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Universal deformations for thermo-elastic-plastic materials (*) 

A. PAGLIETII (CAGLIARI) 

IN THE RANGE of large deformations, we consider the problem of determining the set of the 
deformations possible in every elastic-plastic material which is acted upon only by surface 
forces and by temperature changes. The thermo-plastic deformations are shown to render 
this set considerably wider than the analogous set relevant to perfectly elastic materials. The 
conditions under which a given thermally, elastically and plastically deformed state can be 
relaxed are also considered, and some problems connected with the choice of the measures 
of thermal, plastic and elastic deformations are discussed. 

W zakresie dui:ych odksztalcen rozwai:any jest problem okreslenia ukladu moi:liwych defor
macji w kai:dym materiale spr~i:ysto-plastycznym, oddzialywujqcym jedynie na zmiany po
wierzchniowe i temperaturowe. Wykazano, i:e dla odksztalcen termoplastycznych uklad ten 
jest znacznie szerszy nii: analogiczny uklad dla material6w idealnie-spr~i:ystych. Zbadano 
warunki, przy kt6rych dany stan odksztalcony termicznie, spr~i:yscie i plastycznie moi:e bye 
zrelaksowany oraz przedyskutowano kilka zagadnien zwiqzanych z wyborem miar dla od
ksztalcen termicznych, plastycznych i spr~i:ystych. 

B o6nacrH 6o.TThiiHIX AeQ>opMal.UiH: paccMaTpHBaeTc.fi npo6neMa onpe,lleneHH.fi cHcreMhi B03-
MOllillhiX ,lleQ>opMaUHH B Kalli,llOM ynpyro-nnacrHqecKOM MaTepHaJie, B03,lleHCTBYJOIUHM TOJII>KO 
Ha nosepXHOCTHhie H TeMnepaTyp:ubre H3MeHeHH.fi . .UoKa3al:lo, qTo AJI.fl TepMo-nnacrHqecKHX 
,lleQ>opMaUHH 3Ta CHCTeMa 3HaqHTeJII>HO 6onee IImpoKa.fi, qeM al:laJIOr:uq:ua.fi CHCTeMa ,llJI.fi 
H,llell.HI>HO-ynpyrHX MaTepHaJIOB. JfCCJie,llOBa.Hbl YCJIOBlf.fi, npH KOTOpbiX ,llal:lHOe COCTO.fiHHe 
TepMHqecKH, ynpyro H nJiaCTHqecKH ,lleQ>OpMHpOBal:ll:lOe MOllieT peJiaKCHpOBaTI>, a TaKllie 
o6cym,llel:lO HeCKOJII>KO BOllpOCOB, CB.fi3aHHbiX C Bbi60pOM Mep ,llJI.fi TepMHqeCKHX, llJiaCTHqecKHX 
H ynpyrHX ,lleQ>opMaUHH. 

1. Introduction 

THIS PAPER deals with some topics connected with the thermodynamic theory of elastic
plastic continuous materials. We shall in no way restrict the magnitude of the deforma
tions which such materials can undergo. To point out that we are also considering thermal 
effects we shall add the prefix thermo- to the above elastic-plastic qualification. We shall 
give special attention to the problem of determining the universal solutions of the equi
librium equations of this class of materials and thus the universal deformations. By uni
versal solution of the equilibrium equations we mean a solution possible for all elastic
plastic bodies, that is a solution not depending on their constitutive features; this solution, 
moreover, must be relative to a compatible deformation and must be attainable, after 
application of surface forces only, by means of a process of purely elastic deformation 
which, from an initial state free from external forces but generally, thermally and plastic
ally deformed, brings the body to a final deformed configuration. In the following sections 
we shall set forth the exact meaning of the above elastic, plastic and thermal deformations. 

(*)The paper has been presented at the EUROMECH 53, COLLOQUIUM on "THERMOPLASTIC
ITY", Jablonna September 16-19, 1974. 

http://rcin.org.pl



774 A. PAGLIETI'I 

Let us note in the meantime that, in accordance with what we have said, we can put every 
state of thermo-plastic deformation in correspondence with a family of universal deforma
tions, and that the families of universal deformations generally depend on the thermo
plastic deformations taken into consideration. The universal deformations here introduced 
generalize the analogous deformations studied by ERICKSEN [1, 2] only for perfectly elastic 
materials. The former can be reduced to those of ERICKSEN when the thermo-plastic de
formations vanish or, in any case, they can easily be deduced from them when the thermo
plastic deformations do not produce any stress in the material, external forces not being 
present. In this case, in fact, we can assume the thermo-plastically deformed configuration 
as a natural state, and referring to it, consider the material perfectly elastic, since the 
process it must undergo to reach a universal deformation involves only elastic deforma
tions. Thermo-plastic effects play an important role when dealing with universal deforma
tions. To recognize this fact let us consider for instance that, as shown in this paper, the 
universal deformations for an elastic-plastic continuum, elasticalJy isotropic and compress
ible, are not reduced to the homogeneous deformations as in the case of isotropic com
pressible and perfectly elastic continua, but constitute a wider set of deformations. This 
is true of course only if we admit that the thermo-plastic deformations can be to a large 
extent arbitrary. 

