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A method of determination of inelastic constitutive 
equations (*) 

J. KRATOCHVIL and N. ZARUBOVA (PRAGUE) 

To DETERMINE a sufficiently accurate, concrete form of constitutive equation for a given in
elastic material seems to be most critical problem of inelasticity at present. In the suggested 
method a corresponding inverse problem is formulated and solved. The method is illustrated 
with an example where information gained from a series of tensile tests suffices to solve the 
inverse problem. The inelastic constitutive equations for mild steel are derived and used in 
the solution of the coupled thermoplastic heat conduction problem of torsion of a steel shaft. 
The predicted torque and surface temperature are compared with the results of the torsion 
experiment. 

Okreslenie wystarczaj~co dokladnej i konkretnej postaci r6wnati konstytutywnych dla danego 
materialu niespr~zystego jest w chwili obecnej krytycznym problemem mechaniki osrodk6w 
niespr~zystych. W zaproponowanej tu metodzie sformulowano i rozwi~zano odpowiedni prob
lem odwrotny. Metod~ zilustrowano przykladem, w kt6rym informacja zdobyta z serii doswiad
czeti na rozci~ganie wystarcza do rozwi~zania problemu odwrotnego. Wyprowadzone niespr~
zyste r6wnania konstytutywne dla mi~kkiej stali zostaly zastosowane do rozwi~zania sprz~zo
nego zagadnienia termoplastycznego przewodnictwa ciepla w przypadku skr~ania stalowego 
walu. Obliczone moment skr~j~cy i temperatura powierzchniowa zostaly por6wnane z wy
nikami doswiadczeti na skr~anie. 

Onpe,r:teJieHHe ,r:toCTaTOq}{O TOqJioro H KOHKpeTHoro BH.r:ta onpe.z:temnollUIX ypaBHemm ,r:tJIH 
):taHHOrO Heynpyroro MaTepHaJia HBJIHeTCH B HaCTOHIJ.Urll: MOMeHT KpHTHt.IeCKOH npo6JieMOH Me
Xamn<H HeynpyrHX cpe.r:t. B npe,r:tnoJio>KeHHOM 3,r:tecb MeTo,r:te c<J?opMHJIHPOBaHa H peweHa co
OTBeTCTBYJOI.l.(aH o6paTHaH npo6JieMa. MeTo.r:t HJimoCTpHpyeTCH npHMepoM, B KOTopoM HH;

<J?opMa~H noJiyt.IeHHOH H3 cepHH HCnbiTaHHH Ha paCTH:>KeHHe XBaTaeT ):tJIH pemeHHH o6paTHOH 
npo6JieMbi. Bnme,r:teHHbie ueynpyrHe onpe,r:temnol.l.(He ypaBHeHHH .r:tJIH MHrKoii CTaJIH npHMe
HeH:bi .r:tJ1H peiiieHHH conpiDReH:HOH TepMO-nJiaCTHt.IeCKOH 3a,r:tat.IH TenJionpOBO):tHOCTH B c.nyqae 
CKpyt.IHBaHHH CTaJibHoro sa.na. Bnit.IHCJieHHbie CKpYt.IHBaHHIOI.l.(Hii MOMeH:T H nosepXHOCTHaH 
TeMnepaTypa CpRBHeHbl C pe3yJibTaTaMH HCnbiT8HHH Ha CKpyt.IHBaHHe. 

1. Introduction 

IN RECENT years some effort has been directed to improve the classical theory of thermo
plasticity and to formulate a consistent theory of real inelastic materials (1). The attempts 
to formulate "improved" theories can be roughly divided in two categories. 

One of these attempts is usually called the internal (or hidden) variable approach to 
thermoplasticity. It is assumed that the present stress-response of the material is determined 
by the present values of deformation, temperature, and a set of internal variables. The 
evolution of internal variables is controlled by a system of differential equations. 

(*)The paper has been presented at the EUROMECH 53 COLLOQUIUM on "THERMOELASTIC
ITY", Jablonna, September 16-19, 1974. 

