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Study of corotational rates for kinematic hardening
in finite deformation plasticity

J. E. PAULUN (HANNOVER) and R. B. PECHERSKI (WARSZAWA)

THE AM of the paper is to study corotational rates for kinematic hardening in finite deformation
plasticity. The simple shear processes under both prescribed kinematical and shear traction
boundary conditions were considered. This enabled a comparison to be made between existing
theories, and resulted in an analysis for eliminating the unwanted oscillations in the shear stress
and unsatisfactory prediction of material behaviour in the case of simple shear traction. This
was achieved by introducing an influence function w of accumulated plastic strain which pro-
duces a retardation of the material spin W. The modified spin was then formulated for the
three-dimensional case. The merits of the present proposal vis a vis the existing theories are
discussed.

Celem pracy jest zbadanie wspdtobrotowych predkos$ci tensora naprezenia i parametru wzmochnie-
nia wyst¢pujacych w teorii skoficzonych deformacji plastycznych ze wzmocnieniem kinematycz-
nym. Zbadano problem czystego $cinania dany kinematycznie w predkosci $cinania oraz
problem $cinania dany w naprgzeniach Scinajacych. Umozliwito to poréwnanie istniejacych
teorii i pozwolitlo zaproponowa¢ modyfikacje wspolobrotowej predkosci, ktéra prowadzi do
eliminacji niepozadanych oscylacji naprgzenia scinajacego. Usuwa ona rowniez niezadowala-
jacy opis zachowania si¢ materialu w przypadku prostego $cinania danego w naprgzeniach
scinajgcych. Uzyskano to wprowadzajac pewna funkcjg wplywu w, zalezng od zakumulowanego
odksztatcenia plastycznego, ktora powoduje opoznienie spinu materialnego W. Nastepnie
okreslono posta¢ zmodyfikowanego spinu dla przypadku tréjwymiarowego. Przedyskutowano
zalety przedstawionej propozycji w porownaniu z istniejacymi teoriami.

Iesnpio paGoThbl sIBISIETCS HCCIEOBaHHE COBPAILATe/IBHLIX CKOPOCTeH TeH30pa HampsiKeHuit
M [apamMeTpa yIpPOYHEHHf, BBICTYNAIOUMX B TEOPHM KOHEUHBIX IUIACTHUeCKHX Aedopmariuii
C KMHEMAaTHYeCKHM yrpouHeHueM. McciiefioBanbl 3afjaua UMCTOTO C/ABHMra, 3aflaHHadg KHHe-
MaTHUYEeCKH B CKOPOCTH CI[BHMIa W 3aJlaya C/[BUTA, 3a[laHHas B HANPAXKEHHAX CABHra. DTO JaeT
BO3MOYHOCTb CPaBHHTb CYILECTBYIOIIME TCOPHH K I03BOJIAET NPEJIONKHUTE MOAUPHKALNIO
COBPAIATEIBHOH CKOPOCTH, KOTOpad MPHBOOUT K HMCKIIOUEHHIO JIHIIHMX OCHUMJUIALMH Ha-
NpsOKEHUA caBura. MICKiouyaeT oHa ToyKe HEy/JIOBJIETBOPHTEJIbHOE OIHCAHHE IIOBENEHHA Ma-
Tepuala B CJIyyae IIPOCTOrO CIBHIa, 3a/[aHHOI'0 B HANPSDKEHHAX CABHra. JTO IOJIYy4YEHO,
BBOJIf1 HEKOTOPYIO (hYHKUMIO BJIMSHHSA (), 338BHCALLYIO OT HAKOIUIEHHOM IUIacTHYeCKoi aedop-
MauMH, KOTopasl BbI3bIBaeT 3aMelJieHHe MaTepuaipHoro cnmHa W. 3aTtem omnpeneiieH BHJ
MoAuHUHMPOBAHHOLO CIIHHA I TpexmepHoro ciydas. OOCy»aeHbI JOCTOMHCTBA Ipe/CTaB-
JIEHHOTO IPEIIOIOMKEHHsT TI0 CPAaBHEHHIO C CYIIECTBYIOLIUMH TEOPHAMH.

