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On the existence of solutions in viscoplasticity(*) 

R. DE BOER (HANNOVER) 

PROOFS of the existence of solutions to boundary-value problems in mechanics of continua 
are known to be difficult to establish. Such a proof may be sketched by starting from the Dirichlet 
principle which is based on the assumption that the existence of a lower bound is equivalent 
to the existence of a minimum. The extremum principles derived for the relatively slow visco­
plastic flows lead to an inequality which is then considered as a problem of minimum; that 
problem yields, under certain conditions, the possibility of proving the existence theorem. 

Dowody istnienia rozwi'lzan brzegowych w mechanice osrodk6w ci'lglych nie S'l, jak wiadomo, 
latwe do przeprowadzenia. Dow6d taki naszkicowac moi:na wychodZ<!C z zasady Dirichleta, 
kt6ra opiera si~ na zaloi:eniu, i:e istnienie granicy dolnej jest r6wnowai:ne istnieniu minimum. 
Zasady ekstremalne, odnosz'lce si~ do stosunkowo powolnych przeplyw6w lepkoplastycznych, 
prowadz'l do pewnej nier6wnosci, kt6r'l rozwai:a si~ jako problem minimalizacji pewnego 
funkcjonalu; z problemu tego moi:na, przy pewnych zaloi:eniach, wywiesc wniosek o istnieniu 
rozwi'lzan. 

,UoKa3aTeJibCTBa Cyi..QeCTBOBalUUI peiiieHHH KpaeBbiX 3a,o;aq B MexaHuKe CIIJIOIIIHbiX cpe,o;, Kal< 
uaaeCTHo, He nerKo rrpoaecru. Ta~<oe ,o;oKaaaTeJibCTBO MO>KHO HaMeTHTL ucxo,o;H ua rrpHH~a 
.UupHXJie, KOTopbiH orrupaeTcH Ha rrpe,o;rronomeHHH, ~o c~ecraoaaaue H;u>KHero rrpe,o;ena 
3KBHBaJieHTHO Cyi..QeCTBOBaHHIO MHHHMyMa. 3KCTpeMaJibHbie IIpHH~bi, OTH;OC.RmUeCH K cpaB­
H;UTeJibH;O Me,ll;JleHH;biM BH3KOIIJiaCTuqeCKHM TeqeH;HHM, IIpHBO,ll;HT K HeKOTOpOMY HepaBeH­
CTBY, KOTopoe paccMaTpuaaeTcH KaK aa,o;aqy MUHHMHaanuu HeKoToporo ~ym<UHOHana; ua 
3TOH aa,o;aqu MO>KHO C,ll;eJiaTL, IlpU H;eKOTOpbiX rrpe,ll;IIOJIO>KeHUHX, BbiBO,ll; 0 ~eCTBOBaHHH 
peweHUH:. 

1. Introduction 

Tm INVESTIGATIONS and research aimed at deriving the constitutive equations which 
satisfy certain imposed conditions have proved to be successful in recent years as regards 
one domain of the viscoplasticity theory; it embraces the behaviour of such materials 
subjec1 to dynamic loading which start to exhibit their viscous properties after the purely 
elastic straining process is terminated. Papers [1, 2] present a detailed physical and thermo­
dynanic motivation of the constitutive equations. In [3] the fundamental inequalities are 
derived and discussed, taking as base classical plasticity theory. Paper [4] presents the unique­
ness tl:eorem for the solutions of the boundary-value problem of relatively slow visco­
plasticftows; it develops not only the minimum principle for velocities but also a maximum 
princiJle for stresses. It is thus possible to establish lower and upper bounds for the veloc­
ity and stress fields. By using the uniqueness considerations in [4] it was shown that 
a bourdary-value problem in viscoplastic domains has, at the most, one solution; however, 
there ii no information available on the existence of such a solution. From the physical 

(*)The paper has been presented at the EUROMECH 53 COLLOQUIUM on "THERMOPLASTIC­
ITY", Jtblonna, September 16-19, 1974. 
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point of view this seems to be obvious but the problem consists in answering the question 
whether the corresponding constitutive equations allow for the necessary proof of the 
existence of the solutions. 

