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Thermodynamics of a unique material structure (*)

P. PERZYNA (WARSZAWA)

THE oBJECT of this paper is to examine thermodynamic restrictions for a unique material struc-
ture. The concept of the method of preparation introduced helps in this investigation. In the
first part, the results of the paper [31] have been generalized in the case of a thermodynamic
process. A unique material structure in a particle X of a body & is defined, and a general
principle of determinism for thermodynamic processes is presented. In the second part, the
topology for the method of preparation space and some smoothness assumptions for processes
and response functions (functionals) are postulated. As a basis of thermodynamic requirements
the dissipation principle in the form of the Clausius-Duhem inequality is assumed. In the third
part it is shown that the dissipation principle implies two fundamental criteria for a theory
of materials, namely the criterion of the selection of the response functions (functionals) and
the criterion of the accessibility of the intrinsic states. The principle of the increase of entropy
has been also deduced as a result of the dissipation principle. The principle of the increase of
entropy has been formulated by considering the evolution in the intrinsic state space. It is
proved that the principle of the increase of entropy places thermodynamic restrictions on the
evolution introduced in the general material structure. This result is of great importance to
the thermodynamic theory of materials.

Celem obecnej pracy jest zbadanie ograniczen termodynamicznych dla jednoznacznej struktury
materialnej. Jest to mozliwe dzigki koncepcji metody przygotowania. W pierwszej czeéci pracy
uogdlniono rezultaty pracy [31] dla przypadku procesu termodynamicznego. Zdefiniowano jedno-
znaczng struktur¢ materialng w czasteczce X ciala # i sformutowano ogb6lna zasade determi-
nizmu dla proceséw termodynamicznych. W czeéci drugiej pracy wprowadzono topologie
w przestrzeni metody przygotowania oraz warunki gladkosci dla rozpatrywanych proceséw
i funkcji (funkcjonaléw) konstytutywnych. Jako podstawe ograniczen termodynamicznych
przyjeto zasadg dysypacyjna w postaci nieréwnodci Clausiusa-Duhema. W czgdei trzeciej wy-
kazano, Ze z zasady dysypacyjnej wynikaja dwa podstawowe kryteria, a mianowicie kryterium
doboru funkcji konstytutywnych oraz kryterium osiggalnosci stanéw wewnetrznych. Wypro-
wadzono réwniez zasade wzrostu entropii jako prosty rezultat zasady dysypacyjnej. Zasade
wzrostu entropii sformulowano rozpatrujac ewolucje w przestrzeni stanéw wewnetrznych.
Wykazano, ze z zasady tej wynikaja ograniczenia termodynamiczne dla funkcji ewolucji wpro-
wadzonej w ogblnej strukturze materialnej. Rezultat ten ma podstawowe znaczenie dla termo-
dynamicznej teorii materialéw.

Ilenpto HacTosmel paboThl ABNAETCA HCC/IENOBaHHE TEPMOOMHAMHYECKHMX OrpaHHUYeHWH A
OTHOSHAYHOH MATEPHMANEHOH CTPYKTYpPhI. DTO BO3MOXKHO GrarofapA KOHUEMIHM METOAA IO -
rotoBxu. B neppoit yacti paborsl 0G061eHE! peayJsTaTh! paboTe! [31] Ha cyuait TepmoauHa-
mHuecKoro nponecca, Onpe/enesa OQHO3HAYHAA MATEPHAIBHAA CTPYKTpA B dacTve X Tesa

