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On the foundations
of the endochronic theory of viscoplasticity (*)

K. C. VALANIS (I0WA)

PREVIOUSLY we proposed the ENDOCHRONIC theory of viscoplasticity by introducing the concept
of intrinsic time. In this paper we broaden the foundations of the theory. This we do by dis-
cussing the geometric motivation for the intrinsic time measure; by giving this measure a stress-
time base as an alternative to the original strain-time base; by devising dual forms of the consti-
tutive equations in terms of the Gibbs free energy function ¢». We use a simple model of such
a ¢)-form to show that linear unloading can be a constitutive consequence and not an additional
assumption.

Poprzednio zaproponowano endochroniczng teori¢ lepkoplastycznoéci wprowadzajac kon-
cepcje czasu wewngetrznego. W niniejszej pracy rozszerzono podstawy teorii. Dokonano tego
przez dyskusje geometrycznej motywacji dla miary czasu wewnetrznego, nadanie tej mierze
bazy odksztalcenie-czas oraz ustanowienie dualnych postaci réwnan konstytutywnych, wyra-
zonych przez funkcje energii swobodnej Gibbsa ¢p. Wykorzystano prosty model takiej formy
¢ celem wykazania, ze liniowe odcigzenie moze by¢ konstytutywna konsekwencja a nie dodatko-
wym zalozeniem.

PaHpllie MBI IPEAIOKHIM IHIOXPOHHYECKYIO TEOPHIO BASKOILIACTHYHOCTH, BBOJA KOHLIEMLMIO
BHYTPEHHero BpemeHHM. B Hacrosmeil paGore paciumpsiem ocHOBEI TeopHH. [IpoussBomum 3To
myTeM oOCyAEHHA MeOMETPUYECKOT0 HCTOIKOBAHMA [J1A MEPBLI BHYTDEHHEr0 BPEMEHH, ITyTeM
NIpHIAHAA 3Toi Mepe Gasuca AeopMalMA-BpeMA H IIYTEM YCTaHOBJIEHMA AYAIBLHBIX BHIAOB
ONpe/IesIAOUINX YPABHEHH!, BLIDKEHHBIX uepes dyuxumio cBobommoi snepruu I'mb6ca ¢b.
Hcnonesyem mpoctyio Mofenh Takoit ¢opmbl¢ C LIeTIbI0 TTOKA3aHMA, YTO AuNeiliHan paszzpysxa
MOXKeT OBITh CJIe/ICTBHEM ONpedesIAIONMX YPaBHEHMIt, a He JONOMHHTEIBHBIM IIPeaTIoNoNKe-
HHeM.

Introduction

IN A PREVIOUS paper [1] we proposed the ENDOCHRONIC theory of viscoplasticity by intro-
ducing the notion of intrinsic time. The use of the internal variable formalism of irreversible
thermodynamics then enabled us to derive constitutive equations which predict the stress
and entropy response of materials to general thermomechanical histories. The derivation
was in terms of the Helmholtz free energy V.

Since that time, we have applied with considerable success the theory to the response
of metals to various types of deformation. For details, we refer the reader to the appropriate
references which are discussed at greater length in a later section of this paper.

In this paper, we broaden the foundations of the theory by (i) introducing a geometric
motivation for the intrinsic time measure, (ii) giving this measure a stress-time base as

(*) The paper has been submitted to the EUROMECH 53 COLLOQUIUM on “THERMO-
PLASTICITY”, Jablonna, September 16-19, 1974.
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an alternative to original strain-time base and (iii) deriving dual forms of the constitutive
. equations in terms of the Gibbs free energy function ¢.
Our recent work has shown that the Gibbs free energy formulation gives rise to consti-
tutive equations which are better suited for the representation of the unloading behavior
of metals and their response to-compression following extension “in the plastic range”.

1. Helmholtz free energy formulation

In the above formulation, which we shall call the ¥Y-formulation, the independent
variables are the Cartesian components ¢;; of the Right Cauchy Green tensor C, the abso-
lute temperature 6 and the Cartesian components gj; of  tensor-valued internal variables q".

