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On the existence of solutions in viscoplasticity(")

R. DE BOER (HANNOVER)

Proors of the existence of solutions to boundary-value problems in mechanics of continua
are known to be difficult to establish. Such a proof may be sketched by starting from the Dirichlet
principle which is based on the assumption that the existence of a lower bound is equivalent
to the existence of a minimum. The extremum principles derived for the relatively slow visco-
plastic flows lead to an inequality which is then considered as a problem of minimum; that
problem yields, under certain conditions, the possibility of proving the existence theorem.

Dowody istnienia rozwigzan brzegowych w mechanice o$rodkow ciaglych nie sa, jak wiadomo,
fatwe do przeprowadzenia. Dowdd taki naszkicowaé mozna wychodzac z zasady Dirichleta,
ktéra opiera sig na zalozeniu, Ze istnienie granicy dolnej jest réwnowazne istnieniu minimum,
Zasady ekstremalne, odnoszace sig do stosunkowo powolnych przeplywéw lepkoplastycznych,
prowadza do pewnej nierébwnosci, ktéra rozwaza si¢ jako problem minimalizacji pewnego
funkcjonatu; z problemu tego mozna, przy pewnych zalozeniach, wywies¢ wniosek o istnieniu
rozwigzan,

JokasaTenscTBa CYlLIECTBOBARHMS PELIeHH KpaeBhIX 3a[jay B MEXaHHKE CIUIOLIHEIX Cpel, KaK
M3BECTHO, He JIETKO NMpoBecTH. TaKoe NOKa3aTeNbCTBO MOYKHO HAMETHTH MCXOAMA M3 IIPHHIHIIA
Jmpincie, KOTOPEIA ONMPEETCs HA MPENOJIOYKEHHH, YTO CYLIECTBOBAHME HIDKHErO Ipeneia
9KBHBAJICHTHO CYIIECTBOBaHHIO MUHHMYMa. JKCTPEMAJIBHBIE IIPHHIHIILL, OTHOCALIHECHA K CpaB-
HHUTEIBHO MEQJICHHLIM BFSKOIMJIACTHUYECKHM TEUEHHAM, NPUBOAAT K HEKOTOPOMY HEpaBeH-
CTBY, KOTOpOE pacCMaTpHBaeTCA KaK 3afjauyy MHHHMHIaLHH HexoToporo GyHKumMOHANAa; M3
3TOH 3aJaYM MOMKHO CHENATE, IIPH HEKOTOPBIX NPE/IONOMKEHHAX, BBIBOJ O CYLISCTBOBAHHH
pelIeHHA.

1. Introduction

THZ INVESTIGATIONS and research aimed at deriving the constitutive equations which
satisfy certain imposed conditions have proved to be successful in recent years as regards
one domain of the viscoplasticity theory; it embraces the behaviour of such materials
subject to dynamic loading which start to exhibit their viscous properties after the purely
elasticstraining process is terminated. Papers [1, 2] present a detailed physical and thermo-
dynamic motivation of the constitutive equations. In [3] the fundamental inequalities are
derived and discussed, taking as base classical plasticity theory. Paper [4] presents the unique-
ness tteorem for the solutions of the boundary-value problem of relatively slow visco-
plasticflows; it develops not only the minimum principle for velocities but also a maximum
principle for stresses. It is thus possible to establish lower and upper bounds for the veloc-
ity and stress fields. By using the uniqueness considerations in [4] it was shown that
a bourdary-value problem in viscoplastic domains has, at the most, one solution; however,
there & no information available on the existence of such a solution. From the physical

(*)The paper has been presented at the EUROMECH 53 COLLOQUIUM on “THERMOPLASTIC-
ITY”, Iiblonna, September 16-19, 1974,



702 R. DE BOer

point of view this seems to be obvious but the problem consists in answering the question
whether the corresponding constitutive equations allow for the necessary proof of the
existence of the solutions.

