotational rate associated with an skewsymmetric
tensor Q (which will be specified as a certain spin tensor). For n = W (material spin) 
ci corresponds to the known Zaremba-Jaumann rate. 

According to the consistency condition 

(2.5) i = 3(s-a) · (s-«i) = 3(s-a) · (s-ci) = 0 

and due to Eqs. (2.2) and (2.3), the plastic flow rule takes the form 

(2.6) 
D = 

4
:a

5 
[(s-a)· s](s-a), 

s = s-ns+ss-2. 

Due to the application of the corotational rates (2.4) and (2.6h, the constitutive equations. 
(2.3) and (2.6) 1 are objective. 

3. The unified analysis of the equations of finite simple shear 

A simple shear in the direction x 1 of the coordinate axes (x1 , x 2 ) is defined by the· 
displacements 

(3.1) 

and the resulting velocity field 

(3.2) 

where y and y are shear strain and shear strain rate, respectively. From the velocity field 
V the velocity gradient L, the rate of deformation D and the material spin W can be cal
culated: 

http://rcin.org.pl



·664 J. E. PAULUN AND R. B. P~CHERSKI 

{3.3) . [0 1] 
D = ~ 1 0 ' 

. [ 0 II w = ~ -1 0 . 

The basic equation of the problem is the evolution equation for a which, according 
·to (2.3) and (2.4), has the form 

·(3.4) 

It is to be noted that in finite simple shear each spin n which occurs in (3.4) can be expres
.sed as follows 

{3.5) 1 . [ 0 11 n=wW= 2- wy _
1 

O' 

where w is a scalar positive function of the shear strain y with the property, w (0) = 1. 
Thus, Eq. (3.4) can take the form 

(3.6) 

The assumption of incompressibility and the initial condition (3.4)2 yields cx 33 = 0 and 
-oc11 = - oc22 • This leads to the following system of differential equations 

CX 11 (0) = 0 , 

(3.7) . I h. . 
O:t2 = 3 y - yw~ tl ' 

Upon differentiation of Eq. (3. 7)2 and the substitution of (3. 7) 1, it yields the following 
second-order differential equation of simple shear 

{3 8) .. (1) • ( • )2 I h . w 
· • IX 12 - w ex 12 + yw ex 1 2 = - 3 Y w · 

·similar equation was considered recently by DAFALIAS [3] who used the function z = ± w 

·for the unified representation of the following special cases: z = 1/2- Zaremba-Jaumann 
rate, z = 2/(y2 +4)- the rate associated with the spin RRT introduced by GREEN and 
NAGHDI [7], where R is the orthogonal tensor of the polar decomposition of the deforma
tion gradient F = RU, and z = sin2 ()-the rate proposed in [10], where() is the angle 
between the x 1-axis and the eigenvector of a with the maximum positive eigenvalue, 
_z = 1 /2(1 - (!1X 11 ) - the rate proposed independently by Onat, Dafalias and Loret, where 
e is a constant which has the dimension of (stress)- 1 • In [3] the analytical solutions in 

-closed form for z = 1/2 and z = 2/(y2 + 4) are presented. 
In this case Eq. (3.8) can be solved analytically by means of the substitution 

·(3.9) 4> := J wdy , ¢ = yw 

·which transforms (3.8) as follows 

·(3.10) - ~ hy' _p__ 
3 ¢3 ' 
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The homogeneous solution of the linear differential Eq. (3.10) has the form 

(3.11) 

which, in general, has oscillatory character. 

The main reason for considering the function w, and throughout (3.9) the function 4>, 
stems from the fact that a particular choice of w leads to a non-oscillatory solution of Eq. 
(3.10). This can be fulfilled in different ways. It seams to be physically plausible to take 
<P as the transformation of the infinite domain of simple shear strain 0 < y < oo into 

the region 0 < 4> < ~ . This provides the non-oscillatory solution of (3.10). In such 

a case 4> can be interpreted as the shear angle 

(3.12) 4> = arctan y. 

