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Non-isothermic large elastic-plastic deformations(*) 

TH. LEHMANN and G. ZANDER (BOCHUM) 

WITHIN the frame of the phenomenological theory of non-isothermic large elastic-plastic 
deformations we treat "elementary processes", which may be considered as a sequence· of equi­
librium states. Therefore we can correlate a description by thermodynamic state equations to 
the usual description as thermo-mechanical process. This is shown in general and for a special 
material. Some possible generalisations are discussed. 

W ramach fenomenologicznej teorii nieizotermicznych duzych odksztalcen spr~zysto-plastycz­
nych ogrzewamy "procesy elementarne", kt6re mog<! bye rozwazane jako ci<!g stan6w r6wno­
wagi. Dlatego mo:Zemy sprowadzac opis przez termodynamiczne r6wnania stanu do zwyldego 
opisu jako procesu termo-mechanicznego. Wykazano to w przypadku og6lnym i dla szczeg61-
nego materialu. Przedyskutowano niekt6re mozliwe uog6lnienia. 

B paMHax ~eHoMeHonorHqecHoH TeopHH HeH30TepM~ecKHX 6on&DIKX ynpyro-nnacr.uqecHHX 
,ll;e~opMai.UIH HarpeaaeM ,3neMeHTapHbie npouecchi", HOTOphie MoryT paccMaTpHBaT&CH KaH 
nocne,ll;OB8TCnbHOCTb COCTOJIHHH paBHOBCCHH. I103TOMY MO>KeM CBCCTH OllHcaHHC qepe3 TepMO­
,ll;HH8MHqecHHe ypaBHeHHJI COCTOHHHH H 06biHHOBeHHOMY OnHcaHHIO KaK TCpMO-MexaHWICCKOro 
npouecca. 3To .ll:OHa3aHO a o6~eM cnyqae H ,ll;nH qacrHoro MaTepHana. 06cy>K,ll;eHbi aeKOTOphre 
B03MO>KHbiC o6o6~eHHH. 

1. Introduction 

WE CONFINE ourselves to the phenomenological theory of elastic-plastic bodies. The consti­
tutive law of these bodies is assumed to be independent of the scale of time, i.e. rate-in­
dependent. The bodies are considered as classical continua, that is, the kinematics of these 
bodies is completely described by the displacements as functions of space and time. 

We restrict ourselves to processes which are quasi-static and homogeneous throughout 
the body. We call these processes "elastic-plastic elementary processes". Processes of this 
kind can be considered as a sequence of equilibrium states. Therefore it must be possible 
to describe such processes by means of thermodynamic state equations. This representation 
is correlated to the usual description of such elastic-plastic deformations as a thermo­
mechanical process using process variables, which are not necessarily state variables in the 
thermodynamic sense. 

In two earlier papers [1, 2] the first author has pointed out the differences and the 
correlations between these two methods of description. These considerations shall be ex­
tended here in two directions. At first, we want to show the application of the theoretical 
results to a real material in a special process. Secondly, we make some remarks on a possible 
generalization of the theory. 

(*)The paper has been presented at the EUROMECH 54 COLLOQUIUM on "FINITE DEFORMA­
TIONS IN PLASTICITY", Jablonna, September 30-0ctober 3, 1974. 
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760 TH. LEHMANN AND G. ZANDER 

For brevity, we refer to the cited papers [1, 2], which contain many references to other 
papers connected with the subject treated here. We repeat only the main results in 
Chapts. 2 to 4. 

2. Kinematics and fundamental assumptions 

The total deformations of a body can be completely described by the changes of the 
metric gik of the body-fixed coordinate-system ;i. The metric of the undeformed state is 

(2.1) 

In the deformed state we have 

(2.2) 

In our case of homogeneous deformations the metric gik becomes independent of;' 
throughout time, if the metric gik is independent. We use the deformed state as the 
reference state in our considerations. 

