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An integral equation method for the solution of
time-dependent problems in linearized Kkinetic theory

M. GRUDNICKI (WARSZAWA)

A MmeTHOD of solution of the linearized BGK equation for one-dimensional time-dependent
flow at constant temperature and density is analyzed. It is assumed that on the line x = 0 the
distribution function of the particle velocities is given explicitly and that at time ¢ = 0 the velocity
distribution is prescribed. The uniqueness and existence of the solution for certain class of
functions and initial-boundary conditions is demonstrated. The differential-integral equation is
reduced to the integral equation which in turn is solved analytically. The method of solution is
based on the particular form equivalent in our case to the Neuman series of the integral equation.
By use of this method we solved the problem which was previously examined by Cercignani
by means of the “elementary solutions™ and by other authors by use of the approximate methods.

W pracy omowiona jest metoda rozwiazania zlinearyzowanego réwnania BGK dla przeplywow
niestacjonarnych, jednowymiarowych ze stala temperaturg i gestoscig. Przyjmuje sig, Ze na linii
x = 0 funkcja rozkladu predkosci molekut jest dana w sposdb jawny, a takze ze dany jest rozklad
predkosei w chwili 7 = 0. Dowodzi sig, Ze dla pewnej klasy funkcji oraz warunkéw brzegowych
i poczatkowych rozwiazanie jest jednoznaczne. Rownanie rdZniczkowe catkowe sprowadzone
jest do rownania calkowego, dla ktorego znaleziono rozwiazanie analityczne, Metoda rozwia-
zania polega na wykorzystaniu szczegélnej postaci, jaka przyjmuje w tym przypadku szereg
Neumana réwnania catkowego. Stosujac t¢ metode rozwiazuje si¢ pewne zagadnienie badane
przez Cercignaniego metoda “rozwiazan elementarnych”, a takze przez innych autor6w metodami
przyblizonymi.

B paGote ofcy)aeH MeTOA peleHHs JIMHEapH30BaHHOro ypasHenna BGK mis HEeCTalHOHAp~
HBIX, O[HOMEPHbIX TE€UEHHH C MOCTOAHHON TeMIepaTypoi M nioTHocThio. IlpuHEMaeTcs, uTo
Ha MHHAM X = ( GYHKUHA pacnpeaesieHHA CKOPOCTH MOJIEKY/I IaHa AABHEIM 00pa3oM, a Takoke,
YTO AAHO paclpeesieHHe CKOpocTH B momeHT ! = 0. Jlokaskipaercsa, YTO M/Isi HEKOTOPOTO
Knacca (YyHKUMIA, a TaK)Ke TPAHHYHBIX H HAYANILHLIX YCJIOBHIl pellleHWe €QUHCTBeHHO. MH-
Terpo-auddepeHnpansHoe ypaBHEHHE CBOJUTCA K HHTErpalbHOMY YPABHEHHIO, AJA KOTOPOro
HaHJIeHO aHaMMTHYeCKoe peltleHHe. MeTo/ pelleHusA 3aKII0YAETCS B HCNOJb30BAHHHM YacTHOTO
BH[2, KaKoil NpHHUMaeT B 9ToM cryvae pajg HeliMana wHTerpansHoro ypasHenus. IIpumenss
9TOT METO/] pEellIaeTCs HEKOTOpas 3afaya HecnenosaHusa LlepuuHHaHM MeTOmOM “‘aieMeHTap-
HBIX peuleHuii’’, a TaKk)Ke OPYTMMH aBTODaMH NPHOMIKEHHBIMH METONAMH.