The substitution of Eqs. (3.9) into (3.12) yields the specification of the function w 

1 
w = I +y2' (3.13) 

which can be called the influence function. 
Due to (3.12) and (3.13), 

(3.14) 

and the final differential equation of finite simple shear (3.10) takes the form 

(3.15) 

with the initial conditions 

(3.16) 

The idea of using the transformation (3.12) is consistent with the requirement stated 
in [IO] that, instead of the constant angular velocity y /2 generating the unlimited rotation 
of ex as t ~ oo, the angular velocity of the material line elements, which can only rotate 
by no more than n as t ~ oo, should occur in the proper formulation of the spin .n. In 
[I 0] the spin is expressed in terms of the angular velocity of continuously changing material 
line elements coinciding instantaneously with the maximum eigenvector of ex. On the other 

hand, the angular velocity of single material line elements can be used directly to formulate 
the modified spin. In such a case the angular velocity ~ is given by 

(3.17) ;. - · cos2 ,.~,. - 'Y 
'+' - 'Y '+'- I +(tanc/> 0 +y)2 ' 

where ¢0 is the initial angle of the material line element with respect to the axis x.z. 
The spin of the material line element with the initial angle ¢ 0 : 

(3.18) . [ 0 I] .n = xc/> -I o ' 

7 Arch. Mech. Stos. nr 6/85 

http://rcin.org.pl



666 J. E. PAULUN AND R. B. P~CHERSKI 

where x takes into account the initial condition 

(3.19) · [ o I] . [ o 0I] Sl0 = ~ -I O = xycos
2
¢ 0 _ I 

leading to x = I /2(I + tan2 c/> 0 ), takes, due to (3.I7), the following form 

n _ i_ I + tan
2
¢ 0 [ 0 I] 

(3.20) - 2 I+ (y+tan¢
0

) 2 -I 0 · 

Hence; in general, the influence function associated with the material line element with 
the initial angle c/>0 is given by 

(3.21) 
1 +tan2¢ 0 ' w = - -.,------,--;:-

I+ (tan¢0 +y)2 • 

Due to (3.17) the values of w given by (3.21) are proportional to the angular velocity 
of the material line element. 

The approach presented in [10] leads to the different specification of the influence 
function w. In this case the system of differential equations of simple shear takes the form 

all = 2ysin2 (h;e12' 

(3.22) • I h. 2. . 2() 
rt12 = 3 y- ysm IX11 • 

The comparison of Eqs. (3.22) with Eq. (3. 7) yields 

(3.23) 

where 

(3.24) 

w = 2sin20, 

0 = _!_ arc tan 1112 
• 

2 IX11 

Figure 1 displays the shape of the influence functions given by (3.I3) and (3.23). For 
he comparison, in Fig. I are also shown the influence function pertinent to the spin RR T 

w 

FIG. 1. The influence function w versus shear strain 
Curves 1 for w = 1 ____:_ Zaremba-Jaumann derivative, 
2 for w= 1-QIX11 e=0.5, Refs. [4, 13, 17, 18}. 

IXll 
3 for w = 1 - - • Refs. (1 0, 11 J. 

(!Xi 1 + 1XIz)112 

4 4 
4 for w = - - Refs. [3, 5], and 5 for w = --

2 
• 

4+y2 1 +y 
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of the principal directions of the stretching tensor U discussed in [3] and in [5] as well 
as in [6, 7, 8 and 21] 

(3.25) 
4 

w = 4+yz' 

and the function cv corresponding to the rate considered in [4], [13], [17] and [18]: 

(3.26) 

The functions (3.23) and (3.25) were determined numerically by the solution of the system 
of diffetential equations (3. 7) for the specified influence function w. Let us observe that, 
also in the cases given by (3.23), (3.25) and (3.26), the values of the influence function w 

are proportional to the angular velocity of the maximum principal direction of a, the 
angular velocity of the maximum principal direction of U and the an~ular velocity asso
ciated with the spin (Da-aD), respectively. Figure 1 shows that the specified functions 
of cv decrease in y what produces retardation of the material spin Win the course of defor
mation process. 