Concisely stated, the constitutive equations then are, in standard notation:

o 8 @Y
(1.1) T=2 s
¥
(1.2) n=- W ’
(1‘3) dZ e fr(C’ 9’ q )5
(1.9) h = h(C, q", Gradf)),

where 7 is the heat flux per unit undeformed area, Grad is a material operator and h=0
whenever Grad 6 = 0.
The Clausius-Duhem inequality dictates that f* cannot be chosen at will but must
satisfy the constraints
o
aq”
A particularly suitable form of the Eq. (1.3), which we have used extensively in the
past, is:

(1.5)

-f" < 0 (r not summed).

r
(1.6) 33!: +b" % = 0 (r not summed),
where b" is a positive definite viscosity tensor. The Eq. (1.6) satisfies the constraint im-
posed by the Clausius-Duhem inequality and is in accord with the Onsager notions of
linearity between “forces” and “fluxes”. This equation is likely to be valid in situations
in which the internal variables have a small norm (in a Euclidean sense) even though the
overall deformation of the material is large.

The intrinsic time scale merits discussion. It is well known that in dissipative media
the stress response is a function of the “strain path” or “strain history”. The latter is the
strain state expressed as a function of the Newtonian time 7. A formal mathematical
statement of the above ideas is:

.7 * = FE®G),

Sem—00
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where { is a function of the function E(s), —o < s < t. This representation is found
to be adequate in the case of materials having fading memory with respect to r. It certainly
does not apply to non-ageing materials which possess permanent memory (with respect
to t) of their thermomechanical history [21].

The endochronic theory, which is based on the notion of intrinsic time, is aimed at
the analytical representation of the thermomechanical behavior of materials with perma-
nent memory.

The statement that the stress is a function of the strain “path” gives rise to the question:
“which path”? In particular, what is the appropriate path for materials that are “history
dependent” but “strain-rate independent”?

We define a path relative to a Riemannian space.Consider a six-dimensional Riemannian
space R with metric G;;. Of the six independent components E; of E let each be measured
along one of the coordinates of R, in a sense of “one-to-one and on-to”. Evidently, a state
of strain is a point and a strain history is a path in this space. The distance d¢ between
two adjacent deformation states is given by the relation

(18) déz = G‘jdEidEj,
or
1.9) dt = +/ G,dEdE;.

The intrinsic time & is arrived at by the following considerations. If G;; is a material
property, then d& is a material “time-like interval” between two adjacent strain states:
As such, d& is a measure of an intrinsic time scale. In tensor form the Eq. (1.8) becomes

(1.10) dt? =dE-P-dE,

where P is a material tensor, which may conceivably depend on E.

We showed in a previous paper [2] that the &-scale is not adequate for predicting
crosshardening when constitutive equations of the convolution type such as the Eqgs.
(4.2, 3) of Ref. [1]) are used to represent material response. For this purpose the
scale (') {(&) was introduced, which is such that

dt
1. .
A “re
where f(§) > 0.

If the elapsed time between two adjacent strain states is 4, then:

dE; dE;
1.12 - . B8 0% 4
( ) dé ‘/GU T & dt
Note that df remains invariant with the transformation
(1.13) dt' =adt (a>0)
which implies that d¢ is independent of the strain rate. If now we set:
Z
(1.14) t = FEC),
= =%

(') This is a new notation which we introduce for reasons that are discussed in this section,
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we have achieved a representation whereby the stress response is history dependent but
strain rate independent. The Eq. (1.14) applies, therefore, to plastic materials. We obtain
specific forms of the Eq. (1.14) by using the Egs. (1.1), (1.2) and (1.3) or (1.6).

Materials which are history as well as strain rate dependent must, a fortiori, possess an
intrinsic time scale z which must be related, in some sense, to the Newtonian time scale ¢.
Such a scale is constructed from the relation given below:

(1.15) d? = 2 {2 +g2dt?},

where g is a material constant and » depends on ¢, as was found from constant strain
rate tests on superpure aluminum. The above equation reduces further to the simple form:

(1.16) dz = »({)dr.

In view of the nature of the dependence of C on é;,-, under monotonically increasing
proportional loading, x is a special sort of function of &;; as well as &; though its dependence
on the latter may be rather weak.

Note the differences between the present form of dz and the one given in our previous
paper. There,

(1.17) de? = dg? +gdr?
and

_
(1.18) d = o -

This definition gives rise to conceptual difficulties. Under conditions of zero strain (i.e.,
dt =0), d = gdt. This last result will lead to material ageing as a consequence of the
Eq. (1.18). This can be averted if g is a function of ¢ and furthermore if g(0) =
However, this constraint eliminates also stress relaxation under constant strain, an
essential characteristic of viscoplastic materials. Another possibility is to set g(0) # 0, but
f(€) = 1. This set of constraints eliminates ageing, but unfortunately strain hardening
as well. Thus, in the old definition, there is no way of circumventing these difficulties.