In what follows, we shall also consider the problem of determining the conditions 
under which a state of thermo-elastic-plastic deformation may be relaxed, that is, may 
undergo a transformation which, keeping the thermo-plastic deformations constant, brings 
the body to a state in which the elastic deformations, and therefore the stresses, vanish. 
Both the study of the universal deformations and that of the relaxed states have a practical 
significance. The former, as known, helps us to establish which states of deformation can 
be attained by any elastic-plastic body when surface forces (the only ones available in 
laboratory) act upon it, and thus helps us also to proceed towards a correct experimental 
determination of the material constants. Contrary to what happens to the perfectly elastic 
materials considered in [2], for our materials the experiments do not have to be restricted 
only to homogeneous deformations. The study of relaxed states, on the other hand, will 
enable us to establish whether the amount of elastic energy in a deformed body can be 
wholly transferred to the surrounding world or whether, on the contrary, not all of it can. 
In the latter case the body, released from external forces, will not be able to reach an un
stressed state, unless changes occur in the thermo-plastic deformations. 

In this paper we shall frequently make references to the general theory of elastic-plastic 
continua proposed by GREEN & NAGHDI in [5 and 7]. A remarkable feature of t.his theory 
is the use in the range of finite strain of a simple summation rule to decompose the total 
strain into elastic and plastic components. When studying certain problems and only when 
dealing with certain kinds of elastic-plastic materials, as an alternative to the theory of GREEN 

& NAGHDI we could adopt with profit other theories which make use of such measures of 
strain as to simplify the constitutive equations specific to the materials they study, but 
which generally lose the disposability of a summation rule for the elastic and plastic com
ponents of the deformation. As we shall recognize in the course of our study, such theories 
are practical only when they concern those materials for which they have been principally 
conceived. Moreover, they do not offer any special advantage when they are employed in 
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UNIVERSAL DEFORMATIONS FOR THERMQ-ELASTIC-PLASTIC MATERIALS 775 

problems about the whole class of elastic-plastic materials. In a similar occasion, on the 
contrary, the general approach as in [5 and 7] is of greater advantage. 

Section 2 is about the description of the kinematical quantities and of the coordinate 
systems 'we shall use. We shall also establish and discuss some relations occurring among 
the components of some of the tensorial quantities introduced to describe the deformation 
of the body. These relations will then be used in Sec. 6. In Sec. 3 we take into consideration 
the question of the decomposition of the total strain. The thermal strain, in addition to 
the elastic and the plastic, is explicitly introduced in order to be able to treat, as far as 
possible, the thermal effects in the same way as we would treat the plastic ones. Moreover, 
we give the reasons why the additive decomposition rule adopted does not restrict the 
generality of the theory, and we point out a kinematical interpretation which, together 
with the appropriate constitutive hypotheses, helps to us justify the names elastic, plastic 
and thermal strains, which we use for the quantities representing the partial deformations. 

The fundamental aspects of the general theory [5 and 7] will be summarized in Sec. 4. 
This theory will be slightly changed because of the explicit use of the thermal strain tensor. 
The consequences that the choice of the variables used to describe the deformation has 
on the form of the constitutive equations, will also be presented. In Sec. 5 we shall express, 
in terms of the variables which we have introduced, the conditions of compatibility for 
a state of thermo-elastic-plastic deformation. In this section, moreover, the conditions 
under which a deformed state can be relaxed will be laid down. Finally, in Sec. 6 we shall 
deduce the relations by which the universal deformations of elastic-plastic materials can 
be determined, and we shall show that the occurence of thermo-plastic deformations 
generally produces remarkable changes in the class of universal deformations, with respect 
to the case of perfectly elastic materials. 

2. Some kinematical preliminaries 

Let us consider a continuous body. To describe its state of deformation we have to 
make use of at least two systems of coordinates : the first is to label its material points, 
while the second is to assign to them a position in physical space. It will come in handy, 
however, to introduce further systems of coordinates, in addition to those strictly necessary, 
in order to be able to give to some quantities, fundamental in this paper, an interpretation 
by which we can more readily obtain the relations we are after. 

In what follows, a bold-face letter will stand for a tensor or a vector. The same letter 
in light-face will be used as a kernel letter in component form notation. In this case the 
components of a tensor in different systems of coordinates will be generally distinguished 
by using different characters as indices without changing the kernel. We shall throughout 
adopt the summation convention, the device of distinguishing between covariant and 
controvariant components by means of the position of the indices, and all the other usual 
notations of tensorial calculus. 

Let us, as usual, refer the motion of the body to a stationary spatial system of reference, 
not necessarily Cartesian, chosen in the three-dimensional Euclidean space where the body 
is. We shall indicate the coordinates of a generic point of this system by xi, (i = 1, 2, 3), 

http://rcin.org.pl



776 A. PAGLIEITI 

or more concisely by x, the base vectors by bi and the metric tensor by g. Let us suppose 
that at the initial instant the body is in a natural state at uniform temperature. Considering 
the body in this configuration, we shall indicate by X or XL, (L = 1, 2, 3), the coordinates 
of its points in a second system of reference, in general different from the first, which will 
be called a material coordinate system and whose metric tensor and base vectors will be 
indicated by g and bL, respectively. The deformation of the body at the generic instant t 

can thus be expressed as usual: 

(2.1) x = x(X, t). 