4. Analytical solution of the problem of simple shear for the corotational rate related to 
w = (l+tan2¢ 0)/[l+(tan¢0 +y)2

] 

Equation (3.8), the specification of the influence function w given by (3.21) and the 
substitution 

(4.1) ¢ = arctan(tan¢ 0 +y), 

lead to the following equation: 

(4.2) (;(~'2 + (1 + tan2¢ 0) (;(12 = ~ - htan¢(1 + tan2¢). 

In the simplest case, when ¢ 0 = 0, Eq. (4.2) transforms into Eq. (3.15). 
The analytical solution of the differential equation ( 4.2) can be given according to 

KAMKE [9] (p. 413, equation 2,36b) in the form 

(4.3) (;( 1 2 = C1 cos[(l +tan2¢ 0)¢]+C2 sin[(l +tan2¢ 0)¢] 

• 
2h J~ sin T . 2.A. )(.A. )]d + 

30 2¢ ) --3- sm[(l +tan 't'O 't'- T T. 
+tan 0 cos T 

~0 

The constants C1 , C2 can be determined from the initial conditions 

(4.4) 0 h ( 2 
(;(12 = , (X{l = 3 1 +tan ¢ 0), 

whereas the component a 11 of the back-stress tensor a can be calculated from Eq. (3.7h 
and relations (3.17) and (3.21) 

(4.5) 1 +tan(¢o+y)2 h-(X' 

3(1 +tan2¢ 0) 
12 1 +tan2¢ 0 • 

7* 
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This is the general solution of the simple shear problem with the corotational rate related 
to the material line element with an initial angle 4J0 • For particular values of 4J 0 , e.g.l/J0 = 0 

and 4J0 = ; , the integral in (4.3) has the closed analytical form and, in such a case, the 

closed analytical solution exists. In the simplest case, when 4J0 = 0, the solution of the 
simple shear problem can be expressed after transformations as follows: 

(4.6) "'12 =} h (tan<jJ-sin<jJ-cos<jJln 
1 ~:::"' ). 

1 ( . 1 - sin4J ) 
(4.7) au = 3 h cos¢ -1-sm4J In cos4J i. 

From the Equations (2.1), (2.2) and (3.3) 

(4.8) 

and the solution of the simple shear problem for 1Jo = 0 in terms of s12, s 11 andy take~ 
the form 

(4.9) sl2 = ?l· + 3(1 +~2)1/2 {y(l +y2)112 -y-ln[(l +y2)1 /2 -y]}' 

(4.10) Su = 3(1+hy2)1/2 {1-(1-y2)1f2_yln[(1+y2)tf2_y] }. 

For the comparison, the closed analytical solution of the simple shear problem for 

<Po = : is presented 

(4.11) <X12 = ~ h {cos,Psin</J[l/2-lf2tan2</l -ln(2cos2</J)] 

+ (sin 2</J -cos2</J) ( tan.P + q,- ~ - :}} , 

(4.12) au= +h{l +tan24J+(sin24J-cos24J)[1-3tan2¢-2ln(2cos2¢)] 

+2sin4Jcos¢(tan2¢- Stan¢ -4¢ +n+2) }, 

or in terms of s11 , s12 and y: 

(4.13) s11 = {++(I +y)2 + ~~:;):~)~ [ 1-3(1 +y)2-2ln L +(: +y)2}] 

+ 
1 
!VI :~)2 [(I +y)3

- 5(1 +y) -4arctan(l +y)+ n+ 21}, 

(4.14) ••2 == ~3 +! hj 1 !<:;:::)2 l!-(l+y)2 -2lnL+(~+y)2 )] 
+ (I +t) 2 -)! [4(1 +y)-4arctan(l +y)- 2-n]}. 

