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On the flow of magnetic fluids 

YU. A. BUYEVICH and IRENE N. SHCHELCHKOVA (MOSCOW) 

THE PAPER deals with the behaviour of a ferromagnetic suspension flowing in the presence 
of an external magnetic field under a condition of weak rotary Brownian motion. Only stationary 
flows in a uniform field with flow variables depending upon a coordinate normal to streamlines 
are considered. This proves to be quite sufficient to allow certain important qualitative 
features of ferrofluids (and of suspensions of dipolar spheres in general), which are displayed 
in tbese flows, to be elucidated and properly understood. 

Praca dotyczy zachowania si~ ferromagnetycznej t.awiesiny plyn&cej w zewn~trznym potu magne
tycznym przy warunku slabo obrotowego ruchu Browna. Rozwazane s& jedynie przeplywy 
stacjonarne w polu jednorodnym ze zmiennymi przeplywu, zalei:nymi od wsp61rz~dnej prosto
padlej do linii pf&du. Okazuje si~. i:e jest to wystarczaj~ce do wyjasnienia i wlasciwego zrozumie
nia niekt6rych jakosciowych wlasnosci ferrocieczy (w og6lnosci zawiesin kul dipolarnych} 
wystttpuj&cych w tych przeplywach. 

Pa6oTa KacaeTCH IIOBC,l:{eHIDI <J?eppoMarHHTHOH B3BCCH TCKy~eH BO BHCIIIHCM MarHHTHOM IIOJie 

rrpH ycJIOBHH cJia6oro apa~aTeJI&Horo 6poyHoBci<oro ):{BH>I<CHHH. PaccMaTpHBaroTCH TOJibKO 

CTallHOHapHbiC TClJCHHH B O):{HOpO):{HOM IIOJIC C rrepeMCHHbiMH, 3aBHCH~HMH OT KOOp,l:{HHaTbl 

rrepiiCH,rurnyJIHpHOH K JIHHHH TOKa. 0Ka3hiBaCTCH, lJTO 3TO ,l:{OCTaTOlJHO ,l:{JIH Bb:uiCHCHHH 

H COOTBCTCTBCHHOrO IIOHHMaHHH HCKOTOpbiX I<atJCCTBCHHbiX CBOHCTB <J?eppO>I<H,l:{I<OCTCH 

(B o6~eM B3BCCH ,l:{HIIOJIHpHbiX c<J?ep), BbiCTyiiaiO~HX B 3THX TClJCHHHX. 

1. Introduction 

AN EXHAUSTIVE study of the bulk rheological properties of dilute suspensions of dipolar 
spherical particles in an external field was first put forward in [1, 2]. Later this treatment 
was extended to include the effects of rotary Brownian motion [3, 4] and generalized to 
suspensions of moderate concentration [5]. There are two serious difficulties of the theory 
in [1-4]. First, the back influence of the oriented dipoles on the external field is completely 
left out of account [5]. Second, the Maxwellian electromagnetic stresses which should 
appear in the governing momentum equation are ignored without any explanation and 
necessary evaluation [6]. 

One of the purposes pursued below is to draw attention to these non-linear effects 
and to point out under what conditions the neglect of these complications is actually justified. 
Another intended purpose lies in exposing some essential qualitative properties of 
a ferrofiuid which might look a priori rather inexplicable or difficult to foresee. To make 
the treatment more comprehensible, other problems irrelevant to the main aims in view are 
here disregarded, whether they be of considerable interest on their own account or not. 

For this reason only stationary flows in a comparatively simple geometry are investi
gated and, for the sake of simplicity, certain other assumptions are made when possible. 
The subsequent analysis is based on results in [1, 2] as well as in [5, 7, 8] which are briefly 
outlined in Sec. 2. 
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578 Yu. A. BUYSVICH AND IRENE N. SHCHELCHKOVA 

2. Governing equations 

Consider a moderately concentrated suspension of rigid spheres under an assumption 
that the Reynolds number characterizing the relative flow of the ambient fluid around the 
individual particles is small compared with unity. The sphere radius a is, however, taken 
sufficiently large in order that the flow of the suspension is not significantly affected by the 
rotary Brownian motion of the particles (the appropriate inequalities imposed on a are 
discussed in full detail in [2-5, 8]). Permanent magnetic dipoles of moment D = DT, T 
being a unit vector, are embedded within the suspended spherese). The dipoles interact 
in an applied magnetic field and give rise to external couples acting on the spheres which 
inhibit their free rotation with the equilibrium angular velocity, defined by the local vortic
ity of a suspension flow and by the fraction of particles by volume [5]. 