The proofs of the existence of solutions to boundary-value problems in continuum
mechanics are not simple to find ; mathematically well-grounded proofs exist only in classical
linear elasticity. A more or less heuristic procedure was presented by KoiTer [5] for elastic-
plastic continua by means of the Dirichlet principle. By using that principle it will be shown
here that also in the case of a boundary value problem of a viscoplastic medium the solution
exists and is unique.

2. Fundamental equations and constitutive law
2.1. Fundamental equations

Let us confine the description of continua to small strains, displacements and their
derivatives and assume, for the sake of simplicity, that the materials considered are iso-
tropic and incompressible. In addition, the elastic components of the strain field will be
disregarded.

The mixed stress tensor o} is decomposed into the deviatoric and spherical components,
71 and of:

@1 il 1:+%a:a:.
The second invariant of deviatoric stresses to be used in future considerations is equal to
@2 I =5

The symmetric strain rate tensor & is assumed to be derivable from the velocity field
o', and namely

23 & = 2 @t "),

where the vertical lines denote differentiation with respect to the convective coordinate
0,. Here also holds the decomposition into the deviatoric y§ and spherical components
&, the latter denoting — due to the small deformations assumed — the volume expansion;

. 1.
2.49) &=+ ?s:'. 8k,
The second invariant of the strain rate deviator is
. ) [—
(2.5 I, = 5?5?5‘-

The momentum theorem yields the following equilibrium conditions to be satisfied inside
the continuum

(2.6) otle+F; =0,
inertia forces being disregarded and F; denoting the body forces.
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2.2. Constitutive law

For the constitutive law describing the behaviour of viscoplastic materials, let us select
the relations derived in [4],

A=y o-ll-peFld  for F>0,
2

2.7

7% =0 for F<0.
Here
2.8) F= L/;_i -1

K is a constant which follows from the von Mises flow rule. y denotes a viscosity para-
meter and ¢, — a material parameter to be determined from experiment.
Solving the Egs. (2.7) for the stresses we obtain

K . o
2.9) % = —— i+ K1+, L1

Iz y
The considerations to follow will be based on these constitutive relations, attention being
paid to certain additional assumptions, especially those regarding the stable behaviour of
materials.

3. Existence of solutions
3.1. Boundary value problem

Let us consider a solid continuum subject to the action of body forces F' and surface
forces T" applied to a portion ar of the surface, or to prescribed surface displacements ¥;
at the portion a, of the surface; the continuum is deformed in a certain manner in the
viscoplastic domain. In general, one part of the continuum undergoes viscoplastic deform-
ation, while another part may remain rigid.

In [4], the uniqueness theorem was used to prove that in the deformed continuum
there exists, at the most, one solution for stresses which satisfy following conditions:

1. The stresses satisfy the equilibrium equations inside the body

(3.1) ofi+F; =0.
2. The stresses satisfy the boundary conditions on ar
(3.2 ofm = Ty,

n; denoting the unit vector normal to the surface.
3. The strain rates 9} related to the stresses by means of the constitutive law (2.7) are
derivable from the velocity field v

(33) 4 =5 @+l



704 R. DE BOER

4. The velocities satisfy the boundary conditions on a,

(3.4) ot =T¢,
5. The velocity components satisfy the incompressibility condition
(3.5) o], = 0.

3.2. General remarks on the proof of existence and the governing inequality

The proof of uniqueness of the soiution does not contain any statement concerning
its existence in the case of the boundary value problem formulated in the preceding section.
It was mentioned in the introduction that a mathematically correct proof of existence
of the solution to a boundary value problem should be difficult. This was true in the case
of elastic media, and the more so in plasticity. Thus, we shall select a more intuitive approach
originally used by KoiTer [5] and following from the Dirichlet principle. The principle
is based on the assumption that the existence of a lower bound of a functional is equivalent
to the existence of a minimum (cf. also [6]).