Let us now interpret the system of coordinates X as a system of convected coordinates. 
It will be useful e) to focus our attention on three particular configurations which this 
system can assume after appropriate deformations in the body have occurred. The first 
configuration is that attained when the body, after a deformation process, assumes its 

final deformed state. In this configuration bLand g will stand for the base vectors and the 
metric tensor of the system of convected coordinate system X, respectively. On the other 
hand, the second and the third configuration of this system will be attained when the 
body undergoes two appropriate processes of deformation, not necessarily continuous for 
effectively attainable, which we precisely shall define after we have fully explained the 

meaning of elastic, plastic and thermal deformation. We shall call bL and g respectively 
the base vectors and the metri~ tensor of the convected coordinate system X when it attains 

the second configuration, while we shall call bL and g the analogous quantities relevant 
to the third configuration. Let us note at this point, that the systems of reference with 

* -base vectors bL and bL might not be related to a Euclidean space, since we have admitted 
that the process we need to define them may not be continuous. On the contrary, the metric 
tensor g is always related to a Euc1idean space, because we are supposing the final configu
ration of the body attainable by means of a continuous deformation. By the way, let us 

also note that supposing t = t, where t stands for the instant in which the final configuration 
is reached, (2.1) can be interpreted as a coordinate transformation from the system X 
to the system x (2). From what has just been said and from the law governing the change 
of tensorial components when the system of reference changes, it is a straightforward 
matter to deduce the relations between the components of our metric tensors in the system 
of reference x and those of the same tensors in the system of reference X. For example, 
for the metric tensor g we have e): 

(2.2) 

(1) Similarly to what has been done in [6, p. 230]. 
(2) Since the two metric tensors g and g are related to two Euclidean spaces, the relation x = x(X, t) 

which sets the two spaces in correspondence must be hi-univocal and bicontinuous; it can be thus inter
preted, when necessary, as a transformation of coordinates in the space with metric tensor g (or g). Naturally, 

the components of gin the system X at instant t (or those of gin the system x) are different from the com
ponents of gin X (or from the components of gin x) unless at instant t we have g = g. 

(l) A comma and a semicolon before an index will always be used to indicate respectively the partial 
derivation and the covariant derivation with respect to the indices which follow them. 
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where we have set xi,Q = (oxifoXQ) and used the symbol A to specify that the quantities 

to which it is appended are calculated at the instant t = t. Since the system of reference X 
can be arbitrarily chosen, an appropriate choice can make the metric tensor g coincide at 

instant t with g, that is gu = gu. Of course only slight changes are necessary to refer to g 
what has been previously referred to g. For instance, similarly to what has been said about 

g, we can choose the system X in such a way that g = g at instant f. It should be clear, 
however, that if we exclude the trivial case of rigid motions, only one of the tensors g 
and g can be made to coincide with g. 

Let us now consider the process that takes the body from the initial undeformed to 
the final deformed configuration. Let ds be the distance which, after the deformation, is 
assumed by two points of the body, ds being their elementary distance before the deforma
tion; and let c be the Cauchy's deformation tensor. In the spatial system of reference we 
shall then have the well-known relation: 

(2.3) 

On the other hand, in the convected coordinate system of reference we have: 

(2.4) 

If we consider the components of the tensors appearing in this relation as relative to the 

system of reference X at instant i, that is to the system with metric tensor g and base vectors 

bL, and if we interpret the relation x = x(X, F) which determines the configuration of 

the body at instant t as a coordinate transformation from. the system X at t to the system 
x, we shall get 

(2.5) 

where AXP,z stands for the components of the inverse of the deformation gradient, as 
defined by the relation Ax1,R AXP,z = f5P R. By comparing (2.5) with (2.3) we shall have: 

(2.6) Cjj = gij-(gLM-kLM) AXL,i AXM,j· 

In a similar way we can obtain various relations analogous to (2.6) but involving different 
kinds of tensorial components. Among these we shall quote: 

(2.7) 

and 

(2.8) 

other relations may be obtained from these simply by changing the position of the lower
case indices with the aid of the metric tensor g. It is important to note that (2.6), (2. 7) 
and (2.8) do not represent the expressions in component form of one and the same tensorial 
relation. In fact it can easily be observed that if, for instance, we wanted to obtain (2.7) 
or (2.8) from (2.6), we would have to raise or lower the indices of the tensors which appear
in (2.6) by using different metric tensors, namely g for cii and gii• g for gLM• g for gLM• 
and finally g and ·g for AXL,i· However, the Eqs. (2.6) and similar ones are independent 
from the choice of the system of convected coordinates X. Furthermore, since in the system 

of reference with base vectors bL it is always possible to define three different tensors in_ 
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such a way that the covariant components of the first, the mixed components of the second 
and the controvariant components of the third coincide withgLM• gLM and gLM, respectively, 
we can also interpret the expressions (2.6), (2. 7) and (2.8) as representing three component 

form expressions, in the system X at instant~ of three different tensorial relations between 
c and the tensors just defined. Naturally each of these tensorial relations has a component 
form expression coinciding with one of (2.6), (2.7), (2.8), only when expressed by means 
of components of appropriate variance in their capital indices (4

), whilst, if we express 
them by components of a different kind, they will assume a different and generally more 
involved form. At this point it is worth noting that having interpreted (2.6) and its analogous 
as deriving from appropriate tensorial relations, we are allowed to perform a covariant 
derivation of each side of them and thus we can easily obtain further expressions for the 
covariant derivatives of the .components of c. Moreover, if instead of the total deformation 
we want to consider that which the body undergoes in passing from the configuration 

with base vectors bL or bL to the final configuration, by replacing g with g or g and the 

line element ds with d; or ds-, we can in this case, for the components of the Cauchy's 
deformation tensor relative to the process of partial deformation considered, easily obtain 
formulas similar to (2.6), (2.7) and (2.8). We shall have for example: 

(2.9) 

and 

(2.10) 

In (2.9) c;i represent the components of the Cauchy deformation tensor relative to the 

purely elastic process which takes place from the instant t to the instant i. From (2.9) and 
(2.10) we obtain: 