u chopmMyIMpOBaH OOIUMI TPHHLMII IPAYMHHOCTH [UIA TEPMOQMHAMHUYECKHX mpoueccoB. Bo
BTOpO# 4YacTH paGoThl BBEMleHa TOMNOJOTHA B NMPOCTPAaHCTBE MeTOJa HOOATOTOBKH, @ TAKIKe
YCIOBHMA IMIaJKOCTH JUIA pacCMaTPHBAaEeMBIX NPOLECCOB M onpedendmommx GyHxumi (byHK-
IHOHAJIOB). 32 OCHOBY TEPMOJHHAMMYECKHX OrPaHHYCHMIT NPHHAT MUCCHIATHBHBIN ITPHHIMIL
B Bue HepaseHcTBa Kuayanyca-Irorema. B Tperseif yacTn noxasaHo, YTO M3 JUCCHIATHBHOIO
MPHHIMIIA CJIEYIOT JBa OCHOBHBIX KPHTEPHSA, HMEHHO KpHTepHii moabopa ONpeXesIsIomx
yHKUMIT ¥ KpHTepHil MOCTHIXMMOCTH BHYTPEHHHMX COCTOSAHMM. BhiBefleH TOM<e NPHHIMAN
BO3DACTaHHA SHTPONMM KaK NpOCTOil pesynbTaT AMCCHIATHBHOro mpuHimma. IIpuHimsm Bo3-
PACTaHMA SHTPONHH cHOPMYIHPOBAH PACCMATPHMBAA 3BOJLOLMIO B MPOCTPAHCTBE BHYTPEHHMX
coctosaHmit. TToKasaHo, YTO M3 3TOrO MPHHLMIA BHITEKAIOT TEPMOIMHAMHUECKHE OrPAHHUYCHUA
A GYHKIAM 3BOMIOLMH, BBeAeHHOH B ofieil marepuanbHOM CTPYKTYype. 3TOT pesysbTaT
HMMEeEeT OCHOBHOE 3HaYeHHe U TepMOJHMHAMHYECKOH TeOpHH MaTepHAJIOB.

* The paper has been presented at the EUROMECH 53 COLLOQUIUM on “THERMOPLASTIC-
ITY™, Jablonna, September 1619, 1974,
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1. Introduction

IN ALL thermodynamic considerations for dissipative materials the thermodynamic restric-
tions have been investigated based on a precisely selected method of preparation together
with rules of physical interpretation for the method of preparation assumed.

The main objective of the present paper is to investigate thermodynamic requirements
for a general unique material structure without introducing particular realizations of the
method of preparation space. We need only assume the topology for the method of pre-
paration space and of course, the smoothness requirements for processes and the response
functions (functionals) considered.

The secondary purpose of this paper is to show some connection between rational and
classical formulations of the principles of thermodynamics.

Particular attention is given to the discussion of the consequences of the dissipation
principle assumed in the form of the Clausius-Duhem inequality. An attempt is made to
examine the criterion of the selection of the response functions (functionals) and the
accessibility criterion in the intrinsic state space and to study the principle of the increase
of entropy. The importance of these principles for the evolution considered in the intrinsic
state space is shown. The results obtained have fundamental implications for the thermo-
dynamic theory of dissipative materials.

2. Local thermodynamic process

The consideration of a global thermodynamic process for a body # gives the following
equations describing a local thermodynamic process in a particle X (cf. Refs. [27, 29]):

@1 Div[FOT(©)]+0b () = ¢%(0),

@2) T() = TO),

@3) 5 wlTOCEI-Divg®—olp()+d0)i(®)+ 50y Ol+er®) = 0,
I 1 : 1

24) =90 =¥ + 5 HTOCOI~ 5090 V90 > 0,

where F(t) denotes the value of the deformation gradient of a particle X at time ¢ and is
determined by the function of motion x by the relation

(2.5) F(t) =Vx(X, 1),

if V denotes gradient with respect to the material coordinates X (the particle X is identified
with its position X in a fixed reference configuration »x, see Fig. 1), T(¢) is the value of the
Piola-Kirchhoff stress tensor of X att, b(t) the value of the density of the body force of X
at #, o denotes the mass density in the reference configuration zx, C(¢) the value of the right
Cauchy-Green deformation tensor in X at #, () is the value of the heat flux vector per
unit surface in the reference configuration x in X at #, 9(¢) denotes the value of the specific
free energy per unit mass in X at #, 5 (#) the value of the specific entropy per unit mass
in X at ¢, #(¢) is the value of absolute temperature in X at 7, r(¢) the value of the heat
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supply per unit mass and unit time in X at ¢, dot denotes differentiation with respect to
time and the operator Div is computed with respect to the material coordinates X.