1. Introduction

THE QUESTION of unwanted oscillatory stresses generated by simple shear to large deforma-
tion in plastic materials with kinematic hardening and Zaremba-Jaumann derivative
raised by NAGTEGAAL and DE JONG [16] was analysed by several authors and remains
the subject of discussion. Recently, LEE et a/. [10] and ONAT ([17, 18]) as well as DAFALIAS
([3,4]) and Lorer [13] proposed appropriate modifications of the corotational rates of
kinematic hardening tensor (back-stress) e and Cauchy stress ¢. Similar questions were
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discussed also by FRESSENGEAS and MoLINARI [6]. Different aspects of proper choice of
the objective stress rate in finite deformation problems were studied recently by ATLURI
[1], JounsoN and BAMMANN [8] and Moss [15] as well as by SiMo and PisTer [20] and
SowerBY and CHU [21]. The growing body of the literature devoted to this subject becomes
visible.

In [10] the modified corotational rate is expressed by means of the spin of material
lines which are instantaneously coincident with the principal direction of a having the
largest absolute eigenvalue. ONAT ([17, 18]) defined the modified corotational rate by
means of the spin equal to the antisymmetric part of Da multiplied by a constant, where
D is the rate of plastic deformation. The proper choice of the constant leads to the non-
oscillatory solution of simple shear problem. Similar expression for the corotational
rate was obtained independently by DaAFALIAS ([3, 4]) and Lorer [13], who interpreted
it as the corotational rate associated with material substructure. The qualitative analysis
of the solution of the simple shear problem presented in [17] and [18] as well as in [4]
and [13] shows that in non-oscillatory solution the shear stress is unbounded and increases
monotonically when the deformation increases. At the same time the normal stress ap-
proaches an asymptotic upper bound, and the principal directions of a tend towards the
bisector directions of the x, —x, coordinate axes. This differs from the solution given in
[10] where the both components of stress are unbounded and increase monotonically
with shear strain, while the maximum principal direction of & inclines towards the axis x,.

The observed qualitative discrepancies reveal that the problem is not completely
explained and requires further elucidation. Furthermore, in most of papers an example
of simple shear process under prescribed kinematic boundary conditions was considered
only. This led the authors to the overhasty conclusion that the proposed modifications
of corotational rate provide satisfactory results in general. According to our opinion
this is not always true.

The aim of the paper is to study critically the discussed theories and propose a suitable
form of corotational rate for kinematic hardening in finite deformation plasticity. The
unified analysis of the system of differential equations, describing the problem of simple
shear, led us to the conclusion that a retardation of the material spin W provides a non-
oscillatory solution. This was achiewed by means of an influence function w decreasing
with the shear strain, y. The function w was specified in such a way that the angular veloc-
ity 7, corresponding to the spin W in simple shear, is reduced to the angular velocity b
of a single material line element. The influence function w, formulated in the simple shear
process, was applied in the generalization to three-dimensional case, and modified
objective corotational rate associated with material substructure was obtained. The analy-
sis of the results for simple shear and also for simple shear traction shows that the theory
proposed herein reveals some advantages in comparison with the other theories under
consideration. It has been shown, in particular, that these theories fail in the proper
prediction of the shear stress-shear strain characteristic and of the Swift effect correspond-
ing to torsion of thin-walled tube which is modelled by the simple shear problem under
prescribed shear traction boundary conditions. This hitherto overlooked fact seems to
be important for proper formulation of corotational rate of kinematic hardening in finite
deformation plasticity.
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2, Basic equations of rigid-plastic material with kinematic hardening

For the sake of clarity consider the simplest constitutive model of finite plastic deforma-
tion in the well-known form of rigid-plastic material with the Huber—Mises yield critetion

@.1) Fe ) (s—a)-(s—a) =0} = 0,

where s represents the deviator of the Cauchy stress o, « is the deviatoric kinematic harden-
ing tensor (back-stress), and the constant o, corresponds to the tensile yield strength.
The incompressible plastic deformation is described by the associated flow rule

22) D = i(s—a),

and the evolution equation for the Prager type kinematic hardening
o 2

2.3) a= hD,

where h denotes the plastic tangent modulus, and
2.49) a:=a—Ra+afd

represents the Zaremba-Jaumann type corotational rate associated with an skewsymmetric
tensor £ (which will be specified as a certain spin tensor). For £ = W (material spin)
a corresponds to the known Zaremba-Jaumann rate.

According to the consistency condition

(2.5) F=35-a)(5—6) =3(s—a) (§—a&) =0

and due to Egs. (2.2) and (2.3), the plastic flow rule takes the form

D

]

9
06 oz (5= 15—,

§=8-Qs+sQ.