(2.11) C~j = gij-(gLM-gLM) AXL,i AXM,j· 

Let us finally remember, for completeness, that if we restrict our attention to the material 

system of reference, at the initial instant l, and to the spatial one, and if we interpre 

x = x(X, t), that is the relation (2.1) calculated at t = t, as a transformation of coordinates 
between these two systems of reference, the tensor c, relative to the total deformation, 
will be expressed in its classical form: 

(2.12) 

where AF stands for the deformation gradient, whose components are Axi,L, the symbol- 1 

-1 
means inverse [and therefore C F)L; = AXL,;], and the symbol Tmeans transpose. In (2.12), 
contrary to the preceding formulas, the capital index of AXL,i is related to the system of 

reference with base vectors bL, instead of that with base vector bL. 
In what follows we shall also use Green's deformation tensor C, defined by the relation: 

(2.13) c = AFT g AF' 

(
4

) As far as the lower-case indices are concerned, (2.6), (2. 7) and (2.8) constitute three different tensorial 
relations, and therefore the position of these indices can be supposed arbitrary, so long as it is tensorially 
consistent. 
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or, in component form, in the material system of reference at the initial instant t: 
(2.14) 

where, as for (2.12), the position of the capital indices can be changed by means of the 
metric tensor g. Even if we can lay down for the components of C expressions analogous 
to (2.6), (2. 7) and (2.8), we shall refrain from doing so, since such relations will not be 

* -used in what follows. If we have to consider the Cauchy deformation tensors C or C 
related to the state which the body attains after the deformation process which takes it 

* -from the initial state to the deformed one with base vectors bL or bL, we can easily obtain 
* -- * -for C and C formulas similar to (2.13), by replacing t with t, or with t, respectively. For 

instance: 

(2.15) * C =*FT g*F, 

or, in component form, in the material system of reference at instant/: 

(2.16) * 
CLM = glm *X

1
,L *xm,M· 

We shall also make frequent use of the Green-St. Venant strain tensor E, defined by 
the relation: 

(2.17) 1 0) E = T(C-g, 

which in covariant components, in the material system of reference at the initial instant, 
is given by: 

(2.18) 

Here again, if we want to consider only a part of the total deformation, for example that 

* which takes the body from the initial state to that with base vectors bL, the relative tensor 
* * E can be immediately calculated by replacing C with C in (2.17). 

3. Partial deformations associated with a given total deformation 

To describe the state of deformation of a body, we shall use the strain tensor E, as in 
the Green & Naghdi theory of elastic-plastic continua. It will be worth considering the 
decomposition: 

(3.1) E = E' +E" +E'", 

and calling the quantities E', E" and E"' tensor of elastic strain, tensor of plastic strain 
and tensor of thermal strain, respectively. These terms will be justified after having laid 
down the constitutive hypotheses forE', E" nad E"'. In (3.1), contrary to what happens 
in the analogous decomposition in [5 and 7], we have introduced the tensor E"'. In this 
way we have explicitly distinguished the thermal strain from the elastic one, without using, 
therefore, only the tensor of thermo-elastic strain. We can adduce two reasons for doing 
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this. The first is that, as will subsequently be shown, the values of the total strain tensor 
in correspondence to a particular unstressed but thermically and plastically deformed 
state, play a fundamental role in the problems we are dealing with. This is the state ima
ginarily reached by the body before a purely elastic process (the only one that gives rise to 
stresses in the material) takes it to the final deformed state. The second reason is that, 
referring to the problems considered in this paper, it makes no difference whether the 
above mentioned unstressed state is reached by means of a thermal deformation, a plastic 
deformation, or a thermo-plastic deformation. In this respect plastic and thermal deform
ations are equivalent. It is then clear that we must keep the tensor of thermal deform
ation separate from that of elastic deformation, if, for a more immediate and unitary study, 
we want to treat, even from the analytical point of view, thermal deformations in the 
same way as plastic ones. 

The device of introducing tensors tied with states of partial deformation; together 
with, or instead of, the tensor of total strain, is frequently used in the theories concerning 
elastic-plastic materials, principally to make the relations expressing their constitutive 
characteristics more workable. Naturally in order to measure deformations we cannot 
only use any one of the many possible definitions of strain but we can also change the 
definition according to the partial deformation considered. Each definition we choose 
may have its particular advantages _ towards obtaining a simple expression of the consti
tutive equations. Generally speaking, however, the quantities chosen to describe the de
formation are not such to obey an additive rule (5

) of the kind (3.1 ). Of course, the tensors 
E', E" and E"' in (3.1) are defined in the same way as E, that is they are all Green
St. Venant strain tensors referred to the same reference configuration. In view of the frequent 
discussions as to whether a summation rule for the tensors measuring partial deformations 
is valid or not in the range of large deformations, we had better point out that the formal 
decomposition (3.1) can always be assumed. In fact, since Eisa tensor, it can be considered 
as an element of a vectorial space which consists of all the tensors of the same rank as E, 
defined in the same way as E but relative to different deformations. Therefore it can 
always be interpreted as composed of the sum of two or more tensors belonging to the 
same space. 

