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Laminar separation instability on a convex surface in relation 
to periodic vortex shedding ( *) 

Y. C. SUN (GOTTINGEN) 

LAMINAR separation instability in a two-dimensional incompressible flow over a convex surface 
at low Reynolds numbers is investigated by the aid of a new stability equation derived in the 
knowledge of the asymptotic triple-deck model of flow. The results of the stability analysis show 
the existence of a critical Reynolds number of about 60 and of a distinct wavelength-frequency 
relationship for the maximum amplification of instability. The notable aspect of this relationship 
consits in the apparent lack of preference for any definite combination of wave-length and 
frequency for the maximum amplification. This should open the way for the influence of the exter­
nal excitation, such as the near-wake instability, on the separation instability and consequently 
on the vortex shedding as well. 

Analiza statecznosci wskazuje na istnienie krytycznej liczby Reynoldsa wynosZ<lcej okolo 60 oraz 
wyrainej zaleznosci mi~dzy cz~stosci'l a dlugosci'l fali dla maksymalnego wzmocnienia nie­
statecznosci. Waznym aspektem tego zwi'lzku jest brak jakiejkolwiek preferencji dla konkretnej 
kombinacji tych wielkosci. Fakt ten powinien otworzyc drog~ dla wplywu wzbudzenia zewn~trz­
nego, jak np. niestatecznosci w S<!Siedztwie sladu, na niestatecznosc oderwania oraz takze na 
proces splywu zawirowan. 

AHaJIH3 ycroiitiHBOCTH yKa3hiBaeT Ha cy~eCTBOBaHHe KpHTHtiecKoro tiHCJia Pe:HHoJIL~ca, 
paBH.fiiO~erOCH npHMepHO 60, a TaKme OTtieTJIHBOH 3aBHCHMOCTII Mem~ tiaCTOTOH H ~JIHHOH 
BOJIHbi ~JIH MaKCHMaJILHoro ycHneHHH Heycroiit.IHBOCTH. BamHbiM acneKTOM :no:H 3aBHCHMOCTH 
HBJIHeTCH OTCyTCTBHe KaKOrO-HH6y~L npe~OtiTeHH.H ~JI.H KOHKpeTHOH KOM6HHai.tHH 3THX 
BeJIHtiHH. 3TOT <l>aKT ~OJI)KeH OTKpbiTL .llYTL ~JI.H BJIH.HHH.H BHeiiiHero B036y>I<~eHHH, Kal( 
HanpHMep HeyCTOHliHBOCTH B COCe~CTBe CJie~a, Ha HeyCTOHtiHBOCTL OTpbiBa, a TaK>I<e Ha npo­
I.teCC CTOKa BHXpe:H. 

1. Introduction 

FLows about bluff bodies with convex surfaces are generally characterized by separation 
and by a strong wake formation. In a wide range of free-stream speeds, the separation on 
bluff bodies takes the form of periodic vortex shedding. 

One of the most conspicuous examples of such flows is represented by the flow about 
a circular cylinder (Fig. 1). In such a flow, at very low Reynolds numbers (Re), the flow 
is attached (Fig. 1a). At higher Re, separation appears and the separation zone in the form 
of two standing vortices moves towards the front with increasing Re. At some critical 
Re ( ~ 50), wake fluctuation attributable to the incipient periodic vortex shedding begins 
to take place, thus lending periodicity to the wake and the flow as a whole (Fig. 1 b). As the 
Re further increases, the relatively steady separation zone in the form of standing vortices 
breaks down and downstream the well-known Karman vortex street begins to make its 

<•> Paper given at XVI Symposium on Advanced Problems and Methods in Fluid Mecha­
nics. Spala. 4-10 September, 1983. 
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(a) 

(b) 

FIG. 1. Forms of flow over a circular cylinder. 

appearance (Fig. lc). At still higher Re (Re > 200/300 in the case of a circular cylinder), 
the separation points themselves start to fluctuate backwards and forwards noticeably, 
rendering the separation periodic in space and time. 