The changes of the metric are given by the metric transformation tensor q~ in the 
following way: 

(2.3) 

with 

(2.4) 

Every strain tensor which describes the total strain may be expressed as a function 
of the metric transformation tensor or its inverse 

(2.5) i i( ') i(( -1)') ek = ek q s = ek q s • 

Likewise, the total strain rate is derivable from this tensor. We get 

(2.6) .-li 1 ir • 1 ( -l)i ( ')' 1 ( -l)i ,.z: 
Uk = 2g g,.k = 2 q s q .k = - 2 q .r'1k • 

The change of the metric may be split into its elastic and its plastic component in the 
following manner: 

(2.7) 
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This multiplicative splitting of the metric change leads to an additive splitting of the 
strain rate according to 

di 1 {( -l)i (")r} 1 {( -l)i(•)r m} k = sym-2 q r q .k +sym-2 q r q ,mqk ' 
E E P E 

(2.8) 

+ 

We assume that the constitutive law of the elastic component of the deformations is 
isotropic and independent of the plastic deformations, because otherwise the splitting of 
the total deformation into its elastic and its plastic component would be useless. In this 
case the stress-strain relations of the elastic component of the deformation can be written 
in the general form 

(2.9) i _ i ( r T) _ i (( -l)r T) sk - sk qs, - sk q s' ' 
E E 

where sL means the Kirchhoff stress tensor related to the true stress aL by 
0 

(2.10) s~ = _({_a~ (e = mass density). 
e 

Thus we may derive stress-strain relations in an incremental form 

(2.11) 

An example may illustrate this. From the frequently used elastic stress-strain relation 

(2.12) i 1 {S.i ( -l)i} 1 { i V r~i~ (T To)~i ek = 2 uk- Z k = 2G sk- 1 +vSruk +ex - uk, 

we get 

(2.13) d i 1 { [ r(•)i] 'V ic•m)} ,.;. i k = 2G sym qk s .r- -
1
-qk Sm +cx.1qk, 

E E +v E E 

which is approximately equal to 

(2.14) . 1 { . 'J.I ·} •• 11c = 2G Siclo- 1 +v s:::lo bic + cxTbk, 

where 

(2.15) s~lo = sym (s)~k 

means the so-called covariant derivation with respect to time or the Jaumann-derivation. 
Regarding the plastic deformations, we make the usual assumption that plastic deform­
ations occur only if the stress and the temperature fulfill a given yield condition 

(2.16) F(sL T; k 2 
••• , cxi ... , At: ... )= 0, 

and the loading condition 

(2.17) 
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762 TH. LEHMANN AND G. ZANDER 

Furthermore, we assume that the plastic strain rate is related to the yield and the loading 
condition by the approach 

(2.18) d j .] aF ir SI ·· = 11. -8--r + "kst,. o, 
P Si 

where ti is the stress deviator. The first term corresponds to the theory of the so-called 
plastic potential. The second additional term represents a correction which is generally 
quite small. 

3. Description of elastic-plastic elementary processes as thermo-mechanical processes 

At first we must choose a suitable set of independent process variables as, for example, 
the stress s~ and the temperature T. The problem is to describe the changes of all other 
process variables, i.e. of all dependent process variables, according to the history of the 
independent variables. So, under the usual assumptions of uniqueness, we get the following 
process description: 

independent process variables: sL, T 
dependent process var-iables (a): k 2 

... , cxk ... , AL~ ... , 

(3.1) 

otherwise 

(b): sUq~), q, w ... , 

if F(si, T; k 2 
... , cxL ... , Al:) = 0 (yield condition), 

>0 

di 1 ir• di di 
k = -2 g g,.k = k + k 

E p 

(loading condition), 

= dl {sL sklo, T, T; gik• k 2 
... , cxl ... , AL~ ... } 

(k2) = (k2){ ............................... } 

cx~lo = cxllo { · ........ · ...... · .. · .......... ·} 

AL~Io = A~~lo { · · · . · . · · . · · · . · · · · · · · · · · · · · · · · ·} 

dl = d~ {si, silo, T, T; gjk• dl}. 
E 

The dependent process variables may be split into two groups. The first group contains 
those quantities which are necessary to fix the state of the material. The second group 
includes all other dependent variables as, for example, the total strain sl, the applied heat q, 
or the mechanical work w, etc. 