1+ 1 +y 
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The solution given by (4.9) and (4.10) as well as by (4.13) and (4.14) are displayed 
in Fig. 2. The curves were calculated for the material constants taken from [10] for an 
aluminium alloy: a0 = 207 (MPa) and h = 310 (MPa). It is visible that the formulation 
of the modified corotational rate in terms of the influence function (3.21) a'Ssociated with 

FIG. 2. Stress versus shear strain. The curves la-s12 
for {j> 0 = 0 andlb-s12 for 4>o = n/4,2a-su for 

c/J 0 = n/4 and 2b-sii for 4>o = 0. 

the angular velocity of a single material line element leads to the prediction of unbounded, 
continuously increasing shear stress and normal stress in shear strain. It can be observed, 
furthermore, that the results corresponding to the both values of the initial angle are similar. 
This motivates us to chose the simplest form of the influence function (3.21), corresponding 
to 4>o = 0, as representative for any material line element in the case of simple shear. 

J12 ' a 
Sn t b 6a uo 

5 5 

2 4 

3 4 

4 
2 2 3 

... 

FIG. 3. Shear stress versus shear strain (a), normal stress versus shear strain (b). Curves 1 for w = - 1
- , 

l+y2 
4 

2 for "J = 4:f- y 2- , Refs. [3, 5], 3 for w = 1- ecx 11 e = 0.5 Refs. [4, 13, 17, 18], and 4 for 

W= 
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Figures 3a and 3b show the comparison of the solution ( 4.9) and ( 4.1 0) - curve 1, 
with the values of the stress deviator components s12 and s11 determined numerically by 
the solution of the problem of simple shear according to the theory associated with the 
spin R Rr- curve 2, and the theories based on the spin (Dcx-cxD) and the function (3.26), 
for (! = 0.5- curve 3, as well as the theory of LEE et a/. [10]- curve 4. According to 
LoRET, DAFALIAS and ONAT, the nonsocillatory solution of the problem of simple shear 
can be obtained for an array of values of the constants (!. Some of these results were dis
cussed in [4] and [13]. In each case, however, the normal component a 11 of the back
stress has an upper bound equal to 1/e, what does not seem to be justified physically. 

The inclinations to the axis x1 of the direction of the maximum absolute principal 
component of a for the before mentioned theories are displayed in Fig. 4. It is remarkable 

8 ' 
0.79 

1 
0.63 2 

3 
0.47 

4 

0.31 

0.16 

'-----'---'----l __ l _ _ ...L.____l_ _ __L _ _j_ _ _j,_ ....LI _ _...,_ 

4 6 8 w 

FIG. 4. The inclination angle of the direction of the maximum absolute principal component of a versus 
1 

shear strain, curves 1 and 2 for w = -- and </Jo = 0, and </Jo = n/4, respectively, curves 3 and 4 
1+y2 

for w = 1- ecx 11 , for e = 1 and e = 0.5, respectively, Refs. [4, 13, 17, 18], and curve 5 for 
cxu 

w = 1 - , Refs. [1 0, 11]. 
(cxi 1 + cxfz)112 

that, according to [10], the maximum principal direction of ex inclines towards the axis x~> 
whereas in the other cases this direction tends towards the bisector direction of the x1 - x2 

coordinate frame in the limit when y ~ oo. 

S. Formulation of modified objective rate of stress corotational with substructure 

To formulate the modified spin 9 for the three-dimensional case, the relation (3.5) 
and the form of the influence function w given in (3.13) should be generalized. 

Consider 

(5.1) 9* := w-n 
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and substitute it into Eq. (2.4). It follows that 

(5.2) 

where 

(5.3) ~ = &-Wa+aW 

is the Zaremba-Jaumann derivative. The rate a is objective provided 9* is objective. 

The question arises as to what is the simplest, physically plausible, objective representation 
of 9*. 