The problem of periodic vortex shedding is important from the practical point of view, 
for example for flows over slender bodies like missiles at high angles of attack. The origina­
tion and the mechanism of periodic vortex shedding are, however, not quite clear yet. 
Owing to the periodicity of the phenomenon, it is natural to postulate a close relationship 
of the periodic vortex shedding to some form of flow instability. According to a number 
of investigations ([q-[4] among others), the periodic vortex shedding seems to be closely 
related to the instability of wake structure. Moreover, it is known from earlier experiments 
(e.g. [5]-[7]) that a splitter plate of sufficient length attached to the rear stagnation point 
of a circular cylinder can destroy the periodic vortex shedding and suppress the vortex­
street formation. This suggests the strong influence of the wake instability on the periodic 
vortex shedding. In spite of the apparently eminent role played by the wake instability 
in the origination of periodic vortex shedding, the flow instability at the separation point(s) 
should take its share of generating the periodic vortex shedding as well. Some flow mech­
anism must be existent at the separation point(s) which enables the wake instability to 
exert its influence. 

The present work is aimed at giving a renewed study of the flow instability at the sep­
aration point on a convex surface with special emphasis on its possible effect on vortex 
shedding, in the hope of gaining some insight into the mechanism of periodic vortex 
shedding. The previous investigations of separation instability ([8]-[10]) among others) 
have the common features of employing the boundary-layer approximation for the basic 
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LAMINAR SEPARATION INSTABILITY ON A CONVEX SURFACE 367 

flow and of concentrating on the determination of the critical Re which marks the begin­
ning of instability. The present investigation sets out for a different direction in two ways: 
firstly, the boundary-layer approximation that is known to be not valid in the immediate 
region of separation (e.g. Goldstein singularity, etc.) is not employed for the basic flow, 
and secondly, concentration is placed upon the determination of wavelength-frequency 
combinations giving the maximum amplification of disturbances or the maximum insta­
bility. It is believed that the maximum amplification really matters in the generation of 
periodic vortex shedding. The ·investigation is confined to laminar on-coming flows of 
Re under 300, which correspond to the stage of flow prior to the onset of fluctuation of the 
separation point in the case of a circular cylinder. The flow behaviour at this initial stage 
of periodic vortex shedding should give some clue to the development of vortex shedding 
at later stages as well. · 

2. Stability analysis 

2.1. Flow equations for the separation region 

The general equations of two-dimensional incompressible laminar flow over a convex 
surface consist of (cf e.g. [11]): the x-momentum equation 

- ou ou - ou uv 
(1+ y) - +u-+(1 +y)v-+-

ot ox oy r 
(2.1) 

op I [ 1 o2u _ o2u 1 ou 
=- -a;+ ReL l+y ox2 +(l+y) ()y2 +--,:-ay-

2 ov y dr ou 1 dr ] 
r(l + y) Tx + r2(1 + y)2 -dx Tx- r2(1 + y)2 dx v ' 

the y-momentum equation 
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op 1 [ 1 o2v 
- ay + ReL (1 + y) 2 ox2 

o2v 1 ov 1 +--+ ------v 
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and the continuity equation 

(2.3) ~: + ~ [ ( 1 + y) v] = 0' 

all written out in full. Here x, y, t, u, v, r, y, p represent dimensionless variables where: 

X y UOOT u 
X=- y=z;, t=-- u=u, L' L ' 

(2.4) 
00 

v 
r(x) = R<:), - y p 

V=-- y=-, p= 
Uoo' r ect)u~ 

http://rcin.org.pl



368 Y. c. SUN 

X, Y are the curvilinear coordinates employed with X parallel and Y perpendicular to the 
wall that is denoted by R(X). U, V denote the velocity components in the X-and Y-directions, 
respectively, U 00 being the free-stream speed, T the time variable, P the pressure, e 00 the 

density (constant here), and L some characteristic length of the problem. ReL = U ooL 
v 

stands for the Reynolds number formed with L, v being the kinematic viscosity. The quan­
tity drfdx appearing in several terms of Eqs. (2.1) and (2.2) denotes the measure of the 
variation of wall radius along the wall and is exactly null when the wall represents a circular 
arc. 