Below we confine ourselves to flows which are uni-directional, steady or almost station
ary when the distribution of the orientation of the particle dipole vector T is nearly the 
·equilibrium one (see [2, 5]), and both this distribution and the flow variables are depend
·ent on a sole coordinate r 1 = x normal to the flow direction along the axis r 2 = y. 

Further, we suppose that the fluid and particles are incompressible and there are no external 
body forces. 

2.1. Flow equations 

The equations of mass, momentum and angular momentum conservation of the continua 
describing both phases of a concentrated suspension of spherical dipolar particles were 
discussed in [5]. With no reason to dwell upon these equations in further detail, we consider 
them in the form they reduce to in the particular type of plane flow under study. 

First of all, the equations of mass conservation are satisfied identically for both phases. 
The equation of momentum conservation for the continuum modelling the disperse 
phase is 

(2.1) 3 ( 6 d
2c) f = -efto _pu>eu+F<2>-- = 0 

4 a2 dx2 ' 
e = 1-e. 

Here(! and e are the fraction of the particles and ambient fluid by volume, respectively, 
}to is the fluid viscosity, c and u are the mean suspension velocity and the fluid slip velocity, 
that is 

(22) c = ev+ew, u = v-w, 

v and w being the mean velocities of the fluid and disperse phases. The vector fin (2.1) 
represents the interphase interaction force per unit volume of the suspension. 

The analogous equation for the continuum modelling the fluid phase gives [5] 

(2.3) 0 = -~+ d(J31 

oz dx ' 

(1) For definiteness ferromagnetic particles are considered but· all the results obtained below 
are also valid, in their original or a slightly modified form, for dipoles of other physical origin. 
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ON THE FLOW OF MAGNETIC FLUIDS 579 

where p is the mean fluid pressure, f-t is the effective viscosity of the suspension of the same 
particles without dipoles and aii are components of an antisymmetric stress tensor evaluated 
in [5]. For these quantities there are the following equations: 

(2.4) p = 1-'o( 1 + ~ eS), <1;; = {ne1;,q,, n = ( ~na3 f' e. 

q = DH(1: x H o) = 8na3 f1, 01•{JM('t x H 0
), 't = (T), 2v =rote. 

Here 't is the vector T averaged over the orientational distribution function, Ho denotes 
a unit vector in the direction of the local magnetic field H as it would be at the centre of the 
particle if the latter were absent, siik is the unit isotropic alternating triadic, and the vector 
q is the external torque acting upon a single particle and due to the dipole being in the 
field H. The Eqs. (2.1) and (2.4) contain functions £ 0 >, £< 2>, Sand M of the volume con
centration increasing as (! grows and turning to unity as (! tends to zero. These functions 
were found for a moderately concentrated suspension in [7]. A parameter fJ is introduced 
into (2.4) 

(2.5) 
DH 

fJ = 8na3 f1, 0vM ' 

which is the ratio of the magnetic couples to the hydrodynamic ones. 
The equation for the conservation of the angular momentum of the disperse phase 

determines the angular velocity of particle rotation and has been accounted for while formula
ting (2.4). The similar equation for the fluid phase yields in the case under consideration 

(2.6) _!!_(ex!!!_]__}""' _t!_ (ex!!~~-) = o, 
dx dx dx dx 2 

where X is an increasing function of e equalling unity at(! = 0 and evaluated for moderate 
values of e in [7]. 

The flow is supposed to be bounded by planes x = ± h, where certain boundary condi
tions are imposed. 

2.2. Field equations 

Equations describing a stationary magnetic field are 

(2.7) rot H = 0, div B = 0, 

where B is the magnetic induction connected to the field strength by 

(2.8) B = AH+4nnD't, 

A being the effective magnetic permeability of the suspension of spheres with no embedded 
dipoles depending upon the permeabilites of the phase materials and g. This dependence is 
presumed known, in the particular case of a dilute suspension it is given by the Maxwellian 
formula. The second term on the right-hand side of (2.8) is an additional intrinsic induction 
of the suspension caused by the polarization of the dipolar spheres in the same way as the 
usual intrinsic induction is due to the polarization of elementary currents on the molec
ular level. 