The Egs. (2.1) and (2.2) are called Cauchy’s laws of motion, the Eq. (2.3) represents
the first local law of thermodynamics and the inequality (2.4) represents the second law
of thermodynamics and is called the Clausius-Duhem inequality.

DerFmaTioN 1. The three values

(2.6) g = (C@),d(), Vi)

computed in a particle X at the instant of time t € [0, dp) we shall call the local, deformation-
temperature configuration of X at time t.

Fic. 1.

A set of all possible local configurations of a particle X will be denoted by ¢ and will
be called the configuration space (the deformation-temperature configuration space).
DEerFmNITION 2. The four values

(2.7) s = (p(®), n(1), T(t), q(1)
given in a particle X at time t € [0, dz] we shall call the local response of X at time t.

A set of all possible local responses of a particle X will be denoted by & and will be
called the response space.

We shall consider processes in the configuration space % and processes in the response
space &.

A process (1)

(2.8) P=(C,3,VH: [0,de] > &

will determine the change of the deformation-temperature configuration of a particle X
in the interval of time [0, dp]. A number dp will be called the duration of the process P,
and P* = P(0) and P/ = P(dp) the initial and final values of the process P, respectively.

() For a thorough discussion of properties of a process and for the definitions of a segment of the
given process P and the continuation of the process P; with P, see W. NoLL [26].
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A process
2.9) Z= (@7 T, q:0,d] >

will determine the change of the response of a particle X in the interval of time [0, d7], i.e.,
the change of the free energy, the entropy, the Piola-Kirchhoff stress, and the heat flux.

It is important to note that if the deformation-temperature configuration g and the
response s of a particle X at time ¢ are known and we have the function of motion g, then
we can determine the value of the body force b(¢) from the first of Cauchy’s laws of motion
(2.1) and the value of the heat supply per unit mass and unit time r(¢) from the first local
law of thermodynamics (2.3).

Let us denote by

(2.10) I1 = {P|P: [0, dp] » ¥}
a set of all deformation-temperature configuration processes, and by
(2.11) Z = {Z|2: [0, d;] - &}

a set of all response processes for a particle X.

DEFINITION 3. Every pair (P, Z) eIl x Z such that Dom P = Dom Z and for every in-
stant of time t € [0, dp] the dissipation principle in the form of the Clausius-Duhem inequality
(2.4) is satisfied, will be called a local thermodynamic process.

3. Method of preparation

In a class of local thermodynamic processes we shall consider a subset which will be
compatible with the internal constitutive assumptions describing the internal physical
constitution of a body 4, i.e. compatible with a material (2) of a body #. Such a subset
of a local thermodynamic process space will be called admissible for the constitutive
assumptions in question.

To discuss the general relation between processes P eIl and Z € 2 which defines
a material structure of a body & let us introduce a space ) connected with the configura-
tion space ¢ in such a way that elements of the space £, which will be denoted by k €,
are the method of preparation of the corresponding configurations g from %. The space X~
will be called the method of preparation space (3).

A main objective of thermodynamics of continuous media is to predict the response
of a particle X of a body #, of which physical properties are known, at the end of a de-
formation-temperature process. We can give an answer to this question if, and only if,
we have full information about particle X before the test, i.e. before a deformation-tempera-
ture process. This information, which is needed for unique prediction of a future response
of a particle X for every deformation-temperature process, is called the method of pre-

(*) A material as defined by W. NoLL [26] is an equivalence class of material structures, the
equivalence being material isomorphy, cf. also Ref. [32].

(®) For a notion of the method of preparation see Refs. [28-31], cf. also P. W. BRIDGMAN [5] and
R. Gues [19]. The precise definition of the method of preparation space for a pure mechanical process
was first given in Ref. [31]. We generalize here the presentation from Ref. [31] to a thermodynamic process.
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paration of the actual deformation-temperature configuration. In other words the method
of preparation should give the additional information required to define uniquely the inter-
nal state of a particle X of a body & during the local thermodynamic process.