From what has been said, it should be clear that the quantities E, E', E" and E'" 
represent different processes which start from the same undeformed state and generally 
lead to different deformed configurations. On the other hand, it is often profitable to consider 
the total deformation as consequent to particular processes of partial deformation undergone 
by the body at successive instants. It is therefore better to introduce deformation tensors 
that are referred to deformed and generally different configurations. This is the case, for 
instance, when we consider the total deformation as produced by two ideal processes, the 
first of which starts from the initial state and generates only plastic deformations in the 
body, while the second, applied to the body plastically deformed by the preceding process, 
generates only elastic deformations and leads to the final configuration. Generalizing the 
observation attributed by GREEN & NAGHDI [8] to Fox, we shall now show that E', E" 

(
5

) Sometimes a summation rule is valid only for components of appropriate variance of the adopted 
strain tensors, cf. [3], whereas (3.1), being a tensorial relation, is valid for every kind of component. 
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and E"' can be interpreted (6
) in the convected coordinate system X as strain tensors 

relative to three successive configurations of a deformation process that takes the body 
from the initial state to the final one, passing through two intermediate states which have 
respectively E" and E" + E"' as the Green-St. Venant strain tensors referred to the initial 
state. To this end we shall refer to the convected coordinate system X, whose metric tensor 

g at the initial instant t will be from now on also indicated by 1, and we shall suppose that 
the body undergoes a process such that the metric tensor of the system X will successively 
assume the values: 

(3.2) g = 2E" +1 
o!C· 

at instant t. 

(3.3) g = 2(E" + E'") + 1 

at instant t, and 

(3.4) g = 2(E' +E" +E"')+l = 2E+1 

at the final instant t. We can see that in the process just imagined, the configuration reached 
by the body at the final instant coincides with that which it actually reaches after the real 
process. In fact, keeping in mind the meaning of Green's deformation tensor as well as 
the definition (2.17), we can deduce that, because of the real deformation process, a line 
element ds = dXrgdX relative to the undeformed configuration becomes: 

(3.5) 

in the deformed configuration. Let us also note that, as far as the imaginary process is 
concerned, the deformation tensors in the convected coordinate system relative to the 

* - A 

instants t, t and t, and calculated by using as reference configurations the configurations 
0 * -

attained by the body at instants t, t and t respectively, coincide with the quantities 2E", 
2E"' and 2E', respectively. Thus, by using for instance covariant components C), we get: 

(3.6) 

(3.7) 

and 

(3.8) 

* c 2E" gKL-gKL = KL• 

gKL-gKL = 2E~{ 

(
6

) This interpretation will be a fundamental aid in what follows and, together with the constitutive 
hypotheses of the following section, will help us to justify the terms elastic, plastic and thermal deformations 
adopted respectively forE', E" and E'". 

C) We observe that, since (3.2), (3.3) and (3.4) are valid in the convected coordinate system X, their 
expressions (3.6), (3.7) and (3.8) in component form do not correspond with that of three tensorial rela
tions in a stationary system of reference. They are to be interpreted as non-tensorial relations between the 
covariant components of the quantities which appear in them. For this reason we cannot use only one 
metric tensor to raise their indices and thus to obtain from (3.6), (3. 7) and (3.8) analogous relations in
volving mixed and controvariant components. See also what has already been said on this point when 
dealing with (2.6), (2.7) and (2.8) in Sec. 2. 
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Since in passing from the configuration at instant t to that at the final instant t we can 
suppose E" and E"' to be constant and equal to the values they assume in (3.1), it fo11ows 
from (3.8) that we can interpret the Green-St. Venant strain tensor E', to within an in
essential multiplying factor, as a strain tensor in the convected coordinate system. This 

tensor is relative to the purely elastic ideal process that occurs between instant t and in

s-tant i, and is calculated with respect to the state reached by the body when its plastic and 
thermal strain tensors assume values equal to those actually assumed in the final deformed 
state. By means of (3.6) and (3.7) we can easily give similar interpretations to the strain 

0 * tensors E" and E'", considering the processes that occur from instants t to t, and from 
* -t to t, respectively. 

* As already observed, the deformed states imagined at instants t and t may not be 
reached by the body by means of a continuous deformation, not only because they could 
correspond to a non-compatible deformation, but also because they could produce values 
of E" and E"' that, in an unstressed state, cannot be attained by the body without violating 
the constitutive hypotheses made for it. Even if the latter occurrence does not formally 
invalidate our results, it wiJI nevertheless be excluded in order to give easier interpretations. 

* --
On the contrary, we shall admit that the deformed states at instants t and t can be non-
compatible, even if we conclude, in view of the usual assumptions of continuity for the 
real deformation of the body, that they can actuaHy be reached. 

4. Results of a general theory of elastic-plastic materials 

In this section we shaH summarize the principal results of the general theory of elastic
plastic continua proposed by GREEN & NAGHDI [5, 7], and we shall introduce in this 
theory some slight changes due to our explicit use of the thermal strain tensor E"'. Even 
if in the following sections we shall not make use of aJJ the relations laid down in this 
section, they are nevertheless reported here for completeness. 