(1) The term "inelastic material" is used as a synonym of "temperature sensitive elastic rate-dependent 
plastic material". 
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The second approach, which may be called the functiomil approach, uses the mathe
matical language of functionals (in practice the functionals usually have a form of integrals) 
to express the influence of deformation and temperature histories upon the present stress
response. 

Both approaches represent a positive step towards a more realistic description of in
elastic properties of materials. However, newly formulated theories lose one important 
feature- the simplicity of the classical theory. The "improved" constitutive equations 
are more complex. Therefore, it seems that to determine the concrete form of "improved" 
constitutive equations for a studied material is at present the most critical problem. The 
problem is essential both for a verification of the correctness of suggested "improved" 
theories and their use in engineering practice. 

The proposed method of determination of inelastic constitutive equations is of a similar 
nature to that suggestion described at the end of the book by ILIUSHIN [1] or the method 
used within the framework of classical viscoplasticity by LEMAITER [2]. The proposed 
method consists of three standard steps: 

(i) A sufficiently genera/form of inelastic constitutive equations is assumed at the outset. 
(ii) All available special information concerning the studied class of materials and 

thermo-mechanical processes are used to restrict the generality of the constitutive equations 
adopted in step (i). 

(iii) Finally, for the restricted form of the constitutive equations specified by step (ii) 
we attempt to formulate and solve the corresponding inverse problem, i.e. using data from 
suitably designed experiments, we try to determine the remaining unknown functions 
to get the concrete form of the constitutive equations in the cases studied. 

The steps (i) to (iii) and a preliminary attempt to verify the usefulness of the method 
will be described in the following sections. A deeper theoretical analysis of the correspond
ing inverse problem and more detailed experimental verification of the suggested method 
will be given in a subsequent paper. 

2. The assumed general constitutive equations 

In the suggested method we shall adopt the internal variable approach to inelasticity 
(e.g. [3-7]). As the first step of the method we choose one of the possible general forms 
of inelastic constitutive equations described in detail in [8, 9]: 

(2.1) 

(2.2) 

(2.3) 

(2.4) 

1p = VJ (CE, (), ex), 

h = Eh(CE, (),ET grad (), (l), 

pp-l = p(CE, (),ET grad (), (l), 

ci :::::: a (CE, ()' ET grad ()' (l), 

where E and P are, respectively, elastic and plastic parts of the deformation gradient F, 
i.e. F = EP, CE = ET E is the right elastic Cauchy-Green tensor, () denotes temperature, 
1p is free energy, and h means the heat flux. The quantity denoted by (l = ( (l1 , (l2, ... , (ln) 

describes structural changes in the material during a thermomechanical process (if the 
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structural changes have to be expressed through quantities of higher tensotial rank than 
scalars, then Cli means the convected quantities with respect to E). As a consequence of 
the second law of thermodynamics tp does not depend on the temperature gradient [see 
(2.1)], and Cauchy stress tensor T and entropy 'YJ are determined through the stress and 
entropy relations T = 2e otp I acE and 'YJ = - Otp I()()' e is the mass density. 

An infinitesimal strain version of the constitutive equations(2.1)~(2.4) can be reached, 
if small strain measures e = (ETE-1)12, p = (PTP-1)12 are used, and E and P differ 
only infinitesimally from the unit tensor 1. 

3., The restricted constitutive equations 

The second step of the method consists of the specification of all information which is 
characteristic to the studied class of inelastic materials and thermo-mechanical processes. 
A representative example of such information is the following list of restrictions: 

(a) free energy is a sum of free energy tp1 of linear thermoelasticity and energy tp2 

stored by structural changes of the material; 
(b) the heat flux obeys the classical conduction law; 
(c) plastic deformation and the structural changes are not influenced by hydrostatic 

pressure and a temperature gradient; 
(d) plastic deformation preserves the volume of the material; 
(e) the structural changes can be described by a single scalar parameter; 
(f) unstressed states of the material are isotropic. 
If we study only quasi-static thermo-mechanical processes the restrictions (a) to (d) 

are usually satisfied by most materials under standard conditions. The last two assump
tions are more restrictive and vary from situation to situation. The degree of isotropy (or 
type of anisotropy) can be controlled, e.g. by X-ray technique. A hint concerning the num
ber and tensorial character of structural parameters needed in the constitutive equations 
for the studied class of materials and thermo-mechanical processes can usually be gained 
from work-hardening theories. 

