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Propagation of weak nonlinear long waves ( *) 

K. PIECH6R (WARSZAWA) 

THE LONG time behaviour of solutions of the Cauchy problem (1.2) and (1.3) is studied. Problems 
of the considered type arise in the theory of weak, nonlinear long waves in various branches 
of mechanics. The aim of the paper is a generalization of the method presented in [6]. It is found 
that, in general, it is necessary to solve systems of nonlinear partial differential equations in 
order to obtain approximate solutions in the far field. However, in many applications it is enough 
to solve either a few independent Burgers equations or a system of linear equations. This is 
the case of flow of a magnetoactive gas subject to a transversal magnetic field. This problem is 
solved to.show an application of the theory. 

Badamy zachowanie si~ po dlugim czasie rozwi(!zan zagadnienia Cauchy'ego (1.2), (1.3). Pro
blemy powyzszego typu powstaj(! w teorii slabych, nieliniowych dlugich fal w r6znych dzialach 
mechaniki. Celem pracy jest uog6lnienie metody podanej w [6]. Stwierdza siC(, ze na og6l trzeba 
rozwi(!zywac uklady nieliniowych r6wnan r6i:niczkowych CZ(!stkowych po to, aby otrzymac 
przyblii:one rozwi(!zania dla czas6w odleglych od chwili pocZ(!tkowej. Jednakze w wielu zasto
sowaniach wystarczy rozwi(!zac albo kilka niezaleznych r6wnan Burgersa albo uklad r6wnan 
liniowych. Jest tak w przypadku przeplywu gazu magnetoaktywnego w poprzecznym polu ma
gnetycznym. Problem ten jest rozwi(!zany dla ilustracji og6Inej teorii. 

Hccne.zzyeM noae,neHHe, nocne ,nnHHHhiX OTpe3I<OB apeMeHH, pemeHHH 3a,naqn Konm (1.2), 
(1.3). 3a,natJH BbiiiieynoMHHyTOrO THna B03HHI<aiOT B TeOpHH CJia6hiX, HeJIHHeHHbiX )l;JIHHHbiX 
aonH B pa3HbiX o6naCTHX MexaHHI<H. Ueni>IO pa6oThi HBJIHeTCH o6o6meHHe MeTo,na npHBe
,neHHoro B (6]. KoHCT8THpyeTCH, liTO B o6IUeM Ha,no peiii8Tb CHCTeMbl HeJIHHeHHbiX .n;H<J;><J;>e
peHIIHaJibHbiX ypaBHeHHH B lJ8CTHbJX npOH3BO)l;HbiX )l;JIH TOro, tiT06bi DOJIYtiHTb npH6JIH>J<eH
Hbie peiiieHHH )l;JIH BpeMeH OT)l;aJieHHbiX OT H8tiaJibHOrO MOMeHTa. 0,nHai<O B MHOrHX npHMe
HeHHHX )l;OCT8TOtiHO peiiiHTb HJIH HeCI<OJlbi<O He38BHCHMbiX ypaBHeHHH Eroprepca, HJIH CHCTeMy 
nHHe:HHbix ypaBHeHHH. Tai< cocroHT .neno B CJiytiae MarHHToai<THBHoro ra3a B nonepetiHoM 
MarHHTHOM none, I<OTOpaH TO 38)l;8ti8 peiiieHa )l;JIH HJIJIIOCTp81IHH 06IUeH TeOpHH. 

1. Introduction 

WE STUDY problems concerning the formation and evolution of a weakly nonlinear mo
tion of a physical system. This motion is assumed to be a small disturbance of a uniform 
state. In this paper we limit ourselves to such phenomena which can be treated as unsteady, 
i.e. time-dependent and spatially one-dimensional. Let t denote the nondimensional time 
(t ~ 0) and let x be the dimensionless space coordinate (- oo < x < oo ). 