Due to the application of the corotational rates (2.4) and (2.6),, the constitutive equations.
(2.3) and (2.6), are objective.

3. The unified analysis of the equations of finite simple shear
A simple shear in the direction x, of the coordinate axes (x,, x,) is defined by the
displacements
(3.1) ; u, = ytx,, wu, = uy =0, 9§ = const,
and the resulting velocity field
3.2 v, = PX;, U, =v3 =0,

where ¢ and y are shear strain and shear strain rate, respectively. From the velocity field
V the velocity gradient L, the rate of deformation D and the material spin W can be cal-
culated:
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. 01 »[ 01
(3.3 L=y[ ] L 0] W=—2~[_1 ol

The basic equation of the problem is the evolution equation for e which, according
to (2.3) and (2.4), has the form

(3.9 a = § hD+Qa—af2, a(0) =0.

It is to be noted that in finite simple shear each spin £ which occurs in (3.4) can be expres-
sed as follows

o - 1 [ 01
(3.5 =oW=—owp_, o

where w is a scalar positive function of the shear strain y with the property, w (0) =
Thus, Eq. (3.4) can take the form

@y G2 1 .]01 | I 204, W22 — %y
(3'6) [&.12 &22] - ? hyl:l Ol +7wy[d22—ot“ “‘25{12 J.
The assumption of incompressibility and the initial condition (3.4), yields a;; = 0 and
®;; = —a,,. This leads to the following system of differential equations
ayy =y, a;,(0) = 0,
3.7)

; L ez 5
B2 = hy—ymay,  o,(0) = 0.

Upon differentiation of Eq. (3.7), and the substitution of (3.7),, it yields the following
second-order differential equation of simple shear
) 1 .o

(3.8) Fiam O dua+ o = =5

(4] '
. . ' i 1
Similar equation was considered recently by DAFALIAS [3] who used the function z = W

for the unified representation of the following special cases: z = 1/2 — Zaremba-Jaumann
rate, z = 2/(y*+4) — the rate associated with the spin RRT introduced by GREEN and
NAGHDI [7], where R is the orthogonal tensor of the polar decomposition of the deforma-
tion gradient F = RU, and z = sin? 0 — the rate proposed in [10], where 0 is the angle
between the x;-axis and the eigenvector of a with the maximum positive eigenvalue,
z = 1/2(1 — pa;,) — the rate proposed independently by Onat, Dafalias and Loret, where
p is a constant which has the dimension of (stress)~!. In [3] the analytical solutions in
-closed form for z = 1/2 and z = 2/(y*+4) are presented.
In this case Eq. (3.8) can be solved analytically by means of the substitution

(3.9) ¢ = [wdy, ¢ =jo
which transforms (3.8) as follows

rr l -
(3.10) b = — hy%

>

where oy, := d?a;,/d*p.



STUDY OF COROTATIONAL RATES FOR KINEMATIC HARDENING IN FINITE DEFORMATION PLASTICITY 665

The homogeneous solution of the linear differential Eq. (3.10) has the form
3.1) at, = C;sing + C,cosg

which, in general, has oscillatory character.

The main reason for considering the function w, and throughout (3.9) the function ¢,
stems from the fact that a particular choice of w leads to a non-oscillatory solution of Eq.
(3.10). This can be fulfilled in different ways. It seams to be physically plausible to take
¢ as the transformation of the infinite domain of simple shear strain 0 < y < o0 into

the region 0 < ¢ < 72[ This provides the non-oscillatory solution of (3.10). In such
a case ¢ can be interpreted as the shear angle
(3.12) ¢ = arctany.

The substitution of Eqs. (3.9) into (3.12) yields the specification of the function w
ok
1+y2°
which can be called the influence function.
Due to (3.12) and (3.13),

3.14) w = cos?¢

(3.13) _ =

and the final differential equation of finite simple shear (3.10) takes the form
G.15) iy bty = § htang (1 +tan?d)

with the initial conditions

(3.16) 2120 = 0, wix(0) = 5 .