If the restrictions (a) to (f) are expressed in mathematical terms and applied to (2.1) 
to (2.4) we obtain 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

'P = , 1 ( C E, 0) + "'2 (ex), 

h = - c grad 0, 

where TD means the deviatoric part ofT, TD = T-trT/3, c is heat conductivity, and Jh 
d2' a are scalar functions of(), ex, and the principal invariants 11, Ill of TD. The restricted 
form of the constitutive equations (3.1) and (3.2) is a direct consequence of the restrictions 
(a) and (b), the relations (3.3) and (3.4) can be obtained from (c) to (f) using the repre
sentation theorems for isotropic scalar and tensor functions [10]. 
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The constitutive equations (3.1) to (3.4) will be fully determined, if we are able to find 

the remaining unknown constitutive functions tp 1 (CE, 0), tp 2 (a), d1 (a, 0, 11, III), d2(a, 0, 
11, Ill) and the constant c. The necessary information concerning ?p 1 and c can easily be 
-obtained from standard tables of elastic constants, specific heat and heat conductivity. If 
stored energy can be measured (for methods of measurement see [11]) during experiments 
which will be described in Sec. 4, we have direct information on the second part of free 

·energy 1p2 • To determine d1 , a:, and a, a corresponding inverse problem has to be solved. 

4. Solution of the inverse problem 

The unknown constitutive functions d1 , d2 , and a specify the form of the system of 
the differential equations (3.3) and (3.4). To determine these functions we need information 
-on the solutions of the Eqs. (3.3) and (3.4) of the same "magnitude" as we are looking 
for; i.e. we need to know suitable three scalar functions of four scalar variables. Such 
information can be gained e.g. from biaxial loading experiments combined with measure
ments of structural changes. Such experiments can yield a set of curves which represent 
the functions 

{4.1) 

{4.2) 

a =f(t, 0, v 1 , v2), 

P1 = l't(t,O,v1 ,v2), P2 = P2(t,O,v1,v2). 

We suppose in (4.1) and (4.2) that in the biaxial loading experiments two principal 
·Components of stress T1 and T2 are controlled as a linear function of time t, i.e. T1 = v1 t, 
T2 = v2 t, the third component is kept zero. We measure at various temperatures 0, and 
loading speeds v1 and v 2 , two principal components of plastic deformation P 1 and P2 

.and a quantity sensitive to structural changes a. Following physical metallurgy experience 
we can measure as a the dislocation density using e.g. etching pits or electron microscope 
technique. If any macroscopic quantity sufficiently sensitive to structural changes caused 
by inelastic deformation is available, we would use it as a. 

From (4.1) and (3.4) the unknown function a can be expressed in the form 

(4.3) 
A o a A 

a(a, 0, 11, Ill)= ex= Tt f(t, 0, v 1, v2), 

·where we substitute for v1 = T1 /t, v 2 = T 2 /t and t = g1nv (a, 0, T1 , T2 ), inverting the 

function a = ](t, 0, T1 /t, T2 /t) = g (t, 0, T1 , T2) with respect tot. Finally, the components 
T1 and T2 have to be expressed in terms of the invariants 11 and Ill using T1 = 2Ti}> + T5]>, 
·r 2 = Tb1>+2T5]>, where .T1,1>, re;> are roots of T~+IIT0 +III = 0, r}]> = -T1,1>-T1,2 >. 
{An analysis of conditions under which the used operations are possible will be given in 
a subsequent paper). 

Similarly, if d: and d2 are evaluated from the Eq. (3.3) written for P 1 and P2, 
.and ( 4.2) is used, we get for i = 1 , 2 

{4.4) 

http://rcin.org.pl



A METHOD OF DETERMINATION OF I:'JELASTIC CONSTITUTIVE EQUATIONS 753 

where 

Gl = (2Ti-2T1T2-Tf)j3iJ, (;2 = (2Ti-2TlT2-Ti)/3iJ, 

G~ = -(2T2-Tl)/iJ, G~ = -(2Tl-T2)/iJ, iJ = T1 Ti-TiT2, i.e. 

we must have T1 =I= 0, T2 =I= 0, T1 =I= T2. In F1 and F2 the same substitution for v1 , v2, 
and t as in the case (4.3) has to be introduced. 