It will be shown that a method of preparation of the deformation-temperature configura-
tion of a particle X is needed to describe the internal dissipation of a material. This is
a very important feature of the notion of the method of preparation.

Several different methods of preparation may correspond to one configuration, but it is
very important that for a given method of preparation of the initial configuration only
one response process corresponds to one deformation-temperature process beginning at
this configuration.

DEFINITION 4. A non-empty set X" will be called the method of preparation space for
a particle X if

-\ R, ,P):H, > Zp is bijection,
E C9 %o RATX )T ged Pell, 2y CA

where

(3.2) ExI* = {(o,P)eZxIl| \/ oe {(P}xAHp},
Hp; CH

(3.3) I, = {PelllP! =g},

and Zp is a subset of % corresponding to the process P.
DEFINITION 5. A set

(3.4 Z=U{g}xH, H,CH
ge?

(constructed by Definition 4) is called the intrinsic state space (*) of a particle X.
The element o € X is a pair of the deformation-temperature configuration and the
method of preparation, i.e.

(3.5) o= (PW®),AW®) =@, b, ge¥, ke¥,

where by A we denote a process in the method of preparation space ), i.e., A: [0, dp] — .
We define two mappings as follows

(3.6) G=pre: T 9,
(3.7 K=pre: o0,

which determine the projections from the instrinsic state space X on the configuration
space ¢ and on the method of preparation space 4, respectively,

(*) The intrinsic state space T is due to Ref. [31]. It plays a similar role in the theory as the state space
introduced by W. NoLL [26]. The difference between these two notions of state is in the conception of the
method of preparation. The elements of the intrinsic state space are pairs. Every pair consists of the local
configuration and its method of preparation. There is no notion of the method of preparation in NoLL’s
conception of state. The idea of splitting every element of the intrinsic state space into the local configura-
tion and its method of preparation allows us to characterize precisely the intrinsic state of a particle X
and is of great importance for the development of thermodynamics of dissipative material structure.

(°) The mappings G and K were first introduced for a purely mechanical case, the former by W. NoLL
[26] and the latter in Ref. [31].
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4. General principle of determinism

The notion of a method of preparation is connected with a general principle of deter-
minism in mechanics of continua. The principle of determinism can be stated as follows:
Between an initial deformation-temperature configuration, its method of preparation, a de-
formation-temperature process beginning at this configuration and a response process of
a particle X, there exists a functional relationship. This functional relation will describe
a unique material structure in a particle X of a body #.

According to Definition 4 there exists a mapping

(4.1) R:(ExT)* > 2.

The mapping R is called the constitutive mapping.
The constitutive mapping R:(Z xII)* — Z has the property as follows

4.2) X = /r\]r {(0,,P) e ExID)*, i = 1,2AR(a,, P) = R(o2, P)}
0y,03€ Fe
6(0‘11-6(03)

= K(a,) = K(0,).

DEFINITION 6. The system (9,11, Z, R) is called a unique material structure in a particle
X of a body 2.

The constitutive mapping R with the property (4.2) expresses a general principle of
determinism for dissipative continuum body.

A general principle of determinism: A unique response process Z € & corresponds
to every deformation-temperature process Pe Il beginning at the given intrinsic state o € X.

This statement of a principle of determinism is very general. It concerns thermodynamic
processes and is valid for the arbitrary method of preparation space introduced.

Let us assume that a unique material structure is given. If we have the initial intrinsic
state and the deformation-temperature process beginning at this intrinsic state we are
interested then in the intrinsic state at the end of the process. The problem will be solved
if the mapping between the intrinsic state at the end of the deformation-temperature process
and the initial intrinsic state be given.

DEerINITION 7. It is said that the mapping

(4.3) e(ZxI* - X
is the evolution function, if for every pair (a, P) € (£ xI1)* the equation
(4.4) R(E (o, P), Ply) = [R(o, P)V

is satisfied, where [R(o, P)). denotes the final value of the response process Z = R(a,P)
and P, is the deformation-temperature process of duration zero.