The independent process variables sk and Tin this description, may be replaced by 
another suitable set, for example, by the total strains tk and the applied heat q. The scheme 
of the process description remains unaltered, in principle, by this change. The only differ­
ence is that in this case the group of dependent variables (a) has to be enlarged for two 
further quantities, the stresses sL and the temperature T, or for another equivalent set of 
state variables. 
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4o Description of elastic-plastic elementary processes by state equations 

We use as thermodynamic state variables the elastic strain, represented by qi, the 
E 

absolute temperature T, and a number of other state variables (h . .. , fJi •... , Bl~ ... )which 
may be scalars or tensors of even order. The plastic strain and the total strain are unsuitable 
as state variables since, in general, they do not uniquely define the state of the material. 

The thermodynamics of the elastic-plastic elementary processes are governed by 
(a) a thermic state equation 

(4.1)1 

( 4.1 )z 

si = s~ (qL T, ... ), 
E 

(b) a caloric state equation for the specific internal energy 

u = u(qL T, ... ), 
E 

(c) a statement about the entropy production s. 
The two state equations may be combined by introducing the specific free energy (Helm­
holtz-function) 

({J = q;(qL T, ... ) . 
E 

In a simplified, though based on our assumptions, sufficient form, the first law of thermo­
dynamics states 

(4.2) • 0 0 0 ° • • 1 ·idk . 1 idk 1 idk u = q+w = q+w+w = q+ -o sk i = q+-osk i +-osk i. 
E P (! (! E (! P 

The plastic work must be separated into the component w, which changes the hardening 
H 

state of the material and into another component w, denoting the energy dissipation: 
D 

(4.3) w = w+w. 
P H D 

Only the second part w enters the entropy production 
D 

(4.4) . 1 {. . } S=T q+~. 

The second law of thermodynamics requires 

(4.5) »· ;?; 0 . 
D 

Since the elastic part of the deformations, according to our assumptions, does not depend 
on the plastic deformations, we may divide the free energy into two different components 

(4.6) q; = q;(qi, T)+cp(T, h ... , fJl ... , Bl~ ... ), 
E E H 

where the first component refers to the elastic deformations, the second to the changes 
of the hardening state. From the Eqs. (4.2), (4.3) and (4.4) we derive 

(4.7) q; = -sT+w+w. 
E H 
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764 TH. LEHMANN AND G. ZANDER 

On the other side, we get from the Eq. (4.6) 

8(rp+rp) 
(4.8) E H 

ar 

By comparison of these two equations we may conclude 

(4.9) 

arp -
s =- ar --

arp 
• o E sic= n"k-­

~ fk 8q'i ' 
E 

8(rp+rp) 
E H 

ar 

arp 
H Bj'l + aBi' ks o+ 

ks 

The thermodynamic equations have to be completed by a statement about the entropy 
production. We assume this statement in the general form: 

(4.10) w = CL~ st d: > 0 
D p 

with et~ = c~~(qL T, h ... , fJL ... , B~~ ... ). 
E 

The Eqs. (4.9) and (4.10) are the governing thermodynamic equations of non-isothermic 
elastic-plastic elementary processes. But in general we cannot derive the complete set of 
constitutive equations from these thermodynamic equations. We need more information 
about the material behaviour. Such specifications as, for example, the yield condition, are 
not state equations. They belong to the domain process description. 

5. Correspondence between thermodynamic relations and the process description for an iso­
tropic hardening material 

For a carbon steel C45 (DIN 1720) in a pure tension test at a moderate temperature 
and strain rate, we find the material behaviour which is shown in Fig. 1 [3]. From this we 
may derive the stress-strain-temperature relations for loading in pure tension in the form 

(5.1) a = a(e, T). 

For our purpose it is more useful to write this relation in the form 

c1 (T)w 
(5.2) a = a(w, T) = (T) P +a0 (T). 