Let 

u = u(x, t) = (u1 (x, t), ... , un(x, t)) 

represent the disturbance of an initially quiescent system. In many cases of interest it is 
a solution of the initial value problem 

<•> Paper given at XVI Symposium on Advanced-,ProbJems and Methods in Fluid Mech
anics, Spala, 4-10 September, 1983. 
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344 K. PIECH6R 

ou ou on o2u 2 ( ou o2u ) 
(1.1) Tt +A ax +eB(u)a; = eC ox2 +t: V u, ax' ox2 , e, 

(1.2) u(x, 0) = u<0>(x), t ~ 0, - oo < x < oo, 

where A and Care constant n x n matric;s, B(u) is matrix linear in u i.e. 
n 

B(u) = ~ Bhuh, 
h=l 

where Bn are constant matrices of the size n x n. 
Next, e > 0 is a small parameter, u<0 >(x) is a given vector field of initial data, and 

V(x, y, z, e) is a continuous function of its arguments. 

We want to find an app~oximate solution v(x, t, e) of Eqs. (1.1) and (1.2) such that for 

llu(x, t, e)-v(x, t, e)ll ~ Ke 

for 

1 
0 ~ t ~ - , - oo < .x < oo , 0 < e < eo. 

e 

Here K > 0, eo > 0 are some positive constants. As a rule in such a situation, the term 

e2 V ( u, ;; , ~:~ , e) in the right hand side of Eq. {1.1) is neglected. However, all terms 

which is multiplied by s must be kept (cf. [1], [2]), hence we have to solve the following 

systems of equations: 

(1.3) 
ou ou ou o2u 
at +A a x + eB(u) ax= eC ox2 ' 

subject to the initial data (1.2). 
However, although Eq. (1.3) is much simpler that the original Eq. (1.1), still it re

mains nonlinear and it is hopeless to solve it explicitly. Therefore a perturbation tech

nique must be used. As it is well known ([I, 2]), any regular perturbation method is out 

of use, therefore a more sophisticated argument must be applied. Usually either a tech

nique of the group called methods of strained coordinates or that of multiple scales is used 

([1, 2]). However, there are problems which cannot be solved by any of those methods 

when applied separately. An eXample is provided by the problem of reftexion of a weak 

shock wave from a plane wall ([3], [4]). The first who solved it were M. B. LESSER and 

R. SEEBASS [3]. In order to determine the approximation in the far field, they divided it 

into suitable subdomains, introduced a "slow" time variable 

(1.4) T = st 

and used repeatedly the matching principle. 

Thus, in a sense, their approach was a combination of the matched asymptotic expan

sion and multiple scale expansions (each type of those expansions is presented in [1, 2]). 

The use of such a sophisticated technique gave facilities for determining the correct incident 

and reflected shock structure as well as their trajectories. 

Later, an alternative approach was presented by the present author [4] who used 

the slow time variable T and strained both x and t; no division of the far field was used. 

http://rcin.org.pl



PROPAGATION OF WEAK NONLINEAR LONG WAVES 345 

This technique was a combination of the strained coordinates method and two time 
expansions. 

Next, the same technique was applied to determine uniformly valid approximation 
for the problem of regular reflexion of a weak shock wave from an inclined plane wall 
[5]. 

Recently, this method was extended by the same author to problems whose solutions 
are composed of more than two modes and the theoretical results were applied to the shock 
tube problem [6], exhibiting good a agreement with the other authors' results. 

The aim of this paper is to weaken some of the assumptions under which our technique 
can work, also we reformulate the main idea what makes the calculations less tedious. 
Finally, the general scheme is applied 'to the problem of propagation of weak unsteady 
one-dimensional disturbances in a magnetoactive gas subject to a transversal magnetic 
field. 

2. The general scheme 

It will be easier to formulate assumptions and results of the general considerations by 
giving an abstract interpretation of the initial value problem (1.4) and (1.5). 

We follow the general notation and terminology of the monograph by T. KATO [7], 
where further information can be found as well. 