THE GREAT difficulties encountered in solving Boltzmann’s equation have very often led
to the use of the model BGK equation. However, this model equation is also difficult to
solve and wherever possible its linearized form is used. Some physical problems such as the
well known of CouEeTTE, KRAMER or RAYLEIGH are one-dimensional and then for some
flow conditions the linear one-dimensional BGK equation is relevant. In this case the
superposition law permits to consider separately different simplified cases which describe
specific physical flows [1, p. 157). Mostly rarefied gas dynamic problems described in the
literature are stationary and there are very few analytic solutions [1, 2, 3, 4,]. Some non-
stationary problems were solved by CERCIGNANI [3] using the method of elementary
solutions and Laplace’s transformation.
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A method of solving one of the simplified, linearized, one-dimensional BGK equation
describing a non-stationary flow with constant temperature and density in the ‘absence
of external forces will be considered. The relevant equation [1, pp. 174] is

a{Pl awl _ l ~ —c;
(1) af +Cx- a'x - 991(-", f, (.'x)'l' '/—;_.[oe @1 (I, t? Cx)dc,;,

where [ = foo(1+c.(x, t, ¢,)) — particle velocity distribution function, fu, =

2
= nom * =" — absolute Maxwellian function, ¢ — molecular velocity in J/2kT/m unit,
u—average velocity in}/2kT/m unit,

2 u, =—— fe c“cpl(.w:, t, ¢x)de,—u component in z direction.
2 ]/at
Introducing the notation
)] Pr(x, 1, 6) = p(x, 1, cx)e”
and using the method of characteristics and Laplace transformation, a formal solution
of (1) yields the following integral equation:

x 1 [ F - X—s
(4) !P(x: t, cx) . Q(E;'_f: cx) +.{,“x'l/;‘_! ;[oe 1;9(5, - cx_, u)duds.

Multiplying this equation by —= e~ and integrating with respect to ¢, leads to:

]/:.rz
(6 &ilx,t 1, ex)des+ — . - ff_{)dm
gl X, ) _]/— r ( Cx) cx '/31,' f ¢, € gl(ss Cx ‘X%
-2 0 !

where

W

(6) 8'1(x, ’) o '_/;;' e xw(x Cx)dcx-

(v, ¢,) is an arbitrary function diﬂ‘erenuable with respect to ». The function £(v, c;)
will be henceforth considered as known.
Neumann’s series for (5) can be written in the form:

KW =—1-: J‘eh‘;!)(-{--r, cx)dc, = le (i_;, cx)dcx,
‘Vﬂ: Cx Cx

K® = _lff f e e“‘;’"z[!}l (i—-r, u)—.Ql x —!,u)]dudc,
]/:'! Cx—U u Ce

- — 0
o

= f Kz ("::_ _fs cx)dcxa

-
o0

K® = f K, (-ci ~1, c,) de,.

-0
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It can be noticed that the expressions under the integral can be reduced to the same
form, and this suggests that the solution must be of the form:

(?) gl(xs l!) = fF(}x__t:cx)dcx-

x

Putting (7) into (5), an equation for the function F(v, c,) is obtained

oF e
R s T et G

1 =%
J'ue F, (—-—r,u)du}dcx=0
l/‘"‘ U—Cy &5
with the condition

OF, 1

3 e'C‘Q(O ¢y,
v i ]/::
where the following notation was used
aFl(ﬂ: Cx) -
©) S = Fo, ).

A sufficient condition for (8) to be satisfied is that the expression in the brackets is zero.
Using the uniqueness theorem for the solution of (4) (see Appendix I) we observe
that this is also a necessary condition.
Hence F, must satisfy the following equation:

oF, il
(10) -% = ';n e 0, ) s }/_ [} fede 2By (v, wdu—F, (v, c),
where
(1) filed = 4= = +p(e) dec—),
(12) p(x) = & = Y (e"’—Zx J e*dx).
- 0

CERCIGNANI has shown (2) that the function f,(¢,) has the following property:.

(13) [ Lo @@ e dx = c(u;) 8(u, —u2),

where

c(w) = ue™ {[pw)? +au},
(14) J xe X f(x)dx =0
(15) [ x?%e*f,(x)dx = 0.

-
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Making use of the orthogonality properties the Eq. (10) can be solved analytically (Appen-
dix II) as follows:

v 1 —ci
oOF, 1 (7’_‘« p(c,,)—t)(u—m
o - ymad €
]/-"zc,,e * 0

i( ——e "p(cx)—l)sm [Vnc,e ‘(w vl)]+]/:rcc, Jrcos[]/:'af:,,e *(v 'vl)]}

x

(16)  F(2,¢) =

(e e 1}20,¢) 1
x G(vy, cx)do, + L sin (}/;cc,e"*w)

(—e ’p(cx) !)
cos (Y mexe” ”w)e s

TCx

.Q(O cy)e” -
Rz
where

0Q2(v,z) 1

G(,z) = [Q( y Z)+ - % —-;fue""{)(v u)f;(u)du]

]/Jr.