P c2 +w 
p 
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· In our special case we get 

(5.3) 

kp 
c1 (T) = 72.42-36.03 ·10- 3T--2 , 

mm 

kp 
c2 (T) = 7.35-8.04 · 10- 3T--2 , 

mm 

kp 
a0 (T) = 47.41-38.9 · 10- 3T--2 , 

mm 

with Tin °K. 

765 

We may consider the carbon steel approximately as an isotropic work-hardening material 
obeying the v. Mises-Hill yield condition and the theory of plastic potential. Furthermore, 

G 

---+----r-~ 20°C 
L--~---t--11000C 

~----+---~fS~~~==~~--~-----t----,200°C 

201~----~---4-----+----~-----r----~--__, 

E=tnl. 
0+-----~--~~--~-----+----~----~----~- lo 

0 0,1 0,2 0,4 0.5 0,6 0,7 

FIG. 1. 

we assume that a constant ratio of 90% of the plastic work is dissipated. With these assump­
tions we get the following general process-description for the material under consideration 
[Eq. (3.1)] 

independent process variables: 
dependent process variables: 

yield condition: 

sL T 
(a) w or k 2 (w, T), respectively, 

p p 

(b) qL, q ... 

F(sL, T, w) = t~ t~-k2 (w, T) = 0, 
p p 

loading condition: 
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766 TH. LEHMANN AND G. ZANDER 

elastic strain rate (approximation according to the Eq. (2.14) 

d i 1 { i I V ml 9-i} ,.j,9.; 
Ek = 2G Sk o - -1 +v Sm ouk + CX..t. Uk, 

with ex= 11.9·10- 6K- 1 , 

plastic strain rate: 
when (5.4) 1 and (5.4h are fulfilled: 

otherwise: 

(5.4)s dk = 0, 
p 

rate of plastic work: 

rate of applied heat [approximation; the exact formulation is given later in the Eq. (5.8)}: 

(5.4), 

. h J . ) Wit ; = 0.9 = const, c = 465 kgK (heat capacity. 

When we use the total strain ei(q:) and the applied heat as independent process variables, 
then we must interchange the roles of si and T against eHq:) and q, which causes no diffi­
culty. 

In the process description the hardening parameter k 2 depends uniquely on the plastic 
work wand the temperature T. This fact leads to the following approach for the correspond­

P 

ing thermodynamic relations to make sure that the plastic work is equivalent to thermo­
dynamic state variables: 

free energy: 

q; = q;(qL T)+h with h = q;; 
EE H 

entropy production: 

(5.5h w = ;(h)s~ d~ = ;(h) w. 
D p p 

From this approach, and in connection with the Eqs. ( 4.3) and ( 4.9)3 , we get 
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This means, as required, 

(5.6) h = h(w). 
p 

In our special case, it holds that ~(h) = 0.9 = const. Therefore the (latent) hardening 
energy q; = h becomes (with h0 = 0) 

H 

(5.7) h = (1 - ~) w = 0.1 w. 
p p 

From our approach, (5.5)1 , we may also derive for this case, the exact relation between 
the rate of applied heat, the time derivative of temperature and the strain rates. Using the 
Eqs. (4.4) and (4.9) 1 we get 

• . • t . . l os i os . os •l 
q+ ~ = q+";' = Ts = T oqi zklo+ oT T+ Mh 

E 

i.e. 

(5.8) 

In this equation 
j)2q; 

(5.9) 
E . 

- T arz = c<xk, T), 

represents the heat capacity at constant strain (dt = dt = 0). We may consider this heat 
E p 

capacity as constant: 

c(qL T) =c. 
E 

Furthermore, we know from experimental results that the second term on the right­
hand side of the Eq. (5.8) can be neglected in most cases. So we can replace the Eq. (5.8} 
by . 

(5.10) q+~w =et. 
p 

This is identical to the Eq. (5.4)? which we used as an approximation in the process de­
scription. 