The proofs of the existence of solutions to boundary-value problems in continuum 
mechanics are not simple to find; mathematically well-grounded proofs exist only in classical 
linear elasticity. A more or less heuristic procedure was presented by KoiTER [5] for elastic­
plastic continua by means of the Dirichlet principle. By using that principle it will be shown 
here that also in the case of a boundary value problem of a viscoplastic medium the solution 
exists and is unique. 

2. Fundamental equations and constitutive law 

2.1. Fundamental equations 

Let us confine the description of continua to small strains, displacements and their 
derivatives and assume, for the sake of simplicity, that the materials considered are iso­
tropic and incompressible. In addition, the elastic components of the strain field will be 
disregarded. 

The mixed stress tensor aL is decomposed into the deviatoric and spherical components, 
rL and <Tr: 

(2.1) 

The second invariant of deviatoric stresses to be used in future considerations is equal to 

(2.2) 1 i __i 

/2 = 2'l'1cTi• 

The symmetric strain rate tensor EL is assumed to be derivable from the velocity field 
v1

, and namely 

(2.3) 

where the vertical lines denote differentiation with respect to the convective coordinate 
81c. Here also holds the decomposition into the deviatoric .YL and spherical components 
e~, the latter denoting- due to the small deformations assumed - the volume expansion; 

(2.4) 

The second invariant of the strain rate deviator is 

(2.5) 

The momentum theorem yields the following equilibrium conditions to be satisfied inside 
the continuum 

(2.6) 

inertia forces being disregarded and F1 denoting the body forces. 
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2.2. Constitutive law 

For the constitutive law describing the behaviour of viscoplastic materials, let us select 
the relations derived in [4], 

(2.7) 

Here 

(2.8) 

· · F 2 2) · yic = Y --=--=- [1- y ({12 F ric 
v12 

F = f12 -1; 
K 

for F > 0, 

for F~ 0. 

K is a constant which follows from the von Mises flow rule. y denotes a viscosity para­
meter and qy2 - a material parameter to be determined from experiment. 

Solving the Eqs. (2. 7) for the stresses we obtain 

. K "~ K ... 
ric = .. !· Yk+ _[1+qy2/2]yic. 

J' /2 y 
(2.9) 

The considerations to follow will be based on these constitutive relations, attention being 
paid to certain additional assumptions, especially those regarding the stable behaviour of 
materials. 

3. Existence of solutions 

3.1. Boundary value problem 

Let us consider a solid continuum subject to the action of body forces F and surface 
forces T1 applied to a portion aT of the surface, or to prescribed surface displacements V1 

at the portion av of the surface; the continuum is deformed in a certain manner in the 
viscoplastic domain. In general, one part of the continuum undergoes viscoplastic deform­
ation, while another part may remain rigid. 

In [4], the uniqueness theorem was used to prove that in the deformed continuum 
there exists, at the most, one solution for stresses which satisfy following conditions: 

1. The stresses satisfy the equilibrium equations inside the body 

(3.1) 

2. The stresses satisfy the boundary conditions on aT 

(3.2) 

nk denoting the unit vector normal to the surface. 
3. The strain rates yi related to the stresses by means of the constitutive law (2. 7) are 

derivable from the velocity field vi 

(3.3) 
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4. The velocities satisfy the boundary conditions on av 

(3.4) 

5. The velocity components satisfy the incompressibility condition 

(3.5) v'l, = 0. 

3.2. General remarks on the proof of existence and the governing inequality 

The proof of uniqueness of the soiution does not contain any statement concerning 
its existence in the case of the boundary value problem formulated in the preceding section. 
It was mentioned in the introduction that a mathematically correct proof of existence 
of the solution to a boundary value problem should be difficult. This was true in the case 
of elastic media, and the more so in plasticity. Thus, we shall select a more intuitive approach 
originally used by KOITER [5] and following from the Dirichlet principle. The principle 
is based on the assumption that the existence of a lower bound of a functional is equivalent 
to the existence of a minimum (cf. also [6]). 