The idea of using the transformation (3.12) is consistent with the requirement stated
in [10] that, instead of the constant angular velocity y/2 generating the unlimited rotation
of & as t —» oo, the angular velocity of the material line elements, which can only rotate
by no more than z as t — o0, should occur in the proper formulation of the spin . In
[10] the spin is expressed in terms of the angular velocity of continuously changing material
line elements coinciding instantaneously with the maximum eigenvector of a. On the other
hand, the angular velocity of single material line elements can be used directly to formulate
the modified spin. In such a case the angular ve]ocity{b is given by

(3.17) ¢‘) = j'/COSZdJ = ‘lﬁa[z}(i)m)_z 3

where ¢, is the initial angle of the material line element with respect to the axis x;.
The spin of the material line element with the initial angle ¢,:

; 01
(3.18) 9=x¢>[_1 0},

7 Arch. Mcch. Stos. nr 6/85
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where y takes into account the initial condition

%4 o p 01 — 01

(3.19) 0=7_10-—xycos¢0_10

leading to ¥ = 1/2(1 +tan%g,), takes, due to (3.17), the following form
_ 7 Lt [ O

=20 BE o 2 1+(y+tangy)* | —1 0]

Hence, in general, the influence function associated with the material line element with
the initial angle ¢, is given by

1 +tan2g,
21 O e .
@21 - 1+ (tangy +y)*
Due to (3.17) the values of w given by (3.21) are proportional to the angular velocity
of the material line element.

The approach presented in [10] leads to the different specification of the influence
function w. In this case the system of differential equations of simple shear takes the form

ayy = 2ysin?fay,,
(3.22) 1

&12 = 3 h)'J—Z‘;'ISinzeot“.

The comparison of Egs. (3.22) with Eq. (3.7) yields

(3.23) o = 2sin%0,
where

1 o
3.24 § = — arctan —'%,
(3.24) > i

Figure 1 displays the shape of the influence functions given by (3.13) and (3.23). For
he comparison, in Fig. 1 are also shown the influence function pertinent to the spin RR”

Fi1G. 1. The influence function @ versus shear strain

Curves I for w = 1 — Zaremba-Jaumann derivative,

2 for o = 1—pua,; o0 = 0.5, Refs. [4, 13, 17, 18},
Oy

3 for w=1= ——— -,
(aiy+air)'?

Refs. f[10, 11},

4 4
4 for o= — — Refs. [3,5),and S foro = ———.
44 y? 1+y2
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of the principal directions of the stretching tensor U discussed in [3] and in [5] as well

as in [6, 7, 8 and 21]
4
(325) w = ‘I:“,{lzi’

and the function ® corresponding to the rate considered in [4], [13], [17] and [18]:
(3.26) o= l—px,.

The functions (3.23) and (3.25) were determined numerically by the solution of the system
of diffetential equations (3.7) for the specified influence function w. Let us observe that,
also in the cases given by (3.23), (3.25) and (3.26), the values of the influence function w
are proportional to the angular velocity of the maximum principal direction of a, the
angular velocity of the maximum principal direction of U and the angular velocity asso-
ciated with the spin (Da—aD), respectively. Figure 1 shows that the'speciﬁed functions
of co decrease in y what produces retardation of the material spin W in the course of defor-
mation process.

4. Analytical solution of the problem of simple shear for the corotational rate related to
= (1+tan’dy)/[1+(tango+y)*]

Equation (3.8), the specification of the influence function w given by (3.21) and the

substitution

_ L Yo
4.1) ¢ = arctan(tangy+9y), ¢ = i3 tan%h,

lead to the following equation:
4.2) oty + (1 +tangy) oy, = grhtan¢(l+tan2¢).

In the simplest case, when ¢, = 0, Eq. (4.2) transforms into Eq. (3.15).
The analytical solution of the differential equation (4.2) can be given according to
KAMKE [9] (p. 413, equation 2,36b) in the form

(4.3) o, = C,cos[(1+tanpy)@]+ C,sin[(1 +tan?dy)d]
$
5 1,+§£’ﬁz = J 05 sin[(1+tano) (¢ — D] dr.
The constants C;, C, can be determined from the initial conditions
(4.4) w1, =0, oaf,= l; (1+tan2¢,),
whereas the component «,, of the back-stress tensor a can be calculated from Eq. (3.7),

and relations (3.17) and (3.21)

1 +tan(¢o+y)2 y 1

4.5 . 1+tan(go+y o
@3 T T30 ¥ tanZgy) | 2 11 tanZd,

T*
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This is the general solution of the simple shear problem with the corotational rate related
to the material line element with an initial angle ¢,. For particular values of ¢, e.g. po = 0

and ¢, = % the integral in (4.3) has the closed analytical form and, in such a case, the

closed analytical solution exists. In the simplest case, when ¢, = 0, the solution of the
simple shear problem can be expressed after transformations as follows:

(4.6) oy = ; (tan¢—sm¢ cos¢ln - SI;;d) )

@7 o =;h(cos¢)—l—sin¢»1n —sin )
From the Equations (2.1), (2.2) and (3.3)

.8) Sy = Uy i = -%-Mu,

and the solution of the simple shear problem for ¢, = 0 in terms of s,,, 5,, and y takes
the form

h
4.9) §12 = T;%-“*'S(Tyz)l/z {r(1+y»)'"2 —y—In[(1+9)'2—y]},

h
(4.10) S11 = A3(—l-_k—yi)jiz_ fl={1 =3 ~pin[( +9*)= -3}
For the comparison, the closed analytical solution of the simple shear problem for

¢o = % is presented

@.11) o, = -i—h {cos¢sin¢[1/2— 1/2tan2¢ —In(2cos?¢))

+ (sin?¢ —cos?¢) (tanq‘>+¢;~ ; _ :’:)}

4.12) oy, = é h {1 +tan?p + (sin*p —cos?p) [1 — 3tan?p —2 In(2cos?¢)]

+2singcos¢(tan?p — Stang —4¢p +7+2) },

or in terms of s;,, §;, and y:

B _L 5 (1+9y)*— _ 2 2
@13)  su = h{1+(l+'y) T+ +7)? [1 3(1+y) 21n(1+(1+y)2 )]

2

1+((114_r:f))2 [(1+y)* - 5(1+y)~4arctan(1+y)+n+2]},
4.14 = o 1) 20+y) l_ . (._i, )]
4.14) sy, V3 1 6 h{l+(l+y)2 1—(1+9)*—2In T

I1+y)*—1
"E:(—);)j;)z [4(1 +y)—4arctan(] +)/)—2—n]},
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The solution given by (4.9) and (4.10) as well as by (4.13) and (4.14) are displayed
in Fig. 2. The curves were calculated for the material constants taken from [10] for an
aluminium alloy: ¢, = 207 (MPa) and # = 310 (MPa). It is visible that the formulation
of the modified corotational rate in terms of the influence function (3.21) associated with

sz, S

G % oy
T L 1a

F1G. 2. Stress versus shear strain. The curves /a—s,;
for ¢po = 0 and 1b—s, for ¢po = 7/4,2a— sy, for > - T
¢o = n/4 and 2b—s,, for ¢o = 0. 0 ? 4 & 8 0y

the angular velocity of a single material line element leads to the prediction of unbounded,
continuously increasing shear stress and normal stress in shear strain. It can be observed,
furthermore, that the results corresponding to the both values of the initial angle are similar.
This motivates us to chose the simplest form of the influence function (3.21), corresponding
to ¢o = 0, as representative for any material line element in the case of simple shear.

Oy 1

;g_ a Sy
5 yf

S N E N Y T N S E

2 4 6 8 0y
1
F1G. 3. Shear stress versus shear strain (a), normal stress versus shear strain (b). Curves / for w = Tooe
+¥
4
2 for @ = 4492 Refs. [3, 5], 3 for = 1—px,;, p = 0.5 Refs. [4, 13, 17, 18], and 4 for
g
®yy
w=1 Refs. [10, 11].

(o} +afz)'? ’
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Figures 3a and 3b show the comparison of the solution (4.9) and (4.10) — curve I,
with the values of the stress deviator components s,, and s,; determined numerically by
the solution of the problem of simple shear according to the theory associated with the
spin R R” — curve 2, and the theories based on the spin (De—aD) and the function (3.26),
for p = 0.5 —curve 3, as well as the theory of LEE et al. [10] — curve 4. According to
LoreT, DAFALIAS and ONAT, the nonsocillatory solution of the problem of simple shear
can be obtained for an array of values of the constants . Some of these results were dis-
cussed in [4] and [13]. In each case, however, the normal component «,, of the back-
stress has an upper bound equal to 1/p, what does not seem to be justified physically.