Let X be a finite-dimensional, normed linear space, let n = dimX and let 11 • 11 be the 
norm. Let A be a linear operator from X into itself. We assume that it is reducible, i.e. 
there linear subspaces M 1 , ..• , Mm such that X can be represented as the direct sum 

X= M1 EBM2EB ... EBMm, 

and each to them is an invariant subspace of A, i.e. 

AMt c M, i = 1, 2, ... , m. 

Let Ph(h = 1, 2, ... , m) be the projector from X into Mh. We assume that there are real 
numbers (X 1 , •.. , (Xm such that 

(2.1) 

The projectors are given by the formula [7] 

(2.2) 

where I is the identity operator, and the contour rh encircles only one point C = (Xh. The 
numbers (X1 , ... , (Xm are eigenvalues of A and they are solutions of the algebraic equation 

(2.3) det(A- Cl) = 0. 

Next, let B(u, v) denote a bilinear operator from X 2 = XxX into X. We assume that 
there are real linear functionals p 1 (u), ... , f3m(u) from X into the set of real numbers R such 
that for every fixed u EX and arbitrary vEX 

(2.4) PhB(u, Ph, v) = f3h(u)Phv, h = 1, ... , m. 

4 Arch. Mech. Stos. nr 3/84 
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346 K. PIECH6R 

Finally, let C be another linear operator from X into itself. We assume that for every 
h = 1, 2, ... , m the eigenvalues of the operators 

(2.5) 

considered as linear operators from Mh into Mh, have a positive real part. 
Let u< 0 > (x) be a twice continuously differentiable function with values from X. The aim 

of this chapter is to construct an approximation to the solution of the following abstract 
initial value problem: 

ou ou ( ou ) o2u 
(2.6) Tt +A ax + eB u' ox = eC ox2 ' - 00 < X < 00' t ~ 0 

subject to the initial condition 

(2.7) u(x, 0) = u< 0>(x), 

where the operators A, B( ·, ·) and C have the properties formulated above, and e 1s 

a small positive parameter. 
Introducing the notation 

we can replace Eq. (2.6) by a system of m coupled equations 

(2.8) :I u•+a• ~: +• i i P.B(u,, ~:) = E .f P.C ~;;, 
i=l k=l l=l 

(2.9) 

Now the problem (2.8) and (2.9) is formally similar to that considered in [6]. 
We assume that solution for Eqs. (2.8) and (2.9) can be written in the form 

(2.10) 

(2.11) 

(2.12) 

uh(x, t, e) = vh(~k' -z)+ eroh(~1 .... , ~m' T)+ ... , vh, roh E Mh, 

x-rxht = ~h+eq;h(~1 , ••• , ~m' T)+ ... , 

T=et, h=1,2, ... ,m. 

Substituting the expansions (2.10)-(2.12) into ~qs. (2.9) and equating the terms multiplied 
by the same powers of e, we see that vh can be arbitrary and therefore we pass to the 
approximation of order e to Eqs. (2.8). 

This is a linear partial differential equation which can have a bounded solution pro-
vided that [6] · 

(2.13) 

i) sup llvh(~h' T)ll < oo, h = 1, 2, ... , m, 

ii) 

- oo<ell< 00 
T~O 

h = 1, 2, ... , m, 

iii) s,':?o j II a~. v.(~ •• T)ll d~. < oo, h = I, 2, ... , m, 
-OO<X<OO X 

-oo<y<oo 
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PROPAGATION OF WEAK NONLINEAR LONG WAVES 347 

iv) the functions cp11 (~1 , ••• , ~m' r) are given by 

(2.14) 

v) the vector fields r1 (~1 , r), ... , r11 (~11 , r) are solutions of the following initial value 
problems: find the vector fields r11 (~11 , r) E M 11 such that 

av,.(~,., r) ( ) a ( a2v,.(~,., r) 
(2.15) 07: +{J,. v,.(~,., r) a~,. v,. ~,., r) = chh a~~ ' 

(2.16) 

All calculations are omitted here because they can be carried out exactly in the same manner 
which is given in full extense in [6]. 