The advantage of the new definition for dz, as given by the Eq. (1.16), is that it
accommodates the above effects in a self-consistent fashion.

Explicit forms of constitutive equations which are potentially applicable to large de-
formation histories and isothermal conditions may be constructed by introducing a scalar
function ¥,(C) and a generalized strain tensor W, (C) with respect to which the free energy
¥ retains its quadratic form in the internal variables. Thus, under these conditions:

(119) v =W0(C)+ Z\Pl. B'q"+1/‘2 qu_cr.qr,

where B" and €’ are constant fourth the order material tensors. In conjunction with
the Eq. (1.6), Eq. (1.19) then leads, without essential difficulty, to the constitutive
equation (1.20)

(1.20) -—2—:69" Lot} fﬂ( s 6‘!’1 dz' +2——- a‘yl f,u(z —Zz') b.s dz}
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where ¥, = trace ¥,,
1.21) Qo = ¥o—1200)¥; - u0)¥, - ¥,.

A quasi-linear form of the Eq. (1.9) which applies to isothermal conditions and
small strains may be obtained by setting

(1.22) ¥, =E~¢,

where € is the small strain tensor. In this event, within terms of order |||

(1.23) fz( -7 'a(“‘)d +2fp(z z)-—-—dz'

The Eq. (1.23) may be fully linearized by setting
(1.24) 0 = 1[22,(tr €)>+ p(tr €2).
The one-dimensional counterpart of the Eq. (1.20) is

(1.25) f E(z— ') = “ &,

where w is a function of 1 and E(z) is a uniaxial “heredity modulus”. A quasi-linear form
of the above equation may be obtained by setting w = A—1 = &. In this case

(1.26) T = f(e)+ fE(z z)—dz’

where f(g) = d2/dA. A fully linear form is obtained by setting f() = fo&. In this event

(1.27) = f Ey(z— z’) &z,
where
(1.28) E, = foH(2)+ E(2),

i.e. Ey is the heredity modulus of the fully linear theory.

2. Gibbs free energy formulation

In this formulation, which we shall call the @-formulation, the stress components in
the material system (?) (calculated per unit undeformed area), the absolute temperature 6
as well as the » internal variables q" are regarded as the independent variables. One then
seeks to derive the strain and entropy response of a material system to a thermomechanical
excitation.

With this in mind, we write the first law in the form:

2.1) & =% Ep—1,,

(%) These are the components of the Piola stress tensor II.
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where E is the Green deformation tensor defined by the relation:
2.2 = % (C-9)

and

ox* oxf
2,3 JI* = Go OX" OX
23) o Oy 0y
where dy;/0x are the deformation gradient components and T;; the components of the
Cauchy stress tensor defined in the spatial frame of reference. The Egs. (1.1) and (1.2)
may be written in the compact form:
(24) W) —IT4  y+ 7 = 0,
where the first term on the left-hand side of the Eq. (2.4) is the time rate change of ¥
keeping q' constant for all r.

At this point we introduce the Gibbs free energy @ by the relation

(2.5 P =Y-II"*E,;.

The Eq. (1.1) implies that E is a function of II, 0, and ¢, assuming the requisite condition
of invertibility. In that event @ is also a function of II, 6, and ¢". Furthermore, as a result
of the Eq. (2.5).

(7.6) P, = Blo+1? Byl +11 Eng.

Substitution of the Eq. (2.6) in Eq. (2.4) and recall of the independence of the appropriate
new variable, yields the equation:

ijs

o
2.7 Ep=—-—| ,
( ) aﬂ B e
oD
(2.8) i "
Furthermore the Egs, (2.5), (2.7) and (2.8) lead immediately to the relation
Y . od
2.9 -q" = -q" (r not summed
(2.9) g 4= o 4 ( )

in which event the Clausius-Duhem inequality now is:
D

(2.10) 5 <O
or
0P dq
2.11 $i WP
G o dz

assuming, of course, that dz/dr > 0.
Since we are dealing with an endochronic theory, the concomitant evolution equations
for the q’s will be of the type

q’ _ v
(2.12) Z =g'(I1,0, q),

where g" must satisfy the constraint (2.10).