Now, the following general solution of (4) can be written:

5 x—5
——t+—
z

. s x » € .
D yne) =0(Fnalr o[ [ [ o e[ o)

0

% [(‘% —t+ -x;s) —vl]} {(ﬁ: e *p(z)— l)sin []/:_zze-” (; —t+ x;s- —*vl)]

+V nze**cos []/Eze"’ (;—t+ xc—s —'vl)]}G(wl, z)dv, dzds

f f sm[]/Eze-' (~——t+ = ,s)]
L 80,2

0 - 2

A particular solution for given boundary and initial conditions can be deduced from
the general solution. Practically, great difficulties appear as it is not easy to deduce 2(v, c;)
for given boundary and initial conditions. When this can be done, an analytical solution
of the problem is obtained.

For illustration, the following problem will be solved:

1. The gas fills the whole infinite space.

2. Up to t = 0 the flow is stationary and the distribution function (the disturbance ¢,)
is a known function of x and c.

p(2)—1)2(0,2)

il

exp

e~*p(z) — 1)
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3. The disturbance function ¢,(x, ¢, ¢,) is antisymmetric with respect to the plane
x =0.
4. For ¢t > 0 the function ¢, is continuous at x = 0.
At the moment ¢ = O the factors maintaining the stationary state disappear.
The flow for ¢ > 0 for constant temperature and density is to be determined.
To be more specific, the case when the initial conditions are
@1(x, 1, ¢)leco = Ax+B, x=0

will be considered.
The continuity and antisymmetry conditions indicate that
(P.l(x) L, cx)lx‘——ﬂ = 0: t > 0.

In this case, 2(v, ¢;) can be found. If |x/c.| < ¢, then the particle which is at point x
will be in contact with the wall at ¢, and the boundary conditions must be used to determine
the function 2(v, ¢,). When |x/c,| > ¢ the initial conditions should be used. Substitut-
ing the value of y at t = 0 and x = 0 in (4) it follows:

|
X

0, v <0, —| < t,
Cx|
(18) (v, ¢;) =4 Acx(1—e™")+Be™®, 220, x>0, ¢>0, x >t,
X
—Ac(1—e9)—Be®, ©>0, x<0, c; <0, ;’i >t

If the values of x and ¢, are of different signs, the antisymmetry condition for x = 0 should
be used. Putting (18) in the general solution (17) the analytic expression for the function
@, is obtained.

Now the hydrodynamic magnitudes can be deduced. The average velocity follows from

2, ), (6), (16):

1 1,
(19) u, = Ee“gl = 59" f

-2

a2 [ (e 1) ) )=, 47,
_sgux—}/—:_z-LH(?— r)e H[W+ﬁ]

x sin [l/s_tc,e_c‘ (ci - r)] + Be “*cos []/Ecxeqc‘ (ci - t)]} de,,

x

x

F(—x——r, c,)dcx
C

where
x>0,

1,

ge) = e, Hep =) 1
X VE P x/2 .E' x=0,
0, x < 0.

A = Ocorresponds to the physical case of a gas, initially in two semi-spaces x = 0, of constant
temperature T, and number density n, having an average velocity +B/2 at x > 0 and
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—B/J2 at x < 0. One can imagine that the two semi-spaces are divided, say, by a membrane
which is suddenly removed at ¢t = 0 and therefore at t > 0 a diffusion of velocity occurs.

The resulting perturbation function at # > 0 is continuous at x = 0.
The problem was solved by CERCIGNANI and TAMBI [3] using the method of elementary
solutions and Laplace transformation. The resulting mean velocity after retransforma-

tion is

B B [ _[e 1 {ﬂc;}—l)(t—x—f) gle)—1 . [ — _ofx
u, =sgnx{——-—= | H|--——|e o ———sin *——t
i e el E R e e o]
-<x e
+e “cos []/ncxe (:--— t):' dc,} ‘

The Eq. (19) after transformations (Appendix III) can be reduced to this form.