It is to be noted that for the present analysis only a very narrow and relatively shallow 
region in the immediate vicinity of the separation point is taken into consideration. On 
this account, y and drfdx are taken to be small quantities withy ~ 1 and drfdx ~ 1. This 
implies that the relevant flow depth considered is much smaller than the wall radius while 
the wall in the separation regi'on can be very closely approximated by a circular arc. 

Introducing now the stream function 1p such that 

(2.5) a"P 
U= ­ ay, 

replacing L by D(D = 2R5 , Rs being the wall radius at the separation point Xsep) and 
eliminating the pressure terms in Eqs. (2.1) and (2.2), one arrives at the single equation 
for 1p: 

(2.6) 

with 

1 a2 a2 1 a 
L1 = (1 + .Yf ax2 + ay 2 + r(l + y) a;· 

In Eq. (2.6) the linear terms of y with an open order of magnitude are retained in order 

to include the main curvature effect of the flow. 
Approximating 1p by 1p = cp0 + cp with cp ~ cp0 , where cp0 represents the basic flow satis­

fying the flow equation in the form of Eq. (2.6) while cp signifies some perturbation to 
the basic flow, one obtains to the first-order linear approximation 

(2.7) (1 + -) aLJcp + acpo aLlcp + ~ aLlcpo - acpo aLJcp - ~ aLlcpo 
y at ay ax ay ax ax ay ax ay 

= _ I_ (1 + y)L1L1cp. 
ReD 

If now the conventional boundary-layer approximation is adopted for the basic flow, the 

terms in Eq. (2.7) containing a~cpo and a~o may be omitted from the beginning. How-
cJX · cJX 

ever, in view of the flow structure in the region of separation, the boundary-layer approxi­
mation is not employed in the assessment of the basic flow characterized by CfJo. 
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2.2. Equations for stability analysis 

The flow at the separation point on a convex surface is known to be fundamentally 
unstable not only because the velocity profile there necessarily contains a point of inflection 
owing to the onset of flow reversal but also because the flow over a convex surface is gen­
erally unstable against disturbances in the form of Tollmien-Schlichting waves. As previo­
usly, the perturbation cp to the basic flow is now postulated to be a Tollmien-Schlichting 
wave. Thus 

(2.8) cp(x, y, t) = ip(y)ei(cxx-fJt), 

where (i denotes the dimensionless wave-number with (i = 
2~D ; {j the dimensionless 

- D 2nfD 
frequency f3 = f3 U = u-, A being the wave length, f the frequency, f3 the cyclic 

00 00 

frequency. 
The derivation of the appropriate perturbation equations for cp from Eq. (2.7) for 