ON THE FOUNDATIONS OF THE ENDOCHRONIC THEORY OF VISCOPLASTICITY 863

Needless to say that g is related to f* by the equation
(2.13) g’ =f(EIL, 4, 0),q)
In deriving explicit forms of constitutive equations we take the view that in the vicinity
of small strains, at least the Eq. (2.11) does in fact have the form (3)
0P
oq"
where §" = dq"/dz. The constraint (2.12) is satisfied if b" are positive definite fourth-order
tensors for all r.

Other, more general, forms of the Eq. (2.14) are of course possible. We pointed
out in earlier papers that the inequality (2.11) implies, in fact, a functional relationship

between dg"/dz and 8®/dq". Thus, the Eq. (2.12) will a fortiori have the more specific
form,

2.15) U, (gji).

i.e. g" will in general be a function of the Gibbs free energy gradients 0@/dg".
The heat conduction equation will also be of the form:

(2.16) h = h(l, 6, ¢", Grad6).

(2.14) -q" =0 (r not summed),

The @-formulation is now complete.
Explicit constitutive equations may again be obtained by expanding @ in terms of
¢o(I1), ¢,(IT) and ¢', in a form analogous to the Eq. (1.19), i.e.

.17) D =go(M+ D ¢ D qi+1/2 D g F-q.

Use of this equation in conjunction with the Egs. (2.7) and (2.14) yields a constitutive
equation very much like Eq. (1.20), in form, of the type:

(2.18) E = fJ,( -7) =5 a¢ dz' + a¢’ sz(z ') a¢1 dz,
where

(2.19) ¢ = trg,

and

(2.20) = —¢o+1/2J,(0)p2+1/27,(0)p; - .

A quasi-linear form of the Eq. (2.20) which applies to small strains is obtained by
setting E ~ €, ¢, = IT = o in which event

aO’ kk

(2.21) +sf1( = * gy +f.]2(z—z’)%dz

(*) The Eq. (2.14) is, in fact, the counterpart of the Eq, (1.6).
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The Eq. (2.21) may be fully linearized by setting
(2.22) x = 1/2J10(tre)?> +1/2J,0(tra?).
The uniaxial counterpart of the Eq. (2.21) is

(2.23) e =g(o)+ f Jz—12) g—; dz,
0
where
g@) = % ey =0, %))
aal (] aﬂ"no
and ¢ = 0,.
In its fully linear form the Eq. (2.23) becomes
; do
(2.29) g = ;f J;,(z—z’)?z-,—dz’,
where
(2.25) Ji = %o H(2)+J,(2),

H(z) being the Heaviside step function of z.

3. Prediction of unloading with the linear theory

The Egs. (1.21) and (2.24) are completely equivalent; in fact, J; and E, are related
by the integral equation

(3.1) f E,_(z—z’)%"}‘dz’ = H().
0

To examine how the linear theory predicts unloading behavior we need only study the
Eq. (1.27). For the sake of clarity we drop the suffix L and write (1.27) as:

de’ dz'.
Z

(3.2) T =5f E(z—2) 5

Consider a deformation history, in whizh the strain increases monotonically from zero
to some value ¢, and is then decreased. The process is assumed to take place at a substan-
tially constant absolute value of the strain rate. Let the slope of the unloading stress strain
curve be denoted by E_. Then it can be shown that

(3.3) E_ =2E,—E,,

where E| is the initial modulus do/ds|,_o and E, is the tangent modulus at the point of
unloading. Since in the plastic range E, is substantially less than E,, the Eq. (1.7)
fails to predict the experimentally observed unloading slope which is essentially equal
to E,, for metals at room temperature.
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It is worth emphasizing that Eq. (1.2) is true, irrespective of the form of E(z) and z({),
provided that the inequalities in Eq. (3.4) hold, i.e.,

dt
(3.4a,b) v e 0, k>0
where
(3.5) dt = k|de|.

4. Prediction of unloading with quasi-linear theories

The quasi-linear ¥-form of the theory [Eq. (1.26)] can predict the observed unloading
slope by suitably choosing the form of the function f(¢). The pertinent relation is:

dr dv |
4, —_ e "(e).
4.1) =1 + =1 2EQ)+2f'(¢e)
In particular, the condition
dt
(4.2) L= E,
leads readily to the relation
, dr |
(4.3) fe =172 B

The quasi-linear @-form of the theory [Eq. (2.23)] will also predict the observed un-
loading slope by a suitable choice of the function g(o). Evidently, from Eq. (2.23) g(0) = 0.
Also it can be shown that without loss of generality one can set g’'(0) = 0. It then trans-
pires that J(0) = 1/E,, where E, is initial tangent modulus do/de|,.o. Equation (2.23)
may then be re-written in the form:

S do
@.4) Bio= bf Je~7) 55 de +Flo),

where F(o) = E,g(0), and J(0) = 1. The following relation is then found to hold

dF\(do |  do |
4.5 = — == —1 1.
(4.5) 2E, (1+ da)(de L_+ % )
In the event that the unloading slope is equal to E, it follows that
dF  E,—E,
4.6 R W O
(.6) do  E,+E.’

where E, = do/de|, .