The inclinations to the axis x, of the direction of the maximum absolute principal
component of a for the before mentioned theories are displayed in Fig. 4. It is remarkable
o

063

047

0371

016 -

LJ,_.‘. U5 S NN SYNN, U (S NN S
0

2 4 6 8 10 ¥

Fi1G. 4. The inclination angle of the direction of the maximum absolute principal component of & versus

1
shear strain, curves I and 2 for o = BT and ¢ = 0, and ¢po = 7/4, respectively, curves 3 and 4
3!

for w = 1—pux,,, for p = 1 and ¢ = 0.5, respectively, Refs. [4, 13, 17, 18], and curve 5 for

01
w=1-—

————, Refs. [10, 11].
(af +of2)'? [ ‘ ]

that, according to [10], the maximum principal direction of e inclines towards the axis x,
whereas in the other cases this direction tends towards the bisector direction of the x, —x,
coordinate frame in the limit when y — co.

5. Formulation of modified objective rate of stress corotational with substructure

To formulate the modified spin £ for the three-dimensional case, the relation (3.5)
and the form of the influence function e given in (3.13) should be generalized.

Consider

(5.1) QF = W-Q
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and substitute it into Eq. (2.4). It follows that

(5.2) & = o+ Qo —af2*,
where
(5.3) & = &—Wa+aW

is the Zaremba-Jaumann derivative. The rate a is objective provided Q% is objective.
The question arises as to what is the simplest, physically plausible, objective representation
of Q%

It is commonly recognized in the theory of finite inelastic deformations of crystalline
solids that the material moves with respect to the underlying crystall lattice, whereas
the lattice itself undergoes elastic deformation and relative rigid-body rotations provided
the phenomenon of lattice misorientation occurs (cf. PECHERSKI [19]). Such variables as
the back-stress tensor a and the stress tensor o are “carried” by material substructure
associated with the crystal lattice. Therefore, it seems reasonable to define the objective
rate by means of rates corotational with the material substructure. Basing on microstruc-
tural considerations, MANDEL [14] devoloped the theory of plasticity in which the substruc-
ture corotational rate is defined in terms of the spin of the triad of director vectors attached
to the substructure. According to Mandel's theory, constitutive relations are required
not only for the rate of plastic deformation but also for the plastic spin. The general form
of macroscopic constitutive relations for the plastic spin was discussed by DAFALIAS [4]
and LoreT [13] who used the representation theorem for isotropic second-rank antisym-
metric tensor valued functions. In the case of plastic deformation with kinematic harden-
ing, the plastic spin W? can be expressed in the following simplified form (cf. [4] and
[13]):

5.4) W? = 5(aD—Da),
where 7 is a scalar function of the isotropic invariants of & and o.

Let us observe that the spin % is determined by the plastic spin W? and, due to (5.4),
can be represented in the following way

(5.5) Q* = 5(aD — D),
where
(5.6) (@D —aD), : (eD—Tia)

~ (tr[(@D—De)?)"?

It then remains to determine the function #. For the simple shear we have

- o 1. [0 1] 5[ 01
@.2) =",2_7’“’[—10’ W__Z_[—I 0]
and

_ ﬁl . I'l
(5.8) _(aD—Dcx),,;—j— 1ol

According to Egs. (5.1) and (5.5), the relations (5.7) and (5.8) yield

(5.9 0= -y,
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or from Eq. (3.13)

(5.10) n=ﬁ %

Relation (5.10) represents the difference between the constant angular speed produced by
the material spin W and the angular velocity of the material line element lying initially
along the axis x,. Accordingly, (5.10) pertains to the angular velocity corresponding to
the spin £* and appears to be the function of accumulated plastic strain y. Also in the
three-dimensional generalization of (5.10), an additional scalar parameter corresponding
to the accumulated plastic strain is necessary to provide the proper description of kine-
matic hardening.
From Eq. (3.3),

. 2 g ; -

(5.11) Boq = I/—S-D-D =% and  y = /3 e
Consequently, the equivalent plastic strain can play the role of such a parameter. According
to (5.10) and (5.11),
33k,
2 14322, ™%
This is the generalized form of the angular velocity corresponding to the spin £* and,
accordingly, to the plastic spin WP,

Thus, due to (5.1) and (5.4), the modified spin takes the form

6.12) n=

(5.13) Q = W—y5(aD-Da),,
and according to (2.3) and (2.4) we have
(5.14) & = % hD —5[(aD — Da), & —a(aD —Da),].

This is the evolution equation for kinematic hardening tensor & with the modified sub-
structure corotational rate which, due to (5.12), becomes nonlinearly dependent upon
the accumulated plastic strain. Equation (5.14) provides a practical specification of a more
general theory proposed by DAFALIAS [4] and Lorer [13].