In practical applications it will be convenient to have mapping from the intrinsic state
space X into the response space &. So, it is useful to define a new mapping

@4.5) §T 0 o
by the expression

(4.6) S(0) = R(o, 6(0)0,)-
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The principle of determinism can be expressed by the relation ()
.7 s = Z(1) = §(&(0o, P)) = 8(0)

for every (oo, P) € (2 xII)*, see Fig. 2.

This principle of determinism can be stated as follows:

A unique value of the response s €& (i.e. unique values of the free energy y(z), the
entropy #(t), the Piola-Kirchhoff stress tensor T'(¢)and the heat flux vector g(¢)) corresponds
to every intrinsic state o € Z.

The mapping § is called the response function.

The system (4,11, Z, §, &) is also a unique material structure in a particle X.

P(t)=g=(C(t), ¥(t), 7s(t))

’(gﬂ} kﬂ )

DZ(t)=s=(p(t),n(t), T(t), a(t))
=[% (03, Ppo,t1)]*=S(c)

Zt=s,=( (o), 7(0), T(0), 9.0)

Fic. 2.

The response function 8 represents the free energy response function &, the entropy
response function ﬁl, the stress response function T and the heat flux response function
Q, ie.

(4.8) §= (¥,N, T, ¢}.

DEerINITION 8. A local thermodynamic process compatible with a unique material structure

will be called an admissible process.

(®) It is noteworthy that both mappings € and § are similar to those introduced by W. NoLL [26] in

a purely mechanical consideration but in the present theory, as in Ref. [31], the mappings & and S are gener-
ated by the constitutive mapping R.
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5. Consequences of the dissipation principle

According to Definition 3, every local thermodynamic process has to satisfy the dissi-
pation principle in the form of the Clausius-Duhem inequality (2.4).

Using Definition 8 of an admissible process we may state now the main problem
of the thermodynamics of materials (’): In an assigned class of processes and within an
assigned class of response functions (functionals) §= {‘1", ﬁ, ’f‘, (}} to determine those
that satisfy the Clausius-Duhem inequality (2.4).

Thus, it can be said that the main problem of the thermodynamics of materials is to
determine an admissible thermodynamic process.

It is noteworthy that the answer to the main problem of the thermodynamics of ma-
terials depends on the topology assumed for the method of preparation space.

It will be proved that the dissipation principle will imply two fundamental criteria in
the theory of materials.

1. The criterion of the selection of response functions (functionals) S = {‘i", N, T, (j} (®).

2. The criterion of the accessibility of an intrinsic state o from the given initial intrinsic
state g, (°).

Both these criteria are main consequences of the dissipation principle.

6. Topological and smoothness assumptions

To investigate restrictions placed on a local thermodynamic process by the dissipation
principle we assume:

1. The space of the method of preparation " is complete metrizable topological
space (19).

2. Processes P eIl considered in the configuration space % are continuously dif-

ferentiable, i.e. for every time ¢ € [0, dp] exists the derivative 7:,f;P(r)j,:, = 1"(:). The

derivative P(r) determines the rate of change of the process P at 7.
3. Processes A considered in the method of preparation space ¢ are continuously

differentiable, i.e. for every time ¢ € [0, dp] exists the derivative ;—r A(?)|se = A(2). The

derivative A(¢) determines the rate of change of the process A at .

(") Cf. B. D. CoLemaN and W. NoLt [10] and C. TRUESDELL [36].

(®) It seems that C, ECKART [17] was the first who understood properly the consequences of the Clausius-
Duhem inequality for constitutive assumptions. Further development of his idea was done by B. D. COLEMAN
and W. NoLL [10], B. D. CoLemMAN [11], B. D. CoLeMAN and M. E. GurTiN [12], B. D. CoLEMAN and
V.J. MizeL [13] and B. D. CoLeMAN and D. R. OweN [14].

(°) The exploration of similar criterion to this has been recently taken, in another connection, by
B. D. CoLemaN and D, R. OweN [15].