the stability analysis necessitates a correct assessment of the orders of magnitude of the 
various terms involving cp0 • Barring now a tedious, if at all practicable, numerical solution 
of the full equation for cp0 in the form ofEq. (2.6) fort~ oo, some recourse must be made to 
a rational analytical model which should at least provide the correct orders of magnitude 
of the cp0 -terms. For this purpose, the well-known asymptotic triple-deck analytical model 
for the steady laminar separation flow ([12]-[15]) is utilized (Fig. 2). Strictly speaking, 

~~~~ 
Ji : 

upper deck -- 3 I : 

+-£ \ ____ j 
1----- I 
I I 

main deck - 4 l t 
£ I I 
j__L--------1 

lower deck -~£5:__·~~~7/~~,.,... 

FIG. 2. Triple-deck schematic model. 

the basic flow is not entirely steady. But, on the basis of experimental observations, the 
flow ahead of the separation point(s) is steady or approximately steady prior to the onset 
of spatial fluctutation of the separation point(s). If the stability analysis now is confined 
to the separation section x = Xsep only, as is the case at present, the application of an 
analytical model of steady flow in the immediate neighbourhood of separation is justi­
fiable. 

The fundamental parameter of the asymptotic triple-deck model is e (e = Re- 1
'

8
). 

By employment of the Kirchhoff's free-streamline concept for flow detachment, the laminar 
separation zone is _characterized by a longitudinal interaction length x = O(e3

), while 
the transverse interaction zones of the three decks (the lower deck, the main deck and the 
upper deck) have different depths (Fig. 2). In the lower deck (LD) with YLo = O(e5

), 
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a viscous flow of the boundary-layer type is involved. The main deck (MD) with YMo = 
= O(s4

) contains inviscid rotational flow, while potential flow prevails in the upper deck 
(UD) with Yuo = O(s3

). 

The available results of the matched asymptotic analysis of the triple-deck model are 
used to estimate the orders of magnitude of the different terms involving p0 in Eq. (2. 7). 
The velocities in the various decks are known to be: 

UoLo = O(s)+ ... , VoLo = O(s3)+ ... , 

(2.9) UoMD = um(Y)+O(s)+ ... , VoMD = O(t: 2)+ ... , 

Uo UD = 1 + 0( c2
) + ... , Vo UD = 0( c2

) + .. .. 

. o2 Uo 02Vo o2Vo 
The orders of magmtude of, for example, oy2 , Bx2 , oy2 of the basic flow for the 

different decks are: 

LDO(s- 9), 

LDO(s- 3), 

MDO(s- 8), 

MDO(s- 4), 

UDO(s- 4 ); 

UDO(s- 4 ); 

LDO(s- 7
), MDO(s- 6), UDO(s- 4), respectively. 

The disturbance in the separation section x = Xsep represented by Eq. (2.8) in the form 
of a Tollmien-Schlichting wave possesses the amplitude (j)(y). The orders of magnitude 
of (jJ and its derivatives in the different decks are rated in compliance with the triple-deck 
analysis. For convenience, they are taken as s2 times the corresponding terms for p 0 • 

The factor s2 here is actually immaterial; a different small factor will also serve the pur­
pose. , The orders of magnitude of ex and jf are so chosen that the dependence of (jJ on a 
and lf is assured. 

With the basic flow embodying p 0 now delineated by the triple-deck model, perturba­
tion equations of the amplitude (jJ are derived for the three decks of flow by taking the 
leading terms of the resultant equations out of Eqs. (2. 7) and (2.8): 

(LD) (jJ'"'-ReD[v0 (j3"'+i(au0 -tJ)ip"-v0 yy<j)'-iiXu0 yy{j)] = 0, 

(2.10) (MD) v0 (jJ'"+i(iXu0 -/fjip"-v0 yy<j)'-iiXu0 yyfP = 0, 

(UD) V0 (jJ"'+i(au0 -/fj<p"-(voxx+Voyy)(j/ = 0. 

Here u0 and v0 refer to the variables of the basic flow, whereas terms with subscripts denote 
the_ derivatives involved with respect to the subscripts. 

Equation (2.10) can be employed for a multi-scale matched asymptotic analysis which 
is, in general, much involved and complicated. A much simpler way that yields essentially 
the same results has been found to use a single equation for <pin the stability analysis: 

(2.11) ip"'-ReD[vo(/)"'+i(au0 -P)({;"-(v0 xx+Voyy)<p'-iiXu0 yy<j)] = 0 

with the boundary conditions: 

(2.12) 
y = 0: ({;' = cp" = 0, 

y = y: <p' = <p" = 0, 

where y denotes some outer boundary of the relevant flow region. 
Equation (2.11) is obviously over-complete but by no means incorrect for the main 

deck and the upper deck. In this manner, except for the later determination of v0 out 
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of u0 , the mission of the triple-deck model has been essentially completed in deriving the 
cp-equation, correct in orders of magnitude, for the stability analysis. Equation (2.11) 
contains all the necessary terms and more for the various decks and frees the treatment 