Let us first of aJJ focus our attention on the constitutive hypotheses for the strain tensor 
E"'. These do not appear in the Green and Naghdi theory, because in this theory the thermal 
strain tensor is included in the thermo-elastic strain tensor. We shaH call f) the tempera
ture and we shaH suppose that E"' is given by a relation of the kind: 

{4.1) E"' = E"'(E", f), X, bK), 

where the dependence on X takes into account the eventual non-homogeneity of the ma

terial, and that on the base vectors bK, here used as material descriptors, takes the 
eventual anisotropies. In ( 4.1) E" appears among the independent variables, but E' 
does not. The presence of E" is not surprising because in the range of large deformations 
the constitutive expression for a particular strain depends in general on the values 
assumed by the other partial strains which, in addition to it, a·re necessary to determine 
the total strain (8

). This observation, however, should be applicable also to E', and there-

(8) Naturally (4.1) must be such that when {} coincides with the temperature of the initial undeformed 
state, E"' vanishes whatever the value assumed byE". 
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fore also E' should appear among the independent variables in the above expression for 
E"'. If it doesn't, it is because by (4.1) we have implicity restricted the possible constitutive 
expressions for E"' (0

). This restriction is helpful because, thanks to it, we can allow the 

body to undergo processes, like those imagined in the last section between instants t and 

i, where only E' varies, while E" and E"' are kept constant. Our strain measures can be 
criticized as rendering the constitutive equations too complicated, and in fact (4.1) for 
instance, may be said to have a rather cumbrous form. Similar objections can, however, 
be dismissed merely by noting that for our study we shall find the decomposition rule 
(3.1) useful, while we shall obtain no advantage from a simple form of the constitutive 
relations. 

Let us now consider the plastic strain tensor (1 °). By S we shall indicate the symmetric 
Piola stress tensor, tied with Cauchy's stress tensor t by means of: 

-1 -1 
(4.2) S = sr = (detF) FtF T; 

and we shall introduce the loading surface: 

(4.3) f(S, E", {}) = k, 

where k is a scalar function which depends on the whole story of the motion of the body, 
and whose time rate we can suppose to be expressed by: 

(4.4) k = kKL(S, E", {})E';.L = tr {hE"} 

(a dot above a quantity indicates the material time derivation). We admit that the consti
tutive law for the plastic strain rate is given by e 1): 

(4.5) E" = G(S, S, k, E", {}, fJ), 

with the condition that the Eqs. ( 4.4) and ( 4.5) are valid when the conditions: 

(4.6) 

I

f= k 

of· of· 
tr 1----s}+ -- - {} >- 0 · as afJ ?' 

are satisfied, while when (4.6) are not satisfied we have:. 

(4.7) 

and 

(4.8) E" = o 
i-nstead of (4.4) and (4.5). 

As for the elastic strain tensor, we shall admit that it can be expressed by: 

(4.9) E' = E'(S, E", k, {}), 

(
9

) Note that this restriction does not set any limitation to the family of elastic-plastic materials here 
considered. In fact, it does not restrict the constitutive form of E, because, as will be seen, E' can assum~ 
a very general form. 

(1°) For simplicity, in what follows we shall suppose this tensor symmetric. 

(
11

) In (4.5) as well as in (4.1) E' does not explicitly appear among the independent variables. For this 
reason we can repeat here observations similar to those made for (4.1) above. 
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which we shall suppose smoothly invertible with respect to S, so that it will have the 
unique inverse: 

(4.10) S = S(E', E", k, {}). 

Indicating by 1p, 'YJ and qR respectively the specific Helmholtz free energy, the specific 
entropy and the heat flux vector measured per unit of time and unit of area of the body 
in the undeformed configuration, we shall finally admit that they have the following form: 

(4.11) 

(4.12) 

and 

(4.13) 

1fJ = 1p(E', E", k, D), 

'YJ = 'YJ (E', E", k, D), 

where V means gradient with respect to the material coordinates X. Let us note that in 
all the constitutive relations so far expressed, the tensor E"' does not appear among the 
independent variables. The reason is that by means of (4.1) we can eliminate it and re
place it by E" and D. The same cannot be done for E". In fact E" is defined by the non
holonomic relation ( 4.5) and therefore cannot be eliminated by the group of variables 
that are strictly necessary to determine the state of the body. 

Following a procedure analogous to that in [5 and 7], we can express respectively the 
first and the second principle of thermodynamics in the form: 

(4.14) 1 ( 01p E. I O'ljJ E." O'ljJ hE.")} 
eor-tr\eo oE' + oE" + ok 

and 

(4.15) tr{(s-eo :;. }t·}+tr {[s-eo (:;,- ~~b) ]t"} 
+tr {SE"}- eo ( ~: + '1) b -tr { ~ (q.Vt?)};;. 0, 

where eo stands for the mass density of the body in the initial configuration and r for the 
heat supply function per unit of mass. From the second principle we can deduce the re
lations: · 

{4.16) 

:and 

{4.18) 

O'lfJ s = eo-(fE', 

01p 
S = oD +tr {SD}, 
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ln (4.17) D indicates the quantity: 

(4.19) 
oE"' 

D = ----;r:o:- , 

therefore DD represents the value E'" assumed when E' = E" = 0 (1 2). Because of the 
introduction of the tensor E"' in our study, in the right side of (4.17) we have the term 
tr {SD} which represents explicitly that part of entropy related to the thermal deformation 
of the material. Let us finally note that ( 4.16) justifies the name elastic deformation adopted 
forE'. 

5. Compatibility conditions and existence of relaxed states 

Let us now consider a generic state of deformation determined by the tensors E', E" 
and E"'. We intend to find the conditions that E" and E"' have to fulfil in order that 
the states of deformation in which E coincides with E" or with E"' or with E" + E'" be 
compatible. Of course, such states of deformation are unstressed, since their elastic de
formation vanishes; for this reason they will be called relaxed states. If, to. the conditions 
of compatibility, we add the condition that in hyperspace {S, D} the loading surfaces 
(4.3) have to contain within them the point determined by S equal to 0 and by D equal 
to the value required to produce the thermal deformation which is taken into consideration, 
then the above states of partial deformation can actually be reached by the body by means 
of a continuous process. From a deformed state in which E = E' + E" + E"', this process 
brings the body to another deformed state in which E = E" (or E = E" + E"') without 
varying the plastic deformations (or both the plastic and the thermal deformations). In 
such circumstances we iihall say that the body can be relaxed. 