(*°) For the exact meaning of the mathematical terms introduced plzase consult the book by J.L.
KEeLLEY [20].
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4. The rate A(¢) for t € [0, dp) is idependent of the rate I"(r), i.e. we may assume that
(6.1) A(r) = &(0) = &(P(t), A(®)), t€[0,ds].
Under this assumption the rate of change of the process A in the method of preparation
space X is completely determined by the actual intrinsic state o € Z.
Two interesting cases can be considered:
(i) A@Q) =4koed,
(i) A(—w) =k ,eX.

The differential equation (6.1) is called the evolution equation in the method of preparation:
space & and together with appropriate initial value (i) or (ii) for the given deformation-
temperature process P: [0, dp] — ¥ completely determines the evolution of internal states,
i.e. the evolution function &: (Z xII)* — Z.

The differential equation (6.1) with the initial value (i) leads to the unique material
structure with internal state variables, and the initial value problem (6.1) and (i) is iso-~
morphic with the unique material structure with memory (**).

5. A real value free energy response function ¥ defined on & C ¥ xH is continuously
differentiable on X with respect to the topology in Z, i.e. the gradients ap(,,‘f’ and 63(,,‘13‘
exist and are continuous functions on Z. This property is called a chain rule property.

The deformation-temperature configuration space % has properties of a thirteen-dimen-
sional vector space ¥ 3, hence it is a complete normed space (a topology of ¢ is implied
by a natural norm).

The intrinsic state space X with a topology implied by the topology assumed for X%~
and the natural topology of ¢ will be denoted by 2.

For future applications it will be useful to assume stronger topology for &°, namely
that 2" is a complete normed space (a Banach space). Since ¥ is also a complete normed
space, hence X will have properties of a complete normed space denoted by 2.

In the following we shall assume that the response functions (functionals)
S=(¥N, T, Q} are defined on a set 9 (or 9).

To state precisely, a chain rule property for the free energy response function (func-
tional) ¥ is assumed with respect to the topology of & (or .@).

It follows from the above assumptions that in each admissible local thermodynamic
process

6.2)

6 90 = FPE, AWkt = G0 P () » BO+ 040 P() 0 AO),
where
64) Oy ¥(+) 5 P(t) = tr[dciny ¥ (- YCWOH+ doy ¥ ()30 + Dvoy F (- ) - VO(D),

and 34(:}‘1:"(-) 0 A(¢) denotes a linear function (functional) with respect to ;\(t). The
result of 63(,,‘?( -) 0 A(t) does depend on the realization of the method of preparation
space X and on the topology induced in X",

(*Y) Cf. W.. Kosifiski and W. Woyno [21] and M. J. LertMaN and V. J. MizeL [25].
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To make clear our reasoning let us consider two examples.

1. If " is the past history function space then 6,;{,,‘3"( ) oA@) = 6‘?’( . |A(r)) denotes
the Frechet derivative (in a Banach function space), i.e. the linear functional with
respect to A(¢). This realization of the method of preparation space leads to the unique
material structure with memory (cf. Ref. [22]).

2. If & is a finite-dimensional vector space then 65(,)@( D oA@) = 64(,)‘3’( SE A(r)
denotes the scalar product in 2", This realization of the method of preparation space leads
to the unique material structure with internal state variables (cf. Ref. [22]).

7. Constitutive restrictions

The dissipation principle requires that (2.4) hold at every time ¢ € [0, dp]. We may
use the Egs. (4.7), (4.8) and (6.3) to write (2.4) in the form

@.1) %tr{[T(t)—Zeﬁcm{Ylé‘(t)}—[?z(t)+ 2o ¥19(0)

— dyaey®  VB@) — daey? 0 ACr)— )q(r) V() > o.

od(t

Since C(¢), #(¢t) and Vt‘,;(r) can be selected independently and may be arbitrarily
chosen (*?) hence the inequality (7.1) yields the results as follows

dvey¥ =0, T()= 295cm‘i’('), 7(t) = =0 ¥(-),

(12)

— ¥ () oA@)- ) Q) - Vo) >

ﬂ(r
satisfied at every time f € [0, dp].
Let us introduce the following notations

d(0) = —day¥(-) 0A@r) - (0) - V&),

— )
(1.3) a(:)

i(0) =

,‘9() aan¥(-)oA@).
The mapping d: & - R* (where R* denotes the set of non-negative real numbers) is
called the general dissipation function, and the value af(or) denotes the value of the general
dissipation function at the intrinsic state ¢ € X.
The mapping it TR (the set of real numbers) is called the internal dissipation
function, and f(u) is its value at the intrinsic state ¢ € X.