In order to construct the proof it is necessary to derive, first of all, the fundamental
inequality. From the minimum principle for velocities and the maximum principle for
stresses, as derived in [4], the inequality is obtained in the form

(3.6) f[zm/fz —12+%§%; de— fT‘wTda— fF‘v:dw
i :

v

C ny(IF)I+E)2dv— yqnsz(jFI-i-F)‘dv fT‘Vda 0.

It is true for all kinematically admissible strain rate fields yi* and all statically admissible
stress fields 7;. Inequality (3.6) was derived under the assumption of the existence of a so-
lution to the boundary value problem; thus, it would be of little value for the existence
theorem if we were not able to prove that the inequality remains valid also without that
basic assumption. This is actually true, and in order to prove it let us multiply the statically
admissible stresses 7} by the kinematically admissible velocity vector v* and integrate the
result over the entire volume of the continuum. After certain mathematical transformations
we obtain

3.7 f‘ftn*d‘v— _J-T' i fF‘ *do = 0.

Now we have

(3) [ Fiotda = [ Tivida+ [ Tivpda,
a a, ir

since the kinematically admissible velocity field #¥ on a, is equal to ¥}, and the statically
admissible stress field equals 7" on a. In addition

[Fiotao = [Fivtav,
v v
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provided the body forces remain unchanged. Following these considerations we transform
the inequality (3.6) to obtain

= . 1K . 1 o o
(3.9 fl:zK l'sz + -—I;—Iz*+ *2—?932!22 + I}’KUFI'FF)Z

l o
357 sz(IFHF)‘—r?yé*]dv > 0.

According to the procedure outlined in [4] it is now easily shown that (3.9) remains true
even without the knowledge of the extremum principles.

3.3. The proof of existence

Let the problem of minimum

(3.10) M= f[zx Vir+ giﬂ % ngigz + }yx(|ﬁ|+ﬁ)=

_ ..;i-y?'% K([ﬁ +I?')“— %ﬁ}':f*]dw = minimum

be given as a functional of kinematically admissible strain rates y{* at a prescribed, sta-
tically admissible value of stresses 74. Strain rates 7i** denote now the strain rates y;*
at which the expression (3.10) attains its minimum, and 7j** is the corresponding stress
following from the constitutive law. Consequently, the strain rates y/* are considered
as a family of closely related functions and lead to the real minimum; hence

(3.11) PF = y{,“*-}-aﬁk,

ﬁ,‘, denoting a compatible strain rate field with velocities vanishing on a,, and &« — a small
coefficient independent of the metric of the system. On substituting the Eq. (3.11) in the
minimum problem (3.10) we obtain

G M= | [21<]/ it +astee bl Lot fipt+ X (ige s oaire

= azﬁkﬁk) = %‘Pz (f oy B4 o zﬁkﬁ:)

1 o
+ 7K+ F~ 2 g, K(IFi+ﬂ‘—r?(ri**+aﬁx):|dv minimum..
The necessary condition of minimum has now the form

(.13) a—M) =0
aa a=0

Evaluation of the second derivative at « = 0 shows that this is really a minimum; the
second derivative is always positive at that point.

2 Arch. Mech. Stos. nr 5-6/75



706 R. pE BOER

Applying the condition (3.13) to the minimum problem (3.12) we obtain

oM K . K . K . . RN
(3.14) (W) = fl:( — P+ -y—?;“‘F ?91213‘_*??*)&"—??55]40 = 0.
a=0 b V’I;*

This condition of minimum combined with the constitutive equations (2.9) assumes the
form

(3.15) J @ - fido.

According to the virtual work principle 7i**— 7} is a distribution of stresses with sur-
face forces vanishing on ay. It follows that 7§** is a statically admissible stress distri-
bution. The distribution satisfies the equilibrium condition (3.1) inside the continuum,
and condition (3.2) — on ar; the corresponding strain rates satisfy the ‘kinematic field
equations (3.3) and the geometric boundary conditions (3.4), as also the incompressibility
condition (3.5). Thus the stress field 7¥** represents the solution 7§ of the boundary value
problem.
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