Let us now express the conditions of compatibility for the state of total deformation 
by using the tensors E', E" and E"'. Indicating the Riemann-Christoffel tensor relative 
to a generic second rank tensor A by R<A>, the conditions· of compatibility expressed in 
the material system of reference at the initial instant are well known (1 3

): 

(5.1) (C) 
RKMPQ = 0, 

where C is the Green deformation tensor relative to the total deformation. By (2.17) and 
(3.1), we can express (5.1) in the form: 

(5.2) (2E' + 2E" + 2E"') 
RKMPQ = 0. 

If we introduce the quantities (1 4): 

(5.3) 
A 1 
rLPQ = 2 (ALQ;P+APQ;L-ALP;Q), 

( 12) 0 indicates the null tensor. 
(1 3) Cf. [4, p. 272]. 
(1 4

) We suppose that the covariant derivation is here based upon g. 

7 Arch. Mech. Stos. nr 5-6175 
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we can express (5.1) or (5.2) in unfolded form: 

(54) R<C> E' +E" +E'" +E' +E" E"' . • KMPQ = KP;MQ KM;PQ KM;PQ PQ;KM PQ;KM + PQ;KM 

- E' KP;MQ- E" KP;MQ- E"' KP;MQ- E' MQ;KP- E" MQ;KP- E"' MQ;KP 

-lRS 2E' 2E" 2E"' 2E' 2E" 2E'" 2E' 2E" 

+C (FKMR+ FKMR+ FKMR)(FpQs+FPQs+FPQs)-(FMQR+FMQR 

2E"' 2E' 2E" 2E"' 

+ FMQR)(FPKS+ FpKs+FpKS) = 0. 

Of these relations only the six which correspond to the sets of values: 1212, 1313, 2323, 
1213, 2123, 3132,'assumed respectively by the indices KMPQ, are independent. Incidentally, 
let us now consider the conditions of compatibility relative to three states of deformation, 
all three referred to the same initial undeformed state and characterized respectively by 
the values E', E" and E"' ofthe Green-St. Venant strain tensor. The conditions of compati
bility for these deformations can be obtained from (5.4) by setting respectively E" = E'" = 0 
and C = 2E' +1, or E' = E"' = 0 and C = 2E" +1, orE' = E" = 0 and C = 2E"' +1. 
Since (5.4) is a non-linear relation, it may be satisfied even if these three partial de
formations are not compatible. Moreover, even if one or more are compatible, it does 
not necessarily follow that the total deformation is compatible too. 

In this paper we are interested in those particular states of partial deformation asso
ciated with a given state of total deformation, and relative to that deformation of the body 
which coincides with the plastic part of the total deformation or with the sum of the plastic 

• * -
part and the thermal part (1 5). By C and C we shall indicate the Green deformation tensors 

relative to these states, and from now on, g and g will stand for the corresponding values 
undertaken by the metric tensor of the system of convected coordinates X. Naturally we 
shall have: 

(5.5) 
and 

(5.6) 

* C = 2E" +1 

C = 2E" +2E"' +1. 

The conditions of compatibility for these states of partial deformation will therefore be: 

(5.7) 

and 

(5.8) 

* R<C> = 0 

We can obtain an expression in component form of these relations directly from (5.4) 
* -by replacing C with C or C, and by setting E' and E" or only E' equal to zero, depending 

on whether we are referring to (5.7) or to (5.8). We can thus obtain, for example, this 
expression of (5.7) in component form: 

-;} 2E" 2E" 2E" 2E" 

(5.9) E"KM;PQ+E"PQ;KM-E
11

KP;MQ-E
11

MQ;KP+ CRS(FKMRFPsQ- rMQRrPKs) = 0. 

(1 5) For simplicity, we shall not consider explicitly only the thermally deformed state. This will be 
considered as a particular case of a thermo-plastically deformed state, when the plastic deformations 
vanish. 
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6. Universal deformations for elastic-plastic materials under given thermo-plastic deformation 

As stated in the introduction, by universal deformations of elastic-plastic continua we 
mean those states of deformation which can be attained by any elastic-plastic material 
by means of a process of deformation which is due to the application of surface forces 
only, and which must not produce any changes in the thermal and in the plastic strain 
tensors E' and E". ERICKSEN [1, 2] dealt with this problem for hyperelastic, isotropic, in
compressible or compressible materials and showed that for compressible materials the 
only universal deformations are the homogeneous ones. In this section we shall consider 
the same problem for the family of thermo-elastic-plastic materials, and we shall show 
that if we allow them to undergo suitable thermo-plastic deformations, their set of universal 
deformations will not be reduced only to the homogeneous deformations. 