Looking back, we may state once more that we need the corresponding thermodynamic 
relations to make sure, that the constitutive law of the process description is compatible 
with the basic laws of thermodynamics. On the other hand, we can see that the thermo­
dynamic relations alone, even in. the simple case here, are not sufficient to derive the com­
plete set of constitutive equations of the process description. We need further information 
such as statements regarding the yield condition, the form of the plastic stress-strain rela­
tions (plastic potential), etc. 
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6. The isotropic and adiabatic behaviour of an isotropic hardening material in simple shear 

We take the same material as in Chapt. 5 and consider simple shear processes as shown 
in Fig. 2. We denote this material as material A. The processes wiJl be carried out, on the 
one hand isothermically and, on the other hand, adiabatically. We find the solution of 
the problems by numerically integrating a system of first-order differential equations ori­
ginating from the Eqs. (5.4) 1 -(5.4)?. In the first case (isothermic process), the total strain 

_G,z 

I I I I I ;e I 
I 

I I 

I 71 I 
I 

I I 
I I 
I I 
I I 
I 

~· 
I 

~ ~ 

.3-= tan7 

FIG. 2. 

rate dL and the temperature T0 are given, and in the second case (adiabatic process) the 
total strain rate and the vanishing of the applied heat are prescribed. 

For comparison, we introduce, furthermore, a theoretical material whose yield condi­
tion is unaffected by temperature. This means, for this material, the hardening parameter 
k 2 is 

k 2 = k 2 (w, T0 ). 
p 

In isothermic processes this material (denoted as material B) shows the same behaviour 
as material A. But in adiabatic processes we have differences. For material A, the temper­
ature influences the yield condition as well as the elastic part of deformation. For material 
B, only the elastic components of the deformations are changed by temperature. 

Regarding this we must distinguish three cases: 
(1): isothermic processes with material A orB, 

(IIA): adiabatic processes with material A 
(hardening rule depending on temperature), 

(11 B): adiabatic processes with material B 
(hardening rule independent of temperature). 

http://rcin.org.pl



cr,l 
~---- -- --r<=--

50 

kp 

~2 

/7 ~ 
-- a, 

.-'*" 
t:,.:::-~ 

V- adiabatic (hardening rul~ d~pend~nt on t~mp~tur~l 
40 

V ·---- adKlbatic {hardening rule independ~nt of temperature) 

--- isothermal 
T 

v~ ~ 
t-400° 

~ -~ 
0- V 

100°C 

/ 
350° 

V 
V 

0 f--
/ , 50°C 

V 

20 

K 

K 

/ 
300° -- K 

0 
0 0,1 0,2 0,3 0,5 0,6 0,7 0,8 0,9 

FIG. 3. 

a .~ 
...!.!-- -

~o--- -~Ell-

,...-,...-- I~~ 

20"c 
1,0 ~=tanT 

En 
3·10_, 

,,... ~ 
0,2 ._-+-""-.',.j.!::::....._---t--+---+--:::P"IF--+----lf--+--t 2· 10 _, 

1 -7"''+'/-'-+----±,~--'==-t~--t""--i--if--t--t----i I· 10'3 
O,lr/, ~ _....--
0·0 t---- 0,1 0,2 0,3 

', 1--r--
0,4 0,5 0,6 0.7 0,8 

, • tanT 

0,9 1,0 

-0,1 \ '~'-,, ·-- - f-· --a,, 
-~2~~~--~c---~--1----+----r-----+----r--~--~ \ ............. __ ~-- -
-0,3~-~-~f----4---+-~~~~~-,r----;--~---i 

1\ --1-- r--- G22 

-0,4 L).. --- isothermallll 

\ ---- adiabatic (hard~ning rule dependent on tem!)«atureiiiiAI 

- o,St---+--+1\~ ----- adiabatic lhard.ning rule independent of temperotureiiiiBI 

-~6~--+---~-~--~~~-~~---+--_,----r---~--+---~ 
"~~ 

........ _ --­-0,7~--4----+----~--+-~~--~F=~~---r--~--~ --... --r-. __ _ 
~o.e~-~-~--4---+--+---r-~r----~~~-r.-~. 