Hence, if information specifying ( 4.1) and ( 4.2) is available, the solution of the inverse 
problem (4.3) and (4.4) is reduced to a problem of differentiation and inversion of the 

functions/, F1 , and F2 • In practice where the relations (4.3) and (4.4) can be obtained only 
in a form of discrete points and curves the operations of differentiation and inversion have 
to be combined with interpolation. The concrete constitutive equations are then obtained 
in the form of tables. The tables can be directly stored in the memory of a computer or 
we can attempt to approximate the tables by an analytical formula. In the latter case 
analytical forms of constitutive equations which appear in work-hardening theories may 
be helpful. 

The above discussion indicates that the most difficult point of the method is to perform 
a sufficient number of accurate experiments which would provide enough information 
on (4.1) and (4.2). Rough estimate shows the difficulty of the problem. If n measurements 
suffice to cover a range of variable changes in (4.1) and (4.2) we have to perform n4 measure
ments of structural changes and 2n3 measurements of deformation curves. In a case of 
smooth dependences n can be e.g. 5, and to estimate the accuracy of the measurements 
we need to repeat each measurement at least 4-5 times, i.e. the number of measurements 
is 5(54 + 2.53

), which is not impossible, but beyond the capacity of an ordinary mechanical 
laboratory (the number can be substantially decreased using methods of rational planning 
of experiments, e.g. [12]). From this practical point of view any additional restriction of 
the type (a) to (f) which reduces the number of unknown constitutive functions and espe
cially the number of their variables is most welcomed. Of course the range of applicability 
of the derived constitutive equations is then further limited. An example of a further 
restricted inverse problem will be discussed in the following .section. 

5. Torsion of steel shaft 

In this section for a restricted class of thermo-mechanical processes the concrete form 
of the constitutive equations for mild steel will be derived and used in the solution of 
a boundary value problem. 

To decrease substantially the number of measurements needed for the solution of the 
inverse problem, we introduce additionally to (a)- (f) (Sec. 3) the following restrictions: 

(g) only undirectional small strain experiments are considered; 
(h) temperature is always sufficiently low to exclude aging and recovery effects; 
(i) studied thermo-mechanical processes start always at the same initial state of the 

material; 
(j) stored energy 1p2 can be neglected. 

5 Arch. Mech. Stos. nr 5-6/75 
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In the small strain range assumed by (g) the dependence of (PP- 1 )sym on T~ and the 

dependence of d1 and a on Ill in (3.3) and (3.4) can be neglected. Further, based on the 
work-hardening theories (e.g. [13, 14]) we can conclude that in the case ofthermomechanical 
processes which respect to (g) and (h) the rate of structural changes is proportional to the 
rate of plastic deformation; then due to (i) ex can be expressed in terms of the invariants 
of plastic deformation and excluded from explicit consideration. If we use small strain 
measures e = (ETE-1)/2 and p = (PTP-1)/2 and accept also (j) we can get from (3.1) 
to (3.4) a further restricted form of the constitutive equations 

(5.1) 

(5.2) 

(5.3) 

h = -cgradO, 

p = d,. (lip, 0, II) TD, 

where lip is the second principle invariant of p (as a consequence of the restriction (d) 
I, = trp = 0; due to (g) an influence of III, is neglected). The system (5.1) to (5.3) re
presents an extension of Odquist-Hoff's law [15]. 

Adequate information needed for the solution of the inverse problem for d~ can be 
obtained from a series of tensile tests. If initially identical specimens are deformed at 

various rates v and temperatures 0, and the force F = F(t, 0, v) necessary to maintain the 
deformation is registered, we can easily get 

(5.4) p =p(t,O,v), T = T(t,O,v), 

where p and T are the components of p and T in the direction of the tensile axis. 
The solution of the inverse problem is then 

(5.5) 
-- o/J 

d1 (II,, 0, II) = (1/T)Tt. 