The solution (17) obtained is an exact analytic solution of (1) of greater theoretical
than practical value. There is no method of finding particular solutions, except the one
given above satisfying boundary and initial conditions required, i.e. corresponding to
a given physical problem.

Appendix I
The uniqueness theorem

THEOREM 1. Let the function w(x, t, c,) satisfy the Eq. (4). Let us assume:
'P(xa t! cx)lxxo = Wb(’) cx)s t> 05
'p(x, i, Cx)lruo - Wp(x, cx)'
Function w(x, t, c;) is continuous with respect to t. There exists such 6 > 0 that the function
w(x, t, c;) is analytical with respect to t in {0, &) interval. Then y(x, t, c,) is the unique

Junction of this class which satisfies the Eq. (4).
Proof. Let us suppose that there exist two solutions of the Eq. (4) which satisfy

boundary and initial conditions required. In this case difference of these solutions yp, =
= y, —y, satisfies the Eq. (4) as well as zero boundary and initial conditions.
Let £2,(v, ¢,) correspond to y, solution. Then

(1.1) Qo(—t,8) =0,

0 @
X 1 i X—5 _
(1.2) Qﬂ(c—x,c,)erf fe %(s, - ,u)duds 0.
Taking into account that y,(x, ¢, c,) satisfies the Eq. (4) and relations (1.1) and (1.2)
hold, we receive:

0 w

1 2o x—s :c1|
i = " b ; —ls
(1.3)  wolx,, ¢ T ]/:r_tf f e "y, (s,r = ,u)duds, t ]
(1.4) (x,1,¢) = ! d ?_"’ s r_x—s duds 0<t< o~
. YolX, I, Cx -—E;—'?";' f Je Yo S, & s U > < 7

x—Itc —oo
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If any function satisfies the Eqgs. (1.3) and (1.4), then the derivative with respect to time
of this function will satisfy these equations, too.
For given x and ¢, and 7 < |x/c,|, the Eq. (1.4) is valid and consequently dy,/dt|,_0 = 0.
It can be shown inductively that &"y/dt"|,o = 0. Expanding w,(x,?,c,) into series
with respect to ¢ we find that yo(x, ¢, ¢,) = 0 at least in {0, ) interval. We consider ¢t > 6.
Using mean value theorem and definition (6) in the Eq. (1.4) leads to

x
1 x—5 xX—=5
‘Po(x,f;cx)=";:; J. gl(s’r_'_cl")d‘&':rgl (Sl,f-"- P I)

x
X—1c,

]
t X—5

= —= f e_"ztpo Sl,t'_' ! s U du,
VJ'E Cx

—w
where s, = s5,(x,1,¢) € (x—1tce, X) or 5, € (x,x—1c,).
Let 8, means the right end of the greatest interval where for all ¢ € (8, 8,) the condition

-5
Cx
the Eq. (1.3) the interval (4, d,), where yo(x, ¢, ¢,) = 0 could be found.

In this way the interval <0, ) in which y,(x, t, ¢,) = 0 can be extended to interval
(0, 8,>. Proceeding in the same way we receive a sequence of intervals 0, 8,» where
function wo(x, ¢, ¢;) = 0. Utilizing continuity of wy(x, ¢, ¢,) with respect to ¢ it can be
shown that 8, — oco. It means that y,(x, ¢, ¢,) = 0 for ¢ € €0, +c0). Hence, the Eq. (4)
has at least one solution which satisfies the required boundary and initial conditions.

THEOREM 2. Let function w* (x, t, ¢, > 0) satisfy the Eq. (4) and function p=(x, t, ¢, < 0)
satisfy the Eq. (4a)

X
; A

< 6 is satisfied. As 5, < x and ¢, is bounded (ch! < |—3:|-), so 4, > 4. Also for

da) w(x,1,¢) =Q(¥:¥°-!,c‘ +—-1--_- f fe""x
Cx cx'/n 3 Y

—Xo—S§
xtp(s+xﬂ,!—£-:.° ,u)duds.