We must point out an essential difference between Eqs. (2.15) and very similar in form 
equations obtained in [6J. If for some h = h0 dimM,.o = 1, then Eq. (2.15) for h = h0 

is in fact the Burgers equation or the diffusion equation. However, if dimM,.o ~ 2, then 
Eqs. (2.15) for h = h0 form in general a system of dimM110 nonlinear partial differential 
equations. Thus, in the case of multiple eigenvalues of the operator A, it is much more 
difficult to determine the asymptotics of the initial value problem (2.6) and (2. 7). 

Let us note that if we assume additionally that 
y 

vi) sup 1\J v11(~11 , r)d~~~\\ < oo, 
-CO<X<CO X 
-CO<y<CO 

T~O 

then it is not necessary to strain the variable, i.e. we can assume that 

~11 =x-a.11 t. 

Indeed, 

av,.(x-a.,.t, r) 2 
v11 (~11 , -r:) = v11(x-a.11 t+ecp+ ... , r) = v11(x-a.11 t, -r:)+e ae,. cp11 +0(e) 

using here the expression (2.14)for cp11 , we see that ifii) and vi) are satisfied, then a~,. r,.(x

-a,.t, -r:)cph = 0(1) and therefore we can write 

u11(x, t, r) = v11(,x-a.11 t, r)+O(e) 

instead of Eq. (2.1 0). 
Hence, under Assumptions i), ii) iii) and v), vi) it is enough to apply the multiple 

scale melhod in order to get a uniformly valid approximation. This remark is in accord
ance with the discussion given in [2], Chapter 5.1. 

However, if vi) is not satisfied, the straining of coordinates along with the multiple 
scales must be applied. 

Assuming that vh depends on more variables, say some ~h' 1Jh' ... ' ch and T, it is pos
sible to weaken the assumption (2.4), however, it remains an open question how to con-

•• 
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348 K. Pl:ECH6R 

struct an approximation to the initial value problem (2.6) and (2. 7) uniformly valid up 
to the time of order e- 1 in the case of an arbitrary bilinear operator and multiple eigen
values of the operator A. Let us notice, however, that in the extreme case when 

A= rxl, rx eR 

with the help of the transformation of independent variables 

~ = x- rxt, r = et 

and substitution 
u(x, t, e)= v(~, r), 

we reduce the problem (2.6) and (2.7) to the equivalent form 

(2.17) ov ( ov) o2v or +B v,7if = C [)~2' 

(2.18) v(~, 0) = u<0>(~) EX. 

Here the small parameter e is not present and no further simplification can be attained. 
Note also that it is not necessary to impose any assumptions for the bilinear operator 
B, (the eigenvalues of C must have a positive real part). 

3. Application to magnetogasdynamics 

Equations of flow of a viscous and heat conducting fluid susceptible to electromagnetic 
forces consist of the usual equations of conservation of mass, momentum and energy with 
the magnetic force J x B (J is the current density, B is the magnetic induction) induced 
in the momentum equation and the Joule heat a- 1J 2 (a is the electrical conductivity) 
introduced into the energy equation; thus the system is [8] 

(3.1) 
0(! 
Tt +V · (eV) = 0, 

(3.2) e ( 00~ + v · vv) v + Vp ~ J x B + v . P, 

(3.3) e (~T + v · ve) +pV · v ~ .,.- 1J 2 +P:VV -V8, 

where e is the density, Vis the fluid velocity, Pis the stress tensor, e is the internal energy, 
9 is the heat flux. 