When

(5.15) 7 = cy/tr[@D—Da)?], ¢ = const,

Eq. (5.13) becomes similar to that considered by ONAT ([17, 18]), DAFALI1AS [4] and LoORET
[13] as the simplest formulation of the substructure corotational rate which was applied
for the solution of simple shear problem.

6. Solution of the problem of simple shear traction

Recently LEe and WERTHEIMER [11] have applied the modified corotational rate of
stress and back-stress, proposed in [10], in the analysis of the problem of simple shear
prescribed by shear traction boundary conditions corresponding to torsion of a cylindrical
tube. This example can be considered as a test problem which may be used for the compari-
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son of different theories discussed herein, as well as for experimental verification. The
problem of simple shear traction for finite plastic deformation with kinematic hardening
was considered previously by LEHMANN [12], who also revealed anomalous material
reaction in the both, simple shear and simple shear traction problems.

Let us consider a thin-walled cylindrical tube loaded by torque only. Due to static
determinacy and assumption of uniform stress distribution around the tube, the applied
Cauchy stress tensor can be given in the following truncated form

0t
(6.1) o = [r 0].

By symmetry, no rotation of planes normal to the axis of the tube occur, so that the defor-
mation gradient F has the components

F,, F
(6.2) F =[ (‘)‘ F:]
and due to plastic incompressibility we have

DH D12 0 D12

©3) T R S e |
From (2.2) and (6.3) the back-stress tensor & has the form
(6.4) a = [a“ a”],

%ya —&yy
In the case of simple shear traction the modified spin & can be expressed as follows

0¢

) 2-| 7o

where £ is the general expression for the spin component pertinent to different specifi-
cations of the influence function w.

Due to (6.3), (6.4) and (6.5), the evolution equation (2.3) yields

&y 2P 2 D, — 0y
6.6 3 . | =--h ]+2Cl l
&:6) [“12 —“11] 3 D,, —D,, — O — %2

According to Egs. (2.6), and (6.5), the corotational rate of the Cauchy stress deviator
s is given by

. —2tt T
(6.7) s = i 2|
and due to Eq. (2.6),
D, D, 3 T— 02
(6.8) [Du _D”] = 217—1'0 [T(r—alz)-l-ZC"ra,,][ 5 iy ]

Jg
where 7, = — .

==

V3
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It follows from Eq. (5.13) specified for the simple shear traction problem, that
2
(6.9) Fe Dy 1/2_ .

where 7 is given by (5.12).
In the case considered by LEE and WERTHEIMER [11], it is seen that

(6.10) ’ { = 2D,,sin?6 42D, sinfcosh,

whereas for the spin proposed by OnAT ([17], [18]) and DAFALIAS [4] as well as LORET
[13]: '

{(6.11) § = D+0(Dyy2,—Dyy04,), o = const.

Inserting ¢, given by (6.9), (6.10) and (6.11), into Eqgs. (6.6) and (6.8), the three systems
of equations can be obtained which describe the simple shear traction problem for different
corotational rates. These systems of equations have been solved numerically for the
applied shear traction 7 as the independent variable increasing linearly in time with 7 = 1
| MPa |

s

|

(6.12) 0;1(0) = 500 =0, Dy, =0, D,=

and for the initial conditions

37
20
The material constants were chosen the same as in the problem of simple shear discussed
before.

The ensuing components c,, and «,, of the back-stress tensor a are shown in Fig. 5.
It is visible that the components «,, pertinent to the different theories discussed have
similar values. The larger discrepancies occur in the case of the components e, ; representing
the second-order effect.
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Fig. 5. Components of the back-stress tensor @  FIG. 6. Shear stress versus shear strain. Curves

versus applied shear stress. Curves / for { given [/ for { given by Eq. (6.9), 2 for { given by

by Eq. (6.9), 2 for { given by Eq. (6.11), o =1, Eq. (6.11), ¢ =1, 3 for { given by Eq. (6.11),