Thus, the quasi-linear @-theory can also predict unloading behavior correctly. How-
ever, we would like to point out that there is evidence that the @-form possesses other
attractive features and may prove more suitable for the representation of the mechanical
behavior of metals.

12 Arch. Mech. Stos. nr 5-6/75
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5. A simple model of the quasi-linear @-form
The Eq. (4.4) may be expressed in the alternative form

d

de dF
dz

do - . do
(5.1) E, =E+J-J(z—z)?dz'+z.
In the event that J = o, where a is a constant (a “Maxwell model”), then the Eq. (5.1)
simplifies to the expression
d ZEO do’

£
& = Eo+EqQoD dz ¢

Consider the very simple case where z = {, and d{ = |de| (no strain hardening such as
in mild steel at moderate strains). Then the Eq. (5.2) may be integrated to yield, under
monotonic loading condition:
a
) + _} ]
O¢

|
(5.3) Eqe = —0, =2log(1— ‘Ui
0

where o, is the ultimate stress of the material. In this event

a.

(5.2) Eo

s oo —|o|
¢ E@ =5 (2 7)
and the Eq. (5.2) now simplifies to the form:
de a || do o
5.5 %&=h+akg”ﬁﬂ-

It may readily be shown that the Eq. (5.5) will predict, under loading conditions, as it must,
stress strain curve given by the Eq. (5.3), whereas under unloading it gives the exact result,

(5.6) & = E,

i.e., the constitutive equation (5.5) predicts that the unloading part of the stress-strain
curve is, in fact, an exact straight line with slope E,.
A truly remarkable result.

6. A stress-based intrinsic time scale

Let me begin with the view that the state of strain is a function of the stress path, in
the Riemannian space 7, (a =1, 2, ..., 6) with metric R.; such that the square of an
element of path length d¢ in this space is:

or in tensor form:
(6.2) di* =dIl-R-dl ,

where R is a fourth-order positive definite symmetric material tensor.
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The Egs. (1.15) and (1.16) which define the z-scale then apply without change. The
constitutive equations (1.20), (1.25), (1.26), (1.27), as well as (2.18), (2.21), (2.23) and
(2.24) also remain unchanged in form.

The theory is thus formulated in terms of an “intrinsic time measure” which is stress
based.

7. Substantiation of the theory

A primary characteristic of the mechanical behavior of metals is their permanent
memory of their deformation history. Furthermore, they exhibit cross-effects in small
strain regions where one would have expected uncoupled linear constitutive equations to
apply. Effects such as these are cross-hardening, i.e., hardening in tension due to torsional
prestrain (or vice versa); cumulative axial extension due to cyclic torsion (cyclic creep)
in the presence or absence of axial stress; cumulative axial stress relaxation in tension due
to cyclic creep; cyclic hardening or softening due to cyclic deformation, depending on the
prehistory of the specimen; effect of shear stress on response in tension (or vice versa);
other effects too numerous to mention.

The effects mentioned specifically above form a sufficiently rigorous set of criteria to
be regarded as an essential challenge to any constitutive representation that pertains to
the plastic behavior of materials. In the recent past we have been able to predict the above
effects with the endochronic theory, sometimes with astonishing accuracy, using very
simple forms of the constitutive equations and with minimum analysis.

Effects in the above class have been investigated by MAIR et Als. [3], LuBAHN [4],
WADSWORTH [5], IVEY [6], BENHAM [7], FREUDENTHAL and RONAY [8, 10], BENDLER and
Woob [9], RoNAy [11], UpoGgucHi and AsADA [12], Morrow [13], CorFIN [14], and other
people too numerous to mention here.

The representation and prediction of their results by the endochronic theory is
given in Refs. [2, 15, 16 and 17].

The application of the theory to situations where the strain rate effects are significant
is the object of investigation in Refs. [18, 19, and 20].
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