To these Maxwell's equations and Ohm's law are added 

(3.4) 

(3.5) 

(3.6) 

aB at +VxE = 0, 

1 
-VxB = J, 
ft 

J = a(E + V x B), 

where 11 is the magnetic permeability, E is the electric field. 
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PROPAGATION OF WEAK NONLINEAR LONG WAVES 34~ 

In order to close the system of equations (3.1 )-(3.6), we add 

(3.7) 
2 

P = - T p,1 V · VU +p,1 [VV +(VV)*J, 

(3.8) 8 = -J.VT 
and limit ourselves to the ideal, polytropic gas 

(3.9) p =ReT, 
(3.10) e = CvT, 

(3.11) R = Cp-Cv• 

where Tis the temperature, p, 1 is the viscosity, U is the unit matrix, ). is the coefficient of 
heat conductivity, Cp and cv are specific heat constants, finally A is a quadratic matrix and 
A* denotes its transposition. 

In this paper we bound ourselves to one-dimensional motion in the x direction with 
speed v(x, t). Then only a transverse magnetic field is possible, and therefore we may put 

V = (v, 0, 0), B = (0, 0, B), E = (0, E, 0), J = (0, E-vB, 0) 

with all quantities being functions of x and t only. Under these conditions we obtain from 
Eqs. (3.1)-(3.11). 

(3.12) 
oe oe ov - +v- +e-·- = o ot ox ox ' 

(3.13) (
ov ov) o(eT) 4 o ( ov) e - +v - +R = aB(E-vB)+- --- p,1 - -- , 
ot ox ox 3 ox ox 

(3.14) ( 
or or) ov · 2 4 ( ov )

2 

o ( or) eC - +v- +p- = a(E-vB) -p,1 - + - J.-
v ot ox ox 3 ox ox ox ' 

(3.15) 

(3.16) 
1 oB 
--- +a(E-vB) = 0. 
"' ox 

We shall consider small disturbances of a uniform flow which is described by the constant 
density eo, temperature T0 , magnetic induction B0 , vanishing velocity v0 = 0, and electric 
field £ 0 = 0. Thus we take 

(3.17) e = eoO + ee>, 

(3.18) T = T0 (I + eT), 

(3.19) B = Bo(I + eB), 
(3.20) V = a0 ev, 
where 

(3.21) ao = fyRTo 

is the speed of sound of the basic flow, y is the ratio of specific heats. 
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350 K. PIECH6R 

From Eq. (3.16) we get 

(3.22) [
- 1 an --] E = ea0 B0 v---~ +evB . 

a0 pu uX 

Additionally, we assume that the small disturbances vary slowly, therefore we may assume 

that the viscosity coefficient p,1 , the coefficient of heat conductivity A., the electrical conduc
tivity u and the magnetic permeability p, are constant. The nondimensional space variable x 
and nondimensional time t are defined by 

(3.23) 

(3.24) 

X 
X=---

ao epu ' 

t 
t=---

a5 ep,u . 

The new unknown functions (?, T, B, v satisfy the following system of equations (the 
bar over the dimensionless quantities is omitted): 

(3.25) 
ae av a --+- + e- (ev) = o ar ox ox ' 

(3.26) 
ov 1 oe 1 aT 1 oB 
at + y Tx + y ox + M1 ox 

+e [v!!!__ + _!_(T-e)!g_ + _l_(B-e) oB - ~p o2v] = O(e2) 
ox y ox M1 ox 3 m ox2 ' 

(3.27) 

(3.28) 

where MA is the Alfven number 

(3.29) 

Pr is the Prandtl number 

(3.30) Pr = c,pl 
A. ' 

and P m is the magnetic Prandtl number 

(3.31) 

We assume that 

1 ' 
Mj = 0(1), 

1 
Pr = 0(1), 
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PROPAGATION OF WEAK NONLINEAR LONG WAVES 351 

and 

Pm = 0(1). 

We close Eqs. (3.25)-(3.28) with the initial conditions 

(3.31) (!(X, 0) = (!(O>(x), 

(3.32) T(x, 0) = T< 0 >(x), 

(3.33) v(x, 0) = v< 0>(x), 

(3.34) B(x, 0) = B<0>(x). 