The conditions that have to be met by the variables describing the configuration of 
the body, so that the deformation they represent is universal, are: (i) those obtained by 
imposing that, for any material belonging to the family considered, the equilibrium equa
tions which are ~elated to the state of deformation that the body attains owing to the 
application of surface forces only, are satisfied; (ii) those obtained by imposing that the 
deformed configuration of the body is compatible. For isotropic, hyperelastic and com
pressible materials ERICKSEN [2] found that the condition (i) can be expressed by the 
relations: 

(6.1) 

and 

(6.2) 

Let us note that since these relations are obtained by using only the equilibrium equations, 
they are valid also if referred to incompatible deformations, and moreover that, as follows 
from (4.16), the materials considered in this paper can be interpreted as hyperelastic 
materials, provided that the plastic and thermal deformations are kept constant. We can, 
therefore, deduce that, if we suppose the constitutive relation (4.16) to be isotropic, the 
condition (i) relative to the thermo-elastic-plastic materials can be directly obtained from 
(6.1) and (6.2), by replacing c with the tensor c' which is relative to the elastic partial de
formation, generally non-compatible, occurring between the thermo-plastically deformed 
state and the final state. Since to describe the state of deformation of a thermo-elastic
plastic material we have so far mostly used Green-St. Venant strain tensors, we had better 
express the conditions (i) in terms of E' instead of c'. To this purpose let us note that by 
means of (2.11) and (3.8) or their analogous expressions in controvariant and mixed 
components, we can represent the components of c' in terms of those of E', in any one 
of the following terms: 

(6.3) 

(6.4) 

(6.5) 

7* 
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Once again let us point out that (6.3)-(6.5) are three different relations between compo
nents, that cannot be deduced from only one tensorial equation e 6) and also that, as far 
as the lower-case indices are concerned, each of these relations can be considered as the 
expression in component form of a tensorial relation (these indices, in fact, can be raised 
or lowered with the help of the metric tensor g). From (6.3)-(6.5) by means of covariant 
derivation e 7) in the spatial system of reference and by means of an inessential change 
in the position of the lower-case indices, we have: 

(6.6) c'u;j = -2(E'...tL "XA,i "XL,,);i' 

(6.7) c'il;j = -2(E'AL "X...t'1 "XL,1);i• 

(6.8) c'il;J = -2(E'AL "'X...t'i "XL·');j· 

Thus the analogous expressions of (6.1) and (6.2), relative to the elastic partial deformation 
and expressed in terms of E', are respectively: 

(6.9) (E'AL "XA.i "'XL·i);j = 0 

(6.10) (E'AL "'XA·l "'XL,j),i = 0. 

If we choose the system of convected coordinates in such a way that its final deformed 

configuration with base vectors bL coincides with the spatial system of reference and if 
the latter is orthogonal, then (6.9) and (6.10) assume the simpler form: 

(6.11) ~} L E'AL;j = 0 
and 

(6.12) E'A .A.;i = 0, 

respectively. The condition (i) is thus represented by (6.9) and (6.10), or by the equivalent 
(6.11) and (6.12). If E' satisfies these relations, then the stresses generated in the material 
by the deformation can be sustained by applying only surface forces to the body. Of course 
the total deformation will be compatible only if we can verify the Eqs. (5.4) which, there
fore, constitute the condition (ii) for our family of materials. In addition to the conditions 
(i) and (ii) thus established, we shall have to introduce a third condition which ensures 

that the state of deformation of the body will be compatible with its constitutive charac
teristics. This condition (iii) can explicitly be obtained by imposing that the strain E' or, 
if we prefer, the state of stress that follows this strain according to (4.16), will not cause 
any plastic deformation in addition to that represented by E" which is supposed assigned. 
In view of the constitutive relations for E", laid down in Sec. 4, the condition (iii) is met 
if we impose that in every point of the body we shall have: 

(6.13) f(S, E", D) ~ k. 

For assigned thermo-plastic deformations, (6.9) and (6.10) (or equivalents) together 
with (5.4) and (6.13) help us to choose, out of the possible elastic deformations, those 
that render the total deformation universal. The conditions for the elastic strain tensor, 
which can thus be obtained, can be immediately expressed by means of (3.1), in terms of 

(1 6 ) In fact the position of the capital indices of E' can be varied by means of the metric tensor g, while 
the position of the capital indices of "XM,, by means of the metric tensor g. 

(1 7) In Sec. 2 we have already discussed the possibility of deriving covariantly this kind of relations 
between components. 
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the total deformation tensor E. As we can easily see by inspection of (5.4), the difficulties 
that are actually met with in determining the universal deformations, depend crucially 
on the form of the strain tensors E" and E'". Let us note incidentally, that if the state of 
deformation defined by E" + E"' is homogeneous or, in particular, if E" + E"' vanishes 
everywhere, our problem will coincide with that of ERICKSEN [2] [apart from the condition 
(6.13) which, however, we can suppose to be satisfied in practice, so long as the elastic 
deformations are not too large]. Since the non-homogeneous thermo-plastic deformations 
cause changes in the form of the equations of compatibility, with respect to the case in 
which such deformations are homogeneous or null, it is clear that they cause changes also 
in the family of universal deformations. For some practical solutions of this problem 
(cf. [9]). It should be observed, moreover, that we only have to make slight and obvious 
changes to our approach if we want to restrict it to the thermo-elastic or the elastic-plastic 
deformations, instead of to the more general thermo-elastic-plastic deformations. Finally, 
let us note that the relations established in this section can be used in the study of many 
analogous problems, among which that of determining the plastic or the thermal strains 
(and therefore also the field of temperatures in the body) that are to be added to a given 
state of elastic deformation in order to make the total deformation universal or, on the 
other hand, that of determining the plastic or the thermal strain necessary to render uni
versal a given state of deformation (1 8

). A remarkable simplification which will come in 
handy in the latter case is that we can avoid using the conditions of compatibility (5.4), 
which in fact are identically satisfied because the assigned total deformation is supposed 
to be compatible. 
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(1 8) Of course, if we introduce the hypothesis that the plastic deformations are isochoric, in order 
to determine E" we must add a relation that ensures that this hypothesis is fulfilled. 
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