It is commonly recognized in the theory of finite inelastic deformations of crystalline 

solids that the material moves with respect to the underlying crystall lattice, whereas 

the lattice itself undergoes elastic deformation and relative rigid-body rotations provided 
the phenomenon of lattice misorientation occurs (cf. PQCHERSKI [19]). Such variables as 

the back-stress tensor a and the stress tensor a are "carried" by material substructure 
associated with the crystal lattice. Therefore, it seems reasonable to define the objective 
rate by means of rates corotational with the material substructure. Basing on microstruc

tural considerations, MANDEL [14] devol oped the theory of plasticity in which the substruc
ture co rotational rate is defined in terms of the spin of the triad of director vectors attached 

to the substructure. According to Mandel's theory, constitutive relations are required 

not only for the rate of plastic deformation but also for the plastic spin. The general form 
of macroscopic constitutive relations for the plastic spin was discussed by DAFALIAS [4] 
and LORET [13] who used the representation theorem for isotropic second-rank antisym
metric tensor valued functions. In the case of plastic deformation with kinematic harden

ing, the plastic spin wv can be expressed in the following simplified form (cf. [4] and 
[13]); 

(5.4) wv = 1J(aD-Da), 

where ~is a scalar function of the isotropic invariants of a and a. 
Let us observe that the spin 9* is determined by the plastic spin WP and, due to (5.4), 

can be represented in the following way 

(5.5) 9* = 17(aD- Da)u, 
where 

(aD-Da) 
(aD -aD)u : = ( [( )2 )1/2 · tr aD-Da ] 

(5.6) 

It then remains to determine the function '17· For the simple shear we have 

(s. 7) n = ~ Yw [ _ ~ ~], w = n _ ~ ~] 
and 

(5.8) v2 [ o 1 1 . (aD-Da)11 = 2 - _
1 0 

j· 

According to Eqs. (5.1) and (5.5), the relations (5.7) and (5.8) yield 

(5.9) v2 ( ) . 17 = -2- 1-w y, 
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or from Eq. (3.13) 

(5.10) 

Relation (5.10) represents the difference between the constant angular speed produced by 
the material spin W and the angular velocity of the material line element lying initially 
along the axis x 2 • Accordingly, (5.10) pertains to the angular velocity corresponding to 
the spin Sl* and appears to be the function of accumulated plastic strain y. Also in the 
three-dimensional generalization of (5.10), an additional scalar parameter corresponding 
to the accumulated plastic strain is necessary to provide the proper description of kine
matic hardening. 

From Eq. (3.3), 

(5.11) • I ~ ·2 y 
Eeq = Jl 3 D · D = yj 

Consequently, the equivalent plastic strain can play the role of such a parameter. According 
to (5.10) and (5.11), 

2) 
3 3E~q • 

(5.1 'YJ = 2 1 +3e~ Eeq· 

This is the generalized form of the angular velocity corresponding to the spin Sl* and, 
accordingly, to the plastic spin WP. 

Thus, due to (5.1) and (5.4), the modified spin takes the form 

(5.13) Sl = W -rJ(aD-Dcx)u, 

and according to (2.3) and (2.4) we have 

(5.14) 
v 2 . . 
a= 3 hD-rJ[(aD-Dcx)ua-a(aD-Dcx)ul· 

This is the evolution equation for kinematic hardening tensor a with the modified sub
structure corotational rate which, due to (5.12), becomes nonlinearly dependent upon 
the accumulated plastic strain. Equation (5.14) provides a practical specification of a more 
general theory proposed by DAFALIAS [4] and LORET [13]. 

When 

(5.15) 'YJ = cytr[(aD-Da)2
], c = const, 

Eq. (5.13) becomes similar to that considered by ONAT ([17, 18]), DAFALIAS [4] and LoRET 
[13] as the simplest formulation of the substructure corotational rate which was applied 
for the solution of simple shear problem. 

6. Solution of the problem of simple shear traction 

Recently LEE and WERTHEIMER [1 I] have applied the modified corotational rate of 
stress and back-stress, proposed in [10], in the analysis of the problem of simple shear 
prescribed by shear traction boundary conditions corresponding to torsion of a cylindrical 
tube. This example can be considered as a test problem which may be used for the compari-
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son of different theories discussed herein, as well as for experimental verification. The 
problem of simple shear traction for finite plastic deformation with kinematic hardening 
was considered previously by LEHMANN [12], who also revealed anomalous material 
reactitin in the both, simple shear and simple shear traction problems. 