(*?) To prove this statement we can use a similar procedure to that of B, D. CoLeMaN and M. E.
‘GURTIN [12] and K. C. VaLanis [37] for a material with internal state variables, or that of C. C. WaNG and
R. M. Bowen [38] for a non-linear material with quasi-elastic response.
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The inequality (7.2)s is called the general dissipation inequality and using the Egs.
(7.3), and (7.3), it can be written in the form

(7.4) d(0) = B(t)3(0)— E;(T) Q) V@) > 0.

The four results (7.2), to (7.2), express the criterion of the selection of the response
functions (functionals) § = {‘i’, N, T, 6} which can be stated as follows:

Choosing the free energy response function ¥ which is independent of the actual
temperature gradient V&(z) and the heat flux response function Q such that the general
dissipation inequality (7.4) is satisfied at every instant of time ¢ € [0, dp] or for every intrin-
sic state ¢ determined by the relation ¢ = (0o, Ppo,;), Where o, denotes the initial in-
trinsic state and P, the segment of the given deformation-temperature process P, the

response stress function T and the response entropy function N are uniquely determined
by the relations (7.2), and (7.2);.

It is noteworthy that for the case q(t) = 0 or V&(z) = 0 for ¢ € [0, dp] the general
dissipation inequality (7.4) takes the particular form

1

—maA(r)qf(')DA(f);O, te[0,ds]

(7.5) (o) =
which is called the internal dissipation inequality.

We can return now to the discussion of the notion of the method of preparation as such
information which is required for the description of the internal dissipation of an inelastic
material. The expression (7.3), which defines the value of the internal dissipation at the
intrinsic state o shows that full information given in the method of preparation,i.e. A(¢) = k
and the evolution equation A(¢) = &(c), essentially determines the internal dissipation for
this intrinsic state.

If there is no need to introduce any information in the method of preparation this case
corresponds to an ideal material without internal dissipation — this ideal material is called
a perfectly elastic material.

8. Accessibility criterion

Let us assume that the initial intrinsic state o, € X is known, and let us choose an
arbitrary intrinsic state o* € X, see Fig. 3. The question arises whether the intrinsic state
¢* is accessible from the initial intrinsic state ¢4, or in other words, what is the condition
of accessibility of o* from a,.

If the intrinsic state o* is accessible from the initial intrinsic state o,, then the deform-
ation-temperature process P has to exist which generates the process in the method of
preparation space A: [0, dp] —» 2 such that

@1 g0 = (P0),A®) = (90, k) and o* = (P(de), A(de)) = (g%, k*),
and for every instant of time ¢ € [0, dp] the dissipation principle is satisfied.

8 Arch. Mech. Stos. nr 5-6/75
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The response of a material corresponding to the intrinsic state o* is determined by the
constitutive relation

8.2) Z(dv) = $(8(co, P)) = §(o®).

Since the deformation-temperature process P is assumed to be known and this process
generates a process A in the method of preparation space ), hence the dissipation principle
will give fundamental restriction on the process A: [0, dp] — .

The dissipation principle requires that for a given process P such a process A: [0, dp) = o
be chosen that the general dissipation inequality

(8.3) d0)=0, o= (P@),A®) = (g, k)

for every instant of time ¢ € [0, dp] must be satisfied.

o (Pld,),A(d),)
~Gx)

o=(P(t),Alt))

=(9; k) '5(50, P[o,t‘])
&@=(Plo), Ao))
= (gﬂl kﬂ)

Fia. 3.

This is the second fundamental criterion obtained as the result of the dissipation prin-
ciple.