In order to have an approximate solution to the initial value problem (3.25)-(3.28) 
and (3.31)-(3.34), it is enough to use the general theory developed in the previous Chap
ter. 

As the linear space X we take the set R4 of all ordered quadruples u = (e, T, v, B), 
where e, T, v, B are real, with the usual operations in the Euclidean space. The linear 
operator A from R4 into itself is given by the matrix 

. (~ 
A= ~ . ~ 

0 0 

0 

0 

0 

l_). 
M1 
0 

0 y-1 

(We denote linear operators and their matrices with the same symbols. It will not lead to 
confusion because we will not make any changes of basis in R4 ). 

The eigenvalues of A are 

"'' = - vI+ ~j , 0<2 = 0, 0<3 =vI+ ~j , 
where cx 1 and cx3 are single, and cx2 is double. 

There are three invariant subspaces of A: 
M 1 consists of all ordered quadruples of the form 

a( I, y-1,- VI+ ~j, 1), aeR1 , dimM1 =I; 

M 2 consists of all ordered quadruples (a+b, (y-l)a-b, 0, -M1a), a, be R 1 , there
fore 

dimM2 = 2; 

and, finally M 3 is a one-dimensional linear subspace given by 

It is clear that 
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The corresponding projectors Ph: R4 ---+ Mh are given by the following matrices: 

pl = 

We have 

(3.35) 

where 

(3.36) 

and 

(3.37) 

where 

(3.38) 

(3.39) 

Finally 

M~ M~ MA 
2y(l +M~)' 2y(f+M~)' 2V1+M~ ' 

M~(y-1) M~(y-1) MA(y-1) 
2y(l +M~)' 2y(l +M~-)' 2 V1+M~ ' 

MA MA 1 

2y Jl 1 +M~ ' 2y I' l+Mf' 2 ' 

M~ M~ MA 
2y(1+M~)' 2y(l +M~)' 2V1+M1 ' 

r = 
M~(e+T)-yMA 1/ 1 +M~ v+yB 

2y(l +M~) 

M~(y-1)+y M~ 0, -
y(1 +M~) ' - y(l +M~) ' 

p2 = 

M~ 

M~(y-1) M~+y 
- y(1 +Mi )' Y(1+M1)' 

0, 0, 

M~ M~ 
- y(l +-M~) ' - rO+AiTI ' 

e+T-yB 
c1 = y(l +M~) , 

(y-1)e-T 
c2 = . 

y 

M~ MA 

0, 

0, 

0, 

2y( l +Ml)' 2y(l +M~)' 2 v 1+M~ , 

M~(y-1) M~(y-1) MA(y-1) 
2y(i +M~)' iy(l +M~)' 

- - --·-·--

2 v'1 +M~ ' 

MA MA 1 

2y vi +M~ ' 2y ~1 1 +M~ ' 2 ' 

M~ M1 MA 
2y(l +M1)' 2y(f+-U})", ---

2v 1 +M~' 

- ---
2(1 +M~) 

y-1 
2(1 +M~) 

1 

2M A y1 +M~ 

1 
2(1 +M1) 

' 

1+M~ 

y-1 
1+M1 
0 

M~ 
1+M1 

2(1 +M~) 

y-1 
2(T+M~) 

2MA V 1+M~ 

1 
2(1+M~) 
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and 

(3.41) 

where 

(3.42) 

It is easy to' check that 

and, additionally, 

(3.43) 

(3.44) 

(3.45) 

(3.46) 

s= 
M~(e+T)+yMA VI +M~v+yB 

2y(l +M~) 

e = r+cl+c2+s, 

T = (y-l)(r+c1 +s)-c2, 

v = VI+ ~.i (s-r), 

B = r-M~c1 +s. 