FIG. 4. 

6 Arch. Mech. Stos. nr 5-6/75 [769] 

http://rcin.org.pl



770 TH. LEHMANN AND G. ZANDER 

The results for the shear stresses and the temperature are shown in Fig. 3. We see 
that the differences between the shear stresses in the isothermic and in the adiabatic processes 
are mainly influenced by the dependence of the yield condition upon temperature. The 
differences between the cases (I) and (II B) are negligible, but not the differences between 
IIA and JIB. It should be remarked that in the case (IIA), we get a maximum shear stress 
for {} = 0.87. So for larger deformation we find in this case a softening effect due to the 
incrCJasing temperature. With respect to the temperature the differences between the adia­
batic cases, (IIA) and (IIB), are rather small, since the differences in the plastic work, in 
both these cases, are not so important. 

The second-order effects are more influenced by the temperature than the first-order 
effects. This can be seen from Fig. 4. The effects are partially •changed in the opposite 
direction (see stress a 11 ). This is due to the strong influence of the temperature on the 
elastic deformations. We may conclude this from the fact, that the differences between 
the cases IIA and IIB are less than the differences between I to IIA or IIB, respectively. 

From other experiments, however, we know that the observable second-order effects 
cannot be explained by the influence of the elastic part of the deformation alone. We get 
more realistic results when we use stress-strain relations derived from the Eq. (2.18) with 
a small correction concerning the theory of plastic potential (see [4]). In this case the dif­
ference between the second-order effects in isothermic and in adiabatic processes may be 
slightly less. But in any case, the influence of temperature on second-order effects is more 
important than the influence on first-order effects. 

7. Some possible generalizations 

In order to generalize the theoretical approach for isotropic materials we may 
assume free energy: 

VJ = VJ(qL T)+VJ(h, T), 
E E H 

and entropy production: 

(7.1h w = Hh, T)w. 
D p 

From this approachwe derive in the same way which led to the Eq. (5.8), 

(7.2) 

The heat capacity at constant strain and constant h is 
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If we assume, that this heat capacity does not depend on the hardening state characterized 
by h, then it follows that 

o2q; 

a;2 =.rcr> Le. qy(h, T) = a(T)+b(h)T+g(h). 
H 

We may link the first term a(T) to qy, since it does not depend on h. So we get 
E 

(7.3) q;(h, T) = b(h)T+g(h). 
H 

Putting this in the Eq. (7.2) we obtain 

I . o2qy o2q; J 
(7.4) q+~(h, T)~ = -T c; + oqi~Tzilo+ oh:Th. 

E db{i;) 
dh 

This relation allows for interactions between the state variables h, q~ and T, which are 
not included in our former approach in Chapt. 5. 

Furthermore, from (7.1h we may, with respect to the Eqs. (4.3), (4.9)3 and (7.3), 
derive 

(7.5) w= 
p 

1 {db(h) dg(h)}· 
1-~(h, T) ~T+--dJl h. 

aq; 
H 

Th 

The integration of this equation depends in general upon the slope of the process. There­
fore we cannot construct a unique relation w(h, T) in general. For the same reason, a harden­

P 

ing rule of the form k 2 = k 2 (w, T) is incompatible with an approach according to the 
p 

Eqs. (7.1)t and (7.1)2 • The only exception is when 

(7.6) 

db(h) dg(h) 
------ T + ---- -
dh dh 
1-~(h, T) 

= f(h). 

Then we get 

h = h(w). 
p 

It should be remarked that in this case, ~(h, T) cannot be kept constant as in the example 
in Chapt. 5. 

We may extend our approaches to anisotropic hardening materials by assuming [see 
the Eq. (4.6)] 

q; = q;(qi, T)+q;(T, h, fJL Bt~ ... ). 
E E H 

In such cases the relations become still more complicated. Examples of this kind shall be 
treated at another time. 

6* 
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