from the necessity of differential scaling if some plausible unified velocity profile (u0 ) 

at Xsep with respect to the undistorted geometrical coordinate y can be postulated. This 
requirement can be fulfilled in that at Xsep u0 may be plausibly approximated as 

(2.13) u0 = y2 (b-8y+3y 2
), 0 ~ y ~ 1 

which is known as the Pohlausen polynomial, or as 

(2.14) u0 = 1-sech2 (ny) (n variable). 

It is to be noted that the scale of yin Eqs. (2.13) and (2.14) remains open yet and can be fixed 
by a uniform coordinate transformation for the unified Eq. (2.11). 

In order to avoid dealing with very small numerical · quantities throughout the compu­
tation, some transformation or stretching of the coordinate y at Xsep is desirable. For 
convenience, the following uniform transformation and substitutions are introduced for 
the whole region between y = 0 andy= y (cf. Eq. (2.12)): 

(2.15) 

A y A cp ~'(yA) -- rr/(y), y = ~' cp = ~' ., ., 

A <5 A 

Uo = Uo, ADo= 3Vo, 
E 

<}actually may be arbitrary. For practical purpose <5 is taken as s4 and corresponds to the 
normal boundary-layer thickness. 

Such a procedure is allowable since Eq. (2.11) now becomes a unified equation for 
the whole relevant region at Xsep with a uniformly valid velocity profile given by Eq. (2.13) 
or Eq. (2.14). By Eq. (2.15), with <5 = s\ Eq. (2.11) is transformed into 

(2.16) A,, [ -3A A,, ·c-A R)A,., -3A AAA, -lA AAA, .-A AAA] o cp - E v 0 cp + l ex u0 -I-' cp - E v 0 yy cp - E v0 xx cp - zcx u0 y y cp = . 

For the transformation in Eq. (2.15), the u0 -profile in Eq. (2.14) for Xsep is more suitable 
since Eq. (2.13) applies only for 0 ~ y ~ 1. 

The coefficient terms involving v0 in Eq. (2.16) can be determined from the uniformly 
valid u0-profile at Xsep by making additional use of the triple-deck results. The v0-profile 
in a stretch corresponding to the main deck (y = O(s4

)) can be obtained from the relation 
[12]. 

(2.17) A 3 ( dA ) A " v0 = - e dx' Um(y), 

where A(x') denotes the flow displacement due to the lower deck with x' = s- 3 x, Um being 
the upstream boundary-layer profile (cf. Eq. (2.9)). um(Y) may be in turn determined from 
the differential equation [12] 

A I dum A 

(2.18) Um + sA(x) dy = Uo, 

where u0 stands for the corresponding portion of the given u0-profile in Eq. (2.14) or also 
Eq. (2.13). The values of A(x') and its derivatives at Xaep (for vanishing skin friction) 
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are obtainable from the available results in [14]. The terms involving v0 in the region 
immediately adjacent to the wall and equivalent to the lower deck (y = O(s5)) are then 
approximated by linear correlation or polynomials. It is found that the shape of poly­
nomials and the extent of the estimated depth of the wall region have little effect on 
the results of treating Eq. (2.16). The same is true for the stretch corresponding to the 
upper deck beyond y = 1. 

2.3. Analysis of instability 

The stability analysis is carried out by use of Eq. (2.16) together with the boundary 
conditions by transforming Eq. (2.12) and with the velocity coefficients determined from 
Eq. (2.14) (and also Eq. (2.13)) as well as Eq. (2.17). Taking advantage of the linearity 
of (Eq. 2.16) and representing (p by a complex function such that (p = (pr + z~i, one obtains 
for the case of temporal instability with fJ---:: flr + i{Ji and with{= (p ; g = (pi (iX real) 

f""- s- 3vof"'- Ptf" + (s- 1 vo~~ + s- 3vo';,'Y)f' + (auo- /fr)g"- iXuo;; g = o, 
flfl -3" Iff {J- "+( -1" ""+ -3" "") I c-A {J-)f"+ - " ""{ 0 g -s v 0 g - 1g c Voxx c Voyy g- CXUo- r CXUoyy = , 

(2.19) 

whereas for the case of spatial instability with iX = Cir + iiXi ({J real) 
., 

(2.20) 

f""- c- 3vof"' + iX1 uof" + (s- 1vo~~ + s- 3Vo';,';,){' 

-iXtUo';;f+(iXrUo-P)g" -iXrUo),),g = 0, 

g'"'- c- 3V0 g'" + iX1 Uog" + (c- 1 Vo~~ + c- 3V0 yy)g' 

- iXtUoy;g- (iXrUo-fJ)f" +iXrUo';,'Y/ = 0, 

where x is identical with x' ( = c- 3 x). 
In both cases, the analysis reduces to a simultaneous two-point eigenvalue problem 

for f and g. The problems are treated by employing a shooting procedure incorporating 
a Runge-Kutta-Verner 5th'and 6th-Order Method in combination with a Newton-Raphson 
iteration process for handling the boundary conditions. For both the temporal and spatial · 
analyses, the boundary conditions are specified as f' = 0, f" = 0; g' = 0, g" = 0 at wall 
and at some appropriate tried-out outer boundary of the treated region. 

In the present investigation both temporal and spatial instabilities have been studied. 
It is found that for the present case of separation instability the temporal stability analysis 