In opfot we substitute for v = g1(T, O,p) and t = g2 (T, O,p), where g1 , g2 are obtained 

by inversion of (5.4) with respect tot and v; further we use T = y -3 II, p = 2 y -II,/3. 
In the preliminary experiments a series of cylindrical mild steel specimens (2) of the 

gauge length 2.6cm and the diameter 0.4 cm were tested in tension on an lnstron tensile 
testing machine at crosshead speeds 0.005cmjmin, 0.2cmjmin, 5cmjmin, and temperatures 
295 °K, 335 °K, 375 oK in the range up to 15% elongation. Data obtained from the relation 
(5.5) were approximated by the formula [the analytical relation of the type (5.6) appears 
in the work-hardening theory [17] and is used in [18]; the details of the dependence (5.5) 
in the vicinity of the yield point are not adequately reproduced by (5.6)] 

(5.6) 

(2) Mild steel delivered in rolled bars and annealed for recrystallization has standardized composition: 
C 0.07-0.14%, Mn 0.35-0.65%, Si 0.17-0.37%, Cr, Ni, Cu, P, S, resp. at most 0.15, 0.30, 0.04, 0.04%, 
resp. X-ray diffraction patterns indicated relatively large grain of the order 10- 2 mm and no detectable 
preferred orientation (radiation CoKcx, collimator of the diameter 1 mm) [16]. 
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as long as fi > ya, and d1 = 0 if fi ~ y'iX. The quantity ex = lc4 1Ip+c5 l, and II = 

ytrT2 = y211, fiP = Jltrp2 = y-2IIP. The following values of the constants were 
used: c1 = 20.4kp- 2 cm4 sec- 1 , c2 = 8.2 x 104 K, c3 = 2.1 x 103 kpcm- 2 , 

c4 = 3.64 x 107 kp2 cm-4, c5 = -3.4 x 105 kp 2 cm- 4 • 

The constitutive equations (5.1) to (5.3) with determined d1 can be used to predict 
the behaviour of studied mild steel in thermo-mechanical processes which fall within the 
limits set up by the restriction (a) to (j). As an example we used the constitutive equations 

(5.1) to (5.3) with d;. given by (5.6) in solution.of a coupled thermoplastic heat-conduction 
problem of torsion of a steel shaft. The specimens made of the same material as the tensile 
test specimens had the gauge length 14.5cm and the diameter 1.5cm; deformation rate 
was one revolution per 27.5sec, shear modulus 8.38 x 105 kpcm- 2 [16], heat capacity 
0.109calg- 1 K - 1 [19], heat conductivity 0.17 calcm- 1 sec- 1 K- 1 [19] and density 7.87 gcm- 3 
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FIG. 1. Preliminary results of torsion experiments on mild steel shaft and the comparison with predicted 
values of torque and surface temperature. 

119]. The theoretical predictions of torque and surface temperature obtained by the method 
described in detail in [18] are compared with experimental values on Fig. 1 (the torsion 
experiments were performed on a Mohr & Federhaff torsion testing machine with a pen
dulum dynamometer, for temperature measurement a chromel-aluminium thermocouple 
was used; in theoretical calculations a thermal isolation of the surface of the specimen 
was assumed). 

6. Conclusion 

The proposed method of the determination of the concrete form of inelastic constitu
tive equations is divided into three steps: 

(i) A sufficiently general form of constitutive equations derived in the thermodynamics 
of inelastic materials is specified at the outset. The intermil variable approach is adopted. 

5* 
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(ii) Specific information on studied class of materials and thermo-mechanical processes 
are listed and used to restrict the generality of the constitutive equations adopted by step 
(i); thus, the number of unknown constitutive functions is reduced. 

(iii) The inverse problem for the remaining unknown constitutive functions is formulated 
and solved. Within the framework of the internal variable approach to inelasticity the 
inverse problem is reduced to differentiation, inversion and interpolation of functions 
derived from suitably designed experiments. The number and complexity of the needed 
experiments increase rapidly with the number of remaining unknown constitutive func
tions and the number of their variables. 