3 for ¢ given by Eq. (6.11), ¢ = 0.5, and 4 for ¢ o = 0.5, and 4 for { given by Eq. (6.10).
given by Eq. (6.10).
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From the solution of the simple shear traction problem, modelling torsion of thin-
walled tube, the material characteristic —y can be obtained. Such a relation for different
theories is displayed in Fig. 6. The curves / and 2 corresponding respectively to the modi-
fied spin (6.9) and (6.11) for ¢ = 1, increase monotonically with shear strain y, whereas the
curves 3 and 4 pertinent to the modified spin (6.10) and (6.11) for o = 0.5, reveal decrease
in y when t increases upon a certain value. Although it is difficult to find the results of
the direct experimental test of the mentioned characteristics for large strains, the shape
of the curves 3 and 4 does not seem to be realistic. The study of the change of the compo-
nent H,, of the displacement gradient as a function of shear strain ¢ which corresponds
to the axial plastic elongation of the twisted tube, the so-called Swift effect, provides
a better possibility of experimental verification. The experimental investigations of the
Swift effect were reported recently by BILLINGTON [2]. The results obtained for twisted
tubes of copper, aluminum and iron shown in [2] reveal the continuous increase in H,,
with an increase in y. Although it is not possible to compare the results quantitatively
because of different material constants, it is possible to observe that the values of the dis-
placement gradient components H,, always remain much smaller than the corresponding

Hzo
30

S
i

FiG. 7. Plastic elongation versus shear strain. Curves
I for £ given by Eq. (6.9), 2 for { given by
Eq. (6.11), o = 1, 3 for { gien by Eq. (6.11),0 = 0.5,
and 4 for { given by Eq. (6.10).

values of y. Figure 7 shows the dependence of H,, on the shear strain p predicted by the
theories discussed. It is visible that the curve | corresponding to the modified spin (6.9)
conforms rather well with this observation.

7. Discussion and conclusions

The study of corotational rates shows that the choice or formulation of appropriate
rate in finite deformation problems is not based solely on the question how to avoid the
unwanted oscillatory stresses, but refers rather to proper constitutive description of
anisotropic hardening in the course of finite plastic deformation process. The theory
originated by Mandel which is based on constitutive relations for plastic spin and sub-
structure corotational rate is applied herein.
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The unified analysis of the system of differential equations describing the problem of
simple shear led us to the conclusion that a retardation of the material spin W provides
a non-oscillatory solution. This was made with use of the function w decreasing in y.
As it is depicted. in Fig. 1, the function w is pertinent to each corotational rate under con-
sideration. This motivated us to call @ an influence function.

Equation (5.5) with the derived function #, given in (5.12), provides the practical and
non-trivial specification of the general representation of the constitutive relation for
plastic spin derived in [4] and [13]. Although the derived form of # is neither unique nor
general, it is hitherto, according to authors knowledge, the only formulation which leads
to satisfactory solution of the simple shear traction problem and simulation of the Swift
effect. It can be concluded that the nonlinear generalization of the evolution equation for
a provides a reasonable theoretical prediction of the material behaviour. Further studies
on proper formulation of such an equation are necessary. It should be related with the
search for nonlinear specification of the constitutive equation for plastic spin.
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Note added in proof

The concept of plastic spin and its application for the finite deformation problems of plasticity with
anisotropic hardening is studied intensively by many researches and several worth noting papers have been
appeared after the completion of the present work. Some of them, e.g. DAFALIAS [1, 2], REED and ATLURI [6]
and Lorer [3], are refered and discussed thoroughly in our forthcoming publications, PAULUN and PECHER-
skI [4] and PgcHERsKI [5]. Although the applications of the plastic spin concept have been considered
for different kinds of initial and induced anisotropies, [1, 2], there is still a gap between the theoretical
representations of the plastic spin constitutive relation and practical applications for proper prediction
of material reaction at finite plastic deformations and anisotropic hardening. The proposed approximation
of the general constitutive equation for plastic spin, given in (5.5)—(5.6) and (5.12), can appear to be helpful
in filling this gap. Similarily as in [6], the experimental results of the torsion of thin walled tube obtained
by Swift have been used, [4], to verify the theory with modified spin (5.12)—(5.14). The theoretical predi-
ction of the normal strain E;, versus shear strain y, computed with use of (6.9) and the material parameters
corresponding to the test of Swift, conforms very well to the experimental points. This provides stronger
justification for the derived relations for plastic spin and corotational rate. The theory presented in [1,2],
as well as, the derived relations for plastic spin (5.12)—(5.14) make a basis for the modelling of deform-
ation instability phenomena, where the new concept of perturbed plastic spin plays the crucial role, [5].
The results presented in [3] are also discussed, where the effect of plastic spin on the onset of localisation
is studied.
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