x

We assume that

px, 1, > 0)ao = 9*(0,1,¢,) = Wi (t,ci), x>0,
P 0 < O)lxewy = 9™ (Ko, 15 0) = Wit 6), € <0,
P(x, 1, c)limo = p(x, 0, ¢x) = Wy(x, ¢x).
Function w(x, t, c,) is continuous with respect to t. There exists such 6 > 0 that function
w(x, t, ¢x) is analytical with respect to t in the interval {0, 8. Then

vr(x,t.c), €>0,

x4 6) = Hw‘(x.r,cx). cx <0

is the only function of this class which satisfies the solutions (4) and (4a).
The proof is similar to the proof of Theorem 1.
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THEOREM 3. Let the function w(x, t, c;) satisfy the Eqgs. (4) and (4a). Let us assume that
Px, 1, clx—o = Wi (t, cx > 0),
Y, 1, C)lx=xo = Wi(t, cx < 0),
v(x, 1, elico = Wp(x, ¢).
Function y(x, t, ¢,) is continuous with ‘respect to t at t > 0. Then y(x, t, c,) is the only
function of this class which satisfies the Eqs. (4) and (4a) for ¢, > 0 and ¢, < 0, respectively.

Proof. Similarly to the previous proofs, let us introduce a function p, = w; —¥,.
The function p, must satisfy zero boundary and initial conditions.

1. Let us assume that ¢, > 0 and consider the Eq. (4). If c{ —t < 0then 2, (ci —t, Cx) =

X
= 0 (boundary conditions). Simultaneously, from initial conditions it follows that

2, (i—r, c,) =0, X —1 >0,
Cx Cx
2. For ¢, < 0, proceeding is the same, but it is connected with the Eq. (4a).
Hence, the function yy(x, t, ¢;) must satisfy the equations

Xx @

(1.5)  wolx, 1, ¢x) = l_ffe““’w(s,l—x_s,u)duds, ¢>0,
(.",]/‘Jto o Cx

X—Xp @

(1.6)  wolx,t,¢) = l': f fe‘"’w(s+x°,t—£_x°—§,u)dua’s, e, <0
7
0 —w

Ci ]/ Cx

and the condition yo(x,?,¢,) =0 at 1 < 0.
The proof is similar to the proof of Theorem 1.

Appendix 11

Solution of the Eq. (10)
The condition (9) and the Eq. (10) involve the following property:

(ga) F, (‘U, cx)!u:l) =0.
P r o o f. Substituting (9) into the Eq. (10) in which v = 0, we obtain

1 2
2.1 Fi(0,¢,) = — 5= fule) F (0, u)du.
@1) (0, c) Vﬂ_f: Fle)F1 (0, u)du

Multiplying this equation by ¢,f;(c,) and integrating over ¢, we find

Vr

22) [ k0, eoreyde. = L coF0,2.
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Simultaneously from the Eq. (2.1) we obtain

a

@.3) [ efule Fi 0, wdu = Ymc,e* > F,(0, c,).

It can be noticed that
(2.4) uf,(W)+zf,(2) = 2up(u) d(u—1z).

Let us substitute ¢, for u and z for ¢, in the expression (2.2). Adding (2.2) and (2.3) and
utilizing (2.4), we obtain

26p(e)F1 0, ¢) = 7‘-_- Ce)F, 0, e+ Vaicye = F,(0, ¢,);
by 4
it means that

F,(0, ¢) [2c,p(c, - T Clc)F;(0, c) + ﬁ’ce‘x] =
As the expression in brackets is not identically zero, we obtain (9a).
Solving formally (10) and using the condition (9a) we obtain

(2.5) Fi(v,¢) = — e | Q(s, c)+ | files) Fi(s, u)du| e-v+2ds.
JV | f ]

Multiplying this equation by c.f;(c,) and utilizing orthogonality of f,(c,) we find

QO [ cledFi(o, e)de, = '1&_; ] 6o e [ 26, edemrrasde,
—o — o (1]

1 : —v+s
+7;!C(Z)Fl(s,z)e ds.