yields more and revealing information. This might be explicable by the fact that, in contrast 
to normal boundary-layer flows where velocity profiles are similar along the direction of 
flow, the velocity profiles generally change drastically along the main direction of flow in 
the separation region. 

3. Results and discussion 

Equations (2.11) and (2.16) deviate from the ordinary Orr-Sommerfeld equation in 
that terms with coefficients of the normal velocity component of the basic flow and its 
derivatives appear. This results from the assessment of the basic flow in the knowledge 
of the triple-deck analysis. By aid of Eq. (2.16), flows with Rev up to 300 have been in­
vestigated in the present analysis. This roughly corresponds to the flow range prior to the 
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beginning of noticeable fluctuating motion of the separation point(s) themselves. Because 
of the more revealing information attained by the analysis of temporal instability, results 
of such analysis are presented here. 

For the various wave number a and for the different frequencies jJ investigated, a limi­
ting value of ReD (critical Re) of about 60 can be determined, as shown in Figs. 3 and 4. 

600 

500 

400 

3'00 

200 

100 

I 
- I 

stable 

unstable 

v ~r = 100.0 

A Pr = 10 .0 

X i3r = 1.0 

o ~r = 0.1 

I 

0~----+~---.--------~--------~ 
0 60 100 

Re 0 
200 300 

FIG. 3. Stability limits. 

Figure 3 depicts the stability curve in the form of ReD versus the wave number a, while 
Fig. 4 shows the stability curve with ReD versus the frequency {3~ or the real value of {3--_ 
According to the recent careful experimental investigation of the wake flow near a circular 
cylinder in [1], the critical ReD in correspondence to the periodic vortex shedding is found 
to be about 48. In spite of the various simplifications and approximations made in the 
present analysis, the critical value of ReD presently found is considered to be in good 
agreement with the experimental value measured in the near wake of a circular cylinder. 

The more revealing feature of the results consists of the relationships found between 
ex and /i, at the maximum amplification of instability. In Figs. 5-7, the curves are shown 
along which distinct maximum {ii values occur forming notable contrast to the values of 
Pi in the neighbourhood. u0-profiles with different steepness (by taking different values 
of n cf Eq. (2.14)) have been taken, yet the results are essentially similar. Above and below 
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FIG. 4. Stability limits. 
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0 20 40 60 80 100 120 140 160 180 200 220 

FIG. 5. Wave number-frequency relationship at maximum instability. 

Y. C. SuN 

the curves in Figs. 5-7 the flows are largely unstable, while along the curves maximum 
growth rates of instability are reached. The maximum amplification relationships are 
relatively insensitive to Re0 • Broken stretches in the figures signify regions where the maxi­
mum amplification is not very pronounced. The most interesting range of the relationships 
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FIG. 6. Wave number-frequency relationship at maximum instability. 
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FIG. 7. ':"ave number-frequency relationship at maximum instability. 

375 

involves values of a and {3, below 10. In this range the relationship between a and {3, for 

maximum amplification is almost linear. 
The notable aspect of the a- If, relationship for maximum amplification from the 

present results consists in the apparent lack of preference for any definite combination 
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of ex and Pr towards maximum amplification of instability. This implies that if some external 
signal in the form of, say, the resonance frequency of the wake instability is conveyed 
to the separation point, the most amplified wave disturbance will be of the wave length 
corresponding to the signal frequency in accordance with the iX- {3~ relationship for maxi-
mum amplification. ~ 

For a definite frequency If,., the iX- If,. relationships for maximum amplification shown 
in Figs. 5-7 correspond in general to the lowest iX values (greatest wave lengths). For 
certain Pr values, comparably high amplifications at higher ii values forming near-multiples 
of the iX values given in the curves are noted. The appearance of these higher values with 
pronounced amplification is rather irregular and essentially limited to higher If,. values 
which lie beyond the range of practical interest. This means, however, that disturbances 