Let us consider a thin-walled cylindrical tube loaded by torque only. Due to static· 
determinacy and assumption of uniform stress distribution around the tube, the applied 
Cauchy stress tensor can be given in the following truncated form 

(6.1) 

By symmetry, no rotation of planes normal to the axis of the tube occur, so that the defor
mation gradient F has the components 

(6.2) F= [
Fu F12] 
0 F22 ' 

and due to plastic incompressibility we have 

(6.3) = [ 0 D12] 
W D 0 . 

- 12 

From (2.2) and (6.3) the back-stress tensor a has the form 

(6.4) 

In the case of simple shear traction the modified spin Q can be expressed as follows 

(6.5) 

where ' is the general expression for the spin component pertinent to different specifi-
cations of the influence function w. 

Due to (6.3), (6.4) and (6.5), the evolution equation (2.3) yields 

(6.6) 

According to Eqs. (2.6h and (6.5), the corotational rate of the Cauchy stress deviator 
s is given by 

(6.7) 

and due to Eq. (2.6) 1 

(6.8) 

O'o 
where r 0 = 

113 
.. 

o = l- 2' T T l 
S T 2'T ' 
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It follows from Eq. (5.13) specified for the simple shear traction problem, that 

v2 
'(6.9) C= D12- -y r;, 

where r; is given by (5.12). 
In the case considered by LEE and WERTHEIMER [11], it is seen that 

(6.10) C = 2D12 sin2 8+2D11 sint9cost9, 

whereas for the spin proposed by ONAT ([17], [18]) and DAFALIAS [4] as well as LORET 

[13]: 
'(6.11) C = D12 + e(D11 rx12 - D12 a11), e = const. 

Inserting C, given by (6.9), (6.10) and (6.11), into Eqs. (6.6) and (6.8), the three systems 
of equations can be obtained which describe the simple shear traction problem for different 
corotational rates. These systems of equations have been solved numerically for the 
applied shear traction 1: as the independent variable increasing linearly in time with i = 1 

I 

MsPal and for the initial conditions 

{6.12) rx 11 (0) = a12 (0) = 0, D11 = 0, 

The material constants were chosen the same as in the problem of simple shear discussed 
before. 

The ensuing components a 12 and cx11 of the back-stress tensor a are shown in Fig. 5. 
It is visible that the components cx12 pertinent to the different theories discussed have 
similar values. The larger discrepancies occur in the case of the components ex 11 representing 
the second-order effect. 

2.4 

1.8 

1.2 

0.6 

3 
2 

0 2.4 3.0 ;-
C5n 

FIG. 5. Components of the back-stress tensor a. 
·versus applied shear stress. Curves 1 for C given 
by Eq. (6.9), 2 for 'C given by Eq. (6.11), e = 1, 
3 for C given by Eq. (6.11), e = 0.5, and 4 for C 

given by Eq. (6.10). 

1 

Fro. 6. Shear stress versus shear strain. Curves 
1 for .C given by Eq. (6.9), 2 for C given by 
Eq. (6.11), e = 1, 3 for C given by Eq. (6.11), 

e = 0.5, and 4 for C given by Eq. (6.10). 
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From the solution of the simple shear traction problem, modelling torsion of thin
walled tube, the material characteristic r- y can be obtained. Such a relation for different 
theories is displayed in Fig. 6. The curves I and 2 corresponding respectively to the modi-. 
fied spin (6.9) and (6.11) for(! = 1, increase monotonically with shear strain y, whereas the 
curves 3 and 4 pertinent to the modified spin (6.10) and (6.11) fore = 0.5, reveal decrease 
in y when r increases upon a certain value. Although it is difficult to find the results of 
the di rect experimental test of the mentioned characteristics for large strains, the shape 
of the curves 3 and 4 does not seem to be realistic. The study of the change of the compo
nent H22 of the displacement gradient as a function of shear strain y which corresponds 
to the axial plastic elongation of the twisted tube, the so-called Swift effect, provides 
a better possibility of experimental verification. The experimental investigations of the 
Swift effect were reported recently by BILLINGTON [2]. The results obtained for twisted 
tubes of copper, aluminum and iron shown in [2] reveal the continuous increase in H 22 

with an increase in y. Although it is not possible to compare the results quantitatively 
because of different material constants, it is possible to observe that the values of the dis
placement gradient components H22 always remain much smaller than the corresponding 