In order to construct the proof it is necessary to derive, first of all, the fundamental 
inequality. From the minimum principle for velocities and the maximum principle for 
stresses, as derived in [4], the inequality is obtained in the form 

f [2KJ! I· * K . * 1 K . * 2] d f Ti * da r pi * -~ . 2+-:yl2+2y({J2[2 v- vi -. viuv 
V aT V 

(3.6) 

1t is true for all kinematically admissible strain rate fields rL* and an statically. admissible 
stress fields i~. Inequality (3.6) was derived under the assumption of the existence of a so­
lution to the boundary value problem; thus, it would be of little value for the existence 
theorem if we were not able to prove that the inequality remains valid also without that 
basic assumption. This is actually true, and in order to prove it let us multiply the statically 
admissible stresses i~ by the kinematically admissible velocity vector v* and integrate the 
result over the entire volume of the continuum. After certain mathematical transformations 
we obtain 

(3.7) 
V a V 

Now we have 

(3.8) J fivfda = J fi Vida+ J Tivfda, 
a av aT 

since the kinematically admissible velocity field vf on av is equal to Vh and the statically 
admissible stress field equals Ti on aT. In addition 

J ftivfdv = J FivTdv, 
V V 
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provided the body forces remain unchanged. Following these considerations we transform 
the inequality (3.6) to obtain 

J [ ;.- K · 1 K · 1 o o 

2Kl/ 11 + y-I1+Tycp21!2 + 4 yK(IFI+F)2 
V 

(3.9) 

According to the procedure outlined in [4] it is now easily shown that (3.9) remains true 
even without the knowledge of the extremum principles. 

3.3. The proof of existence 

Let the problem of minimum 

(3.10) 

1 3 0 0 4 os • i*]d . . - 32r cr2 K(IFI +F) - T iYt v = mm1mum 

be given as a functional of kinematically admissible strain rates H * at a prescribed, sta­
tically admissible value of stresses H. Strain rates H** denote now the strain rates y~* 
at which the expression (3.10) attains its minimum, and -r~** is the corresponding stress 
following from the constitutive law. Consequently, the strain rates H* are considered 
as a family of closely related functions and lead to the real minimum; hence 

(3.11) 

/JL denoting a compatible strain rate field with velocities vanishing on av, and a. - a small 
coefficient independent of the metric of the system. On substituting the Eq. (3.11) in the 
minimum problem (3.10) we obtain 

M= J [2xV i!*+«Yk*•P:+ ~ a 2PiM+ ~ (i!*+a)il••Pt 
V 

(3.12) 

1 2p'ip'k) 1 K (I.** · i**p'k 1 2f3.ip'k)
2 

+ 2 (J. k i + 2- y (/)2 2 + a.yk i + 2 (J. k i 

+! yK(IfiH'f- 3~ y 3 <pzK(iFi+FJ•-iHYL**+aPO}w =minimum. 

The necessary condition of minimum has now the form 

(3.13) (aM) = 0 
0(1. IX=O • 

Evaluation of the second derivative at a. = 0 shows that this is really a minimum; the 
second derivative is always positive at that point. 
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Applying the condition (3.13) to the minimum problem (3.12) we obtain 

(3.14) ( a~) = f[( ~ rL**+ K rl**+ K q;2it*rl**)P~-ifPl]av = o. orx CX=O V VIt* y y ' 

This condition of minimum combined with the constitutive equations (2.9) assumes the 
form 

(3.15) J (r~** -if)Pl·dv. 
V 

According to the virtual work principle rl **- i~ is a distribution of stresses with sur­
face forces vanishing on aT. It follows that r~** is a statically admissible stress distri­
bution. The distribution satisfies the equilibrium condition (3.1) inside the continuum, 
and condition (3.2)- on aT; the corresponding strain rates satisfy the -kinematic field 
equations (3.3) and the geometric boundary conditions (3.4), as also the incompressibility 
condition (3.5). Thus the stress field r~** represents the solution T~ of the bound~ry value 
problem. 
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