Substituting u for ¢, and ¢, for z we have

oo i ] v
2? c F ) d == i ] c —U-H'd d
eX) £ o F 0, = £ e !Q(s W, (We~>*dsdu

+ i_ f Ccx) Fy (s, cy)ev+%ds.
Vag
At the same time the Eq. (10) leads to

@8 [ chieFiw,ude = Ve B0 | e SF @, 0000, 0.
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Summing (2.7) adn (2.8) and using (2.4) we obtain

0F, (v, ¢x)
dv

29) 2. p(c)Fi(©, ¢x) = Y Hcxes + Vmee (v, 6)

+ —l.: f Clcx) Fi(s, cx)e v ds—c, L2(z, cy)
Vay

+ -u: f fue“".()(.s' u)f (We v+ dsdu.

- 0
This equation can be reduced to linear differential equation with constant coefficients.
In fact, multiplying both sides by e® and differentiating over v we find

— 2 g2
(2.10) V”Cxecxgi%&) 2V 7.~ 2¢p(cs)] Lﬂ(ﬂ L

+ h/‘:%-c, € — 2c,p(cs)+ —}: C(c,)] Fi(v,c)

V=
= ¢, 82(v, )+ ¢x 69(:0’ ) - '/1; f ue="’Q(v, W)fe, (W)du

and conditions

OFy(@,¢) |
dv

= -—l_: e”‘;.Q(O, Cx);

w=0 b4

Fy(v, ¢x)lo=o =0

¢, is treated as parameter.
Applying to this expression a well known fact from differential equations theory [5],
we obtain the solution

2
(——e -‘p(c,)-l)(u—n,)

G Pultycd e o J sin[)/7exe 5 —0,)|G(v, cx)dv,
Vwece e g
1 —c: ed=1\v i a
+M3(}’;s e [) sin(]/ﬁcxe_c"w);
e
consequently
(2.12) F(v,c) = aaf;
1 = (—e -‘p(cx)-—l)(v—v.) 1 _e? 3 i i
= T—'z"'f Va {(—__e "p(c,)—l)sm[l/szc,e ’(v-—svl)]
Vace ™ g V=

+ |/_:r§cxe"icos[VEc,e":(v—ﬂl)]}G(vl , ¢x)dv,
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GRTIN
. (T/?e ) l)ﬂ(o,c,)

TCx

2 % a1
+ 20, ;ﬂe cos (}/Ec, "ﬂ).l ('/1 )

sin (y/ze, e_cifu)

Appendix IIT
It can be noticed that the arbitrary constant C satisfies the Eq. (1). Hence, if this
equation is satisfied by function ¢, then it will also be satisfied by function
p1(x, 1, ¢x) = ¢, —C.
Let us put C = Bat x > 0 and C = —B at x < 0. Consequently,
g(x, 1) = B+g'(x,1),

where

£(x, 1) = g1(x, D)e~ =~ f e, 1y e de.

Function ¢, satisfies the integral equation

@,(x, 1, ¢) = .Q(—:— —t, c,) cL f (

X

X=—5

e °xds,

so

- x—g)| X%
3.1) ¢'+B = .Q(;—-—r c,)e 'TBe ‘x+ B+—£—fg’(s,t~ " s)e e ds
x 1' 0 x

and, consequently,

(G2  Pxtc) =2 (-3‘- - c,)e-'+ Ci fg' (s, r*"‘_"-)e'? ds,
x x 0 x

where

P ()
(3.3) Q2 (-— -1, cx) = FBe \ex +Q(———-r cx)
Introducing the notation y'(x, ¢, ¢;) = ¢'e’ we find

’ A x 1 j X—5

(3.49) p(x,1,c) =0 (‘:_——t,r:,‘)~§-c—x fgl(s,r 7 )dﬂ.

H 0

3 Arch, Mech. Stos. nr 4/75
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The equation (3.4) is of the same form as the Eq. (4). It means that it has the same solu-
tions.
By (3.3) the function 2'(v, c,) can be found. For the case 4 = 0, we have:

X
—Be7®, wv<0, ;—<r, x>0, ¢ >0,

X

Q! —-v X
(v,¢c) = Be®, w©v<0, c—<1, X0, o<

X

X

0, =0 —| =1,
Cx

According to the general solution of (17) we obtain

o0
B x
w=ge@ e =sm@e| e [a(g - ) el
-

L e | G o | %
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