353 

Thus all conditions imposed upon the operator A in the previous chapter are satisfied 
in the case under consideration, hence we can pass to a study of the bilinear operator B. 
For any fixed u E R4 the operator B(u, · ): R4 ~ R4 is given by the following matrix: 

B(u) = ( T~e ~ (y~I)T B~e). 
y M~ 

0 0 B v 

It is a problem of simple calculations to check that 

where 

(3.47) 

next 

where 

(3.48) 

and finally 

Thus we have checked that the assumptions (2.4) are satisfied as well. 
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The following formulae will be used later: 

(3.49) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

f3t (ut) = - Mi(y+ 1)+ 3 r' 
2MAV 1 +Mi 

1-(y-3)M1 MA 
f3t(u2) = 2M!V1+M1 ct+ 2y1.;Mfc2, 

1-(y-3)M1 
f3t(u3) = 2MA y1 +Mi s , 

fJ2(u1) = - VI+ ~~ r, 

fl2(u2) = 0, 

{J2(u3) = vI+ ~1 s, 

K. PIECH6R 

where r, c1 , c2 and s are defined by Eqs. (3.36), (3.38), (3.39) and (3.42), respectively. 
The final assumptions that must be checked concern the operator C which in the present 

case is given by the matrix (see Eqs. (3.25)-(3.28)) 

0 0 0 0 

0 rPm 0 0 
Pr 

C= 
4 

0 0 3Pm 0 

0 0 0 

It is a matter of simple calculations to show that 

(3.55) 

where 

(3.56) 1 [( 4M1(y-1) y ) 1 l 
w = 2 3y(l +M1) + Pr Pm+ 1 +M1 = const. 

Therefore the operator P 1 CP1 considered as an operator from M 1 into M 1 has only one 
eigenvalue which is positive. 

Next we have 

(3.58) 

where 

(3.59) ( 
4 Pm(y-1) M1 ) 4 Pm 

TJ = T y(l +M1) + 1 +M1 c1 - T y(l +M1) c2, 

(3.60) e = - ~ Pm(y-1) Ct + _i_ Pm c2. 
3 r 3 r 
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The eigenvalues of the operator P2 CP2 considered as an operator from M 2 into itself, 
are those of the matrix 

(3.61) 
4 Pm ) -3 -y(l+M~) 
4 Pm · 
3 y 

It can be readily proved that they are positive provided that P m > 0. 
Finally 

(3.62) 

what proves that the last of the imposed conditions is satisfied. 
Thus we can use the results of the previous chapter, that is we must solve the foliowing 

equations: 

{
~ _ M~(y+ 1)+3 r _!!___ = w o2 r1 

or 2M A JI'1+M~ a~~ a~f ' 
r1(~1' 0) = r\0>(~1 ), 

(3.63) 

oc1 ( 4 Pm(y-1) M~ ) o2c1 4 Pm o2c2 
or = 3 y(l +M~) + 1 +M~ o~~ - 3 y(l +M~) o~~ ' 

(3.64) oc2 4 Pm(y-1) o2ct 4 Pm o2c2 
or = - 3 r o~i + 3 r a~~ ' 
c1(~2' 0) = c~0>(~2), 
c2(~2, 0) = c~0>(~2) 

and 

(3.65) 
os M~(y+ 1)+3 os o2s 
aT+ 2MA y1+M~ s 0~3 = w O~~ ' 

s(~3 , 0) = s<0>(~3), 

where r<0 >, c\0 >, c~0> and s0 are obtained by substitution of e< 0 >, T<0 ), v<0> and B<0 > into 
Eqs. (3.36), (3.38), (3.39) and (3.42) instead of e, T, v, B. 

Equations (3.63) and (3.65) are the Burgers equations and therefore they can be solved 
explicitly [9]~ Also, Eqs. (3.64) can be solved explicitly since it is a system of linear equa
tions. 

Once the functions r, c1 , c2 and shave been determined, we can find cp 1 , cp2 and cp 3 

as a result of integration. Thus the asymptotics is determined. We do not go into those 
details because it is quite a routine work (for the details, results, and graphs see [6]). 
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