of fractional wave-lengths as compared to the values lajd down by Figs. 5-7 might also 
be distinctly amplified, should there be any external excitation in the range of higher 
frequencies than are usually encountered. The implications of such aspects of instability 
are left for future investigations. 

In line with the results obtained, a hypothesis may be advanced regarding the possible 
mechanism of the periodic vortex shedding. The periodic vortex shedding can arise from 
the maximum amplification of flow instability at the separation point triggered off by some 
external excitation, most probably by the resonance frequency of the.near-wake instability 
as is explicable by the splitter-plate experiments. The near-wake investigations ([2]-[4]) 
have shown largely the pronounced instability of the wake flow against asymmetric disturb­
ances. The asymmetric wake instability in turn can not only provide the triggering fre­
quency for the separation instability but also evoke the alternating vortex shedding at 
both sides of the bluff body. To this extent, periodic vortex shedding might be regarded 
as the consequence of the combined action of wake instability and separation instabil­
ity. 

A rough estimate in alignment with the above hypothesis may be made for the case 
of flow about a circular cylinder. At ReD = 100, the Strouhal numbers (St) measured in 
the near wake by different investigators ·are: 0.167 [5]; 0.156 [16]; 0.150 [1]. These 
measured values for the near wake or some theoretically calculated near-wake values (e.g. 
[1] or [2]) may be taken as the triggering frequencies for the development of separation 

instability. Because of the relationships: Pr = 2n · St and A = 2~D and the relationship 
• IX 

at maximwn amplification: ii ::::::: 1.5Pr (e.g. for n = 5 in Fig. 6), the calculated values of 
Pr and thus ofii as well as A are tabulated below. If the ratio ofthe·vortex spacing I and the 
vortex-row spacing h for the Karman vortex street to be expected downstream is taken 
after Karmim as lfh ::::::: 3.56 and the calculated values of A are used for /, one obtains the 
tabulated h/D values as below. These compare fairly well with the measured values of 
h/D under comparable conditions in [5] which lie between 1.1 and 1.25. 

St 

0.167 
0.156 
0.1 )0 

1.049 
0.980 
0.942 

1.574 
1.470 
1.417 

3.992D 

4.274D 
4.434D 

h/D 

1.121 
1.200 
1.245 
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This estimate of course cannot serve as a logical check for the hypothesis set up pre­
viously, because, though the disturbance frequency is known to be relatively insensitive 
to nonlinearity, the amplitude and wave-length can be rather affected by nonlinear effects 
in the near wake region. Nevertheless, the rough estimate made above with the correct 
magnitude of the determined values does lend support to the conjecture about the mech­
anism of periodic vortex shedding. 

4. Conclusions 

The investigation of the two-dimensional laminar separation instability of an incompres­
sible flow over a convex surface with a stability equation derived by the aid of results 
from the triple-deck asymptotic analysis shows that: 

1. The separation instability yields a critical ReD which lies at about 60 and corresponds 
well with the experimentally measured value in the near-wake region of a circular cylin- · 
der. 

2. For the most interesting range of disturbances (iX and {3, below 10), a definite and 
almost linear relationship exists between the reduced wave number iX and frequency 
jf, for the maximum amplification of instability, yet the relationship reveals no specific 
preference for any definite combination of wave number and frequency. 

3. Due to the apparent lack of any predestined combination of wave-length and fre­
quency for the maximum amplification, it can be expected that some external agency such 
as the resonant frequency of the near-wake structural instability may act as a triggering 
device for the dominant amplification of some definite disturbance at the separation point. 
Moreover, the instability of the near-wake flow against asymmetric disturbances may con­
ceivably contribute to the alternating vortex shedding at both sides of the bluff body. 

4. The hypothesis seems to be justified that the periodic vortex shedding can be re­
garded as the result of a combined action of separation instability and near-wake structural 
instability. The estimated row spacings of the shedded vortices from a circular cylinder 
on the basis of the hypothesis tally well with the measured values. 
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