The critical point of the practical application of the proposed method is to find in step 
(ii) the restrictions adequate to a studied situation. The restrictions have to balance two 
competitive features: (1) the accuracy and the range of validity of the derived concrete 
form of the constitutive equations delimited by step (ii); (2) the number and complexity 
of measurements needed for the solution of the corresponding inverse problem. 

7. Acknowledgements 

We thank Dr. J. CERMAK (Inst. Solid State Physics) and En g. V. KAFKA (Inst. Theor. 
and Appl. Mechanics) for their discussion, help and critical comments. The care taken by 
Mrs. Z. HERMA.NovA (Inst. Solid State Physics) in preparing the experiments has been 
much appreciated. 

References 

1. A. A. IuusmN, Plasticity [in Russian], Academy of Sciences USSR, Moscow 1963. 
2. J. LEMAITRE, Elasto-visco-p/astic constitutive equations for quasi-static structures calculations in "Dy

namika osrodk6w niespr~:Zystych" [P. PERZYNA, Ed.], 63-124, Ossolineum, Wroclaw-Warszawa
Krak6w-Gdansk 1974. 

3. P. PERZYNA and W. WOJNO, Thermodynamics of a rate sensitive plastic material, Arch. Mech. Stos., 
20, 499-511, 1968. 

4. J. KRATOCHVfL and 0. W. DILWN, Thermodynamic of elastic-plastic materials as a theory with internal 
state variables, J. Appl. Phys., 40, 3207-3218, 1969. 

5. J. ZARKA, Sur la viscop/asticite des metaux, Memorial de l'Artillerie francaise, 44, 223-291, 1970. 
6. J. R. RicE, Inelastic constitutive relations for solids: an internal-variable theory and its application to 

metal plasticity, J. Mech. Phys. Solids, 19, 433-455, 1971. 
7. J. MANDEL, Equations constitutives et directeurs dans les milieux plastiques et viscop/astiques, Int. J. Solids 

and Structures, 9, 725-740, 1973. 
8. J. KRArocHViL, On a finite strain theory of elastic-inelastic materials, Acta Mechanica, 16, 127-142, 

1973. 
9. J. KRATOCHVfL, Thermodynamics of elastic-inelastic materials at finite strain in "Dynamika osrodk6w 

niespr~:Zystych" (P. PERZYNA, Ed.), 5-62, Ossolineum, Wroclaw-Warszawa-Krak6w-Gdansk 1974. 
10. C.-C. WANG, A new representation theorem for isotropic functions, Archiv. Rat. Mech. and Anal. 36, 

166-223, 1970. 
11. A. L. TITCHENER and M. B. BEVER, The stored energy of cold work, Progress in Metal Physics, 7, 247-

338, 1958. 

http://rcin.org.pl



A METHOD OF DETERMINATION OF INELASTIC CONSTITUTIVE EQUATIONS 757 

12. M. M. PROTODJAKONOV and R. I. TEDER, Methods of rational planning of experiments [in Russian], 
Nauka, Moscow 1970. 

13. A. SEEGER, Ed., Moderne Probleme der Metallphysik, Springer, Berlin-Heidelberg-New York 1965. 
14. J. J. GILMAN, Micromechanics offlow in solids, McGraw-Hill, New York 1969. 
15. N. J. HoFF, Les fondements de la mecanique du fluage dans un corps metallique, Conferences Institute 

Henri POINCARE, Paris 1964. 
16. J . CERMA.K, private communication. 
17. H. CONRAD, Yielding and flow in iron, Iron and its dilute solid solutions, 315-339, lnterscience, New 

York 1963. 
18. J. KRA.TOCHVfL and R. J. De ANGELIS, Torsion of a titanium elastic-visco-plastic shaft, J. Appl. Phys. 

42, 1091-1097, 1971. 
19. C. L. SMITHELLS, Metals reference book, Ill, fourth edition, Butterworths, London 1967. 

INSTITUTE OF SOLID STATE PHYSICS 
AND INSTITliTE OF PHYSICS 
CZECHOSLOVAK ACADEMY OF SCIENCES 
PRAGUE, CZECHOSLOVAKIA. 

http://rcin.org.pl