Accessibility criterion: An arbitrary intrinsic state ¢* € X is accessible from the initial
intrinsic state o, € X if there exists a pair of processes (P, A): [0, dp] = ¥ x X" such that
the following conditions are satisfied:

(P(O)a A(O)) = (9’0: kﬂ) = 0Og, (P(dP): A(dp)) = (g*s k*) = 0'*,

(8.4) X . \
d(P(), A®)) = — % oa () 0 A(r)~ 'ee;T Q) VO > 0
for every instant of time ¢ € [0, dp).

It is noteworthy that the accessibility criterion places some restrictions on the evolution
function €: (X xI[)* — Z. Indeed, if we assume the deformation-temperature process P
such that the intrinsic state o* = &(ag,, P) be accessible from the initial intrinsic state o,
by this process P, then the condition (8.4), represents the restriction on the evolution func-
tion €.

This conclusion is obvious if the condition (8.4), is written in the form

(8.5) d(&(00, Pro,)) = 0 for 10, dl.
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9. Principle of the increase of entropy

Let us consider the intrinsic state space Z. In this space we choose the initial intrinsic
state o, and an arbitrary intrinsic state ¢. Let us assume that there exists a pair of processes
(P, A): [0, dp] = ¥ x A such that

©.1) (P(0), A(0)) = (g0, ko) = 0o and  (P(), A()) = (g, k) = 0.

The pair of the processes (P, A) is represented in the intrinsic state space X by the curve &,
see Fig. 4.

cy=E(0a, Proty) )

a=(P(), A(t)

=(9,k)=(5,, 1)) G200, P 1)

G5 =(Go, ko) 65 =(do, ko)

Fig. 4. F1G. 5.

We define the curvilinear integral along the curve % which due to natural time para-
metrization can be written in the form

1 t

02 S, 0) = [d(P(), A(®)dr = [d(E(0o, Pro))dr, 1€ [0, del.
1] (1]

In a similar way we can define the integral

1 r

9.3) F(00,0) = [ i(P(x), A(m))dr = [ i(&(co, Pro))dr, €0, dp].
V] 0

The integrals #(a,, 0) and F(o,, o) are called the general dissipation integral and the
internal dissipation integral, respectively.

Let us consider in the internal state space X two states ¢, and ¢, which lie on the curve
2, see Fig. 5. The state o, corresponds to the instant of time ¢, € [0, dp] and the state o,
to the instant ¢, € [0, dp], and of course #, > ¢,.

The dissipation principle requires that

0.4 #(00, 05)—F(00, 72) > 0.

Principle of the increase of entropy: For all o,, 0, € Z, 0, is accessible from g, if, and
only if, the general dissipation integral of o, is not less than that of a,.
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It is important to note that the internal dissipation integral (9.3) is a measure of the
irreversibility of a local thermodynamic process for the case when g(r) = 0 or V&(z) = 0
for t € [0, dp] and may be interpreted as the empirical entropy (**) or as the irreversibility
function (**).

If we assume this interpretation and the condition g(¢) = 0 for ¢ € [0, dp] we can state
the principle of increase of entropy in the form as follows (cf. P. RAsTALL [35]): For all
a,, 0 € X, g, is adiabatically accessible from o, if, and only if, the empirical entropy of o,
is not less than that of o,.

The principle of the increase of entropy was first formulated by M. PLaNck [33, 34].

10. Discussion

It is worth pointing out some features of the thermodynamics of materials presented.
We started from the dissipation principle in the form of the Clausius-Duhem inequality
- and we deduced two fundamental criteria for the thermodynamics of materials, namely
the criterion of the selection of the response functions (functionals) occurring in the
mathematical statement of the general principle of determinism and the accessibility
criterion in the intrinsic state space X.

The accessibility criterion is connected with the Caratheodory formulation of the
second law of thermodynamics (*5).

As a consequence of the dissipation principle we also deduced the principle of the in-
crease of entropy. Appropriate interpretation of the general dissipation integral (or the
internal dissipation integral) led to the very old statement of the second law of thermo-
dynamics first presented by M. PLANCK (*€).

It is very important to stress that all considerations concerned a general unique material
structure before a particular realization of the method of preparation was given.
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