FIG. 7. Plastic_ elongation versus shear strain. Curves 
1 for C given by Eq. (6.9), 2 for C given by 

Eq. (6.11 ), e = 1, 3 for C gien by Eq. (6.11), e = 0.5, 
and 4 for C given by Eq. (6.10). 

;;~ 

z· r 
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1.8 r ~ 

f-
1.2 ~ -

L 

0.6 

0 

3 

0.6 

values of y. Figure 7 shows the dependence of H22 on the shear strain y predicted by the 
theories discussed. It is visible that the curve 1 corresponding to the modified spin (6.9) 
conforms rather well with this observation. 

7. Discussion and conclusions 

The study of corotational rates shows that the choice or formulation of appropriate 
rate in finite deformation problems is not based solely on the question how to avoid the 
unwanted oscillatory stresses, but refers rather to proper constitutive description of 
anisotropic hardening in the course of finite plastic deformation process. The theory 
originated by Mandel which is based on constitutive relations for plastic spin and sub
structure corotational rate is applied herein. 
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The unified analysis of the system of differential equations describing the problem of 
simple shear led us to the conclusion that a retardation of the material spin W provides 
a non-oscillatory solution. This was made with use of the function w decreasing in y. 
As it is depicted. in Fig. I, the function w is pertinent to each corotational rate under con
sideration. This motivated us to call w an influence function. 

Equation (5.5) with the derived function 'YJ, given in (5.12), provides the practical and 
non-trivial specification of the general representation of the constitutive relation for 
plastic spin derived in [4] and [13]. Although the derived form of 'YJ is neither unique nor 
general, it is hitherto, according to authors knowledge, the only formulation which leads 
to satisfactory solution of the simple shear traction problem and simulation of the Swift 
effect. It can be concluded that the nonlinear generalization of the evolution equation for 
<X provides a reasonable theoretical prediction of the material behaviour. Further studies 
on proper formulation of such an equation are necessary. It should be related with the 
search for nonlinear specification of the constitutive equation for plastic spin. 
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Note added in proof 

The concept of plastic spin and its application for the finite deformation problems of plasticity with 
anisotropic hardening is studied intensively by many researches and several worth noting papers have been 
appeared after the completion of the present work. Some of them, e.g. OAF ALIAS [1, 2], REED and ATLURI [6] 
and LORET [3], are refered and discussed thoroughly in our forthcoming publications, PAULUN and P~CHER
SKI [4] and P~cHERSKI [5]. Although the applications of the plastic spin concept have been considered 
for different kinds of initial and induced anisotropies, [1, 2], there is still a gap between the theoretical 
representations of the plastic spin constitutive relation and practical applications for proper prediction 
of material reaction at finite plastic deformations and anisotropic hardening. The proposed approximation 
of the general constitutive equation for plastic spin, given in (5.5)-(5 .6) and (5.12), can appear to be helpful 
in filling this gap. Similarily as in [6], the experimental results of the torsion of thin walled tube obtained 
by Swift have been used, [4], to verify the theory with modified spin (5.12)- (5.14). The theoretical predi
ction of the normal strain £ 11 versus shear strain y , computed with use of (6.9) and the material parameters 
corresponding to the test of Swift, conforms very well to the experimental points. This provides stronger 
justification for the derived relations for plastic spin and corotational rate . The theory presented in [1 ,2], 
as well as, the derived relatibns for plastic spin (5.12)-(5.14) make a basis for the modelling of deform
ation instability phenomena, where the new concept of perturbed plastic spin plays the crucial role, [5]. 
The results presented in [3] are also discussed, where the effect of plastic spin on the onset of localisation 
is studied. 
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