4 Arch. Mech. Stos. nr 4/75 
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The orientation within a flowing suspension due to the external field thus influences the 
field itself. This "back" influence makes such flows non-linear. Not only the applied field 
affects the behaviour of a ferromegnetic suspension but also any alignment of the dipolar 
particles results in a change of the field which may in certain circumstances be important. 
In this respect there is a drastic distinction between systems of particles with dipoles of 
electro-magnetic origin and those with gravitational dipoles (due to the centre of mass not 
coinciding with the centre of friction). This distinction allowing a "screening action" of 
aligned dipoles on the field was pointed out in [5] but, unfortunately, has not been taken 
into account in the majority of other papers on the topic. As a consequence of this distinction 
H and Ho involved in the above hydrodynamic equations cannot be regarded as inde
pendent quantities but are related to the variables c and (!. 

Another important feature of ferrofluid flows should be emphasized here, namely, 
one can use equations of the type of (2. 7) only when the electrical conductivity of the am
bient fluid is' zero, even if the field under study is stationary. When the effective conductivity 
of the suspension does not vanish, and the motion of the suspension results in the inter
secting of magnetic strength lines, macroscopic electric currents are generated and influence 
in their turn the applied field. In particular, rot His not necessarily equal to zero, so that 
there is an additional body force proportional to rotH x H, which must be included in 
(2.3). Such a force can formally be taken into account by introducing the electro-magnetic 
stress tensor into the expression for the tensor of total momentum flux density, as is done 
in magneto-hydrodynamics. The above equations are therefore valid under the condition 
of negligible electrical conductivity of the suspension. Note that this important complication 
is generally overlooked although it may sometimes be of primary significance. 

To simplify the problem, the external field strength He is made uniform everywhere 
outside the flow region - h ~ x ~ h. Inside this region the quantity H must satisfy the 
Eqs. (2. 7) and (2.8). 

2.3. Closure of the equations 

The set of hydrodynamic and field equations would be closed if a suitable expression 
for 't were known. Here we make use of such expressions derived in [2, 5]. 

As described in [2, 5] two principally different situations occur. The first corresponds 
to fJ ~ 1 or fJ < 1 and y # n/2, y being an angle between the directions of the vorticity 
vector v and H. If X0

, yo and Z
0 are the unit vectors of a right-handed coordinate system, 

c and v being proportional to yo and Z
0

, respectively, then each particle achieves a unique 
and stable terminal orientation 't which is independent of its initial orientation and is given 
by a relation 

't = sin '1p 1 cos ('1p2 +0)X0 +sin '1p 1 sin ('1p2 + O)y0 + COS'If' 1 Z
0

, 

(2.9) sin 'I', = {~(l+P')-[! (l+P')'-P'sin'y ]"'}''', 

sin'1p2 = ({Jsiny)- 1sin'1p1 , 'lf' 1 E (0, n), V'z E (0, n/2), 

the parameter fJ being defined in (2.5) and the angles y and 0 determining the direction 
of the vector Ho 

(2.10) H o = sin y cos Oxo +sin y sin Oyo +cos yzo. 
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ON THE FLOW OF MAGNETIC FLUIDS 581 

This "regular" situation, in which particle rotation around any axis normal to 't is com
pletely hindered, is favoured by comparatively strong fields. 

In a special case (J < 1, y = n/2 an alternative "singular" situation is realized, in which 
the hydrodynamic couples prevail and ensure the rotation of the embedded dipole vectors 
even in the therminal state t ~ oo . The periodic orbits performed by the ends of these 
vectors do not depend upon the initial orientation of the particles: the initial orientations 
are eventually forgotten through disorientating Brownian rotations whatever the relative 
magnitude of the random Brownian and deterministic hydrodynamic or magnetic couples. 
These orbits in a dilute suspension were closely investigated in [8]; the generalization 
to a concentrated suspension happended to be fairly easy and can be found in [5]. The vector 
H lies in this case in the flow plane (x, y) and the vector 't is described as follows: 

't = - F((J) sin Oxo + F((J) cos ()yo, 

(2.11) F(fJ) = _!_\1-J..=~~ ln[Cvf+PT +Pv3)(vl+P -fJv3)-1]J 
fJ y3 ln[(y2+(J2 +(J)(y2+(Jz -p)-1] · 

Asymptotic evaluation of F((J) at (J ~ 0 and (J '--+ 1-0 is given in [8]. Note that the modulus 
of 't in (2.11) is smaller than unity, since the alignment of the particle dipoles in one 
preferable direction is not complete. 

3. Flows without singularities 

We begin by considering flows in the regular situation, when either (J ~ 1 or (J < 1 
but simultaneously y =1= n/2, so that the equations in (2.9) are valid. Here, and in the re
mainder of the paper the external magnetic field He outside the flow region - h ~ x ~ h 

is proposed uniform and defined by a relationship similar to (2.10) 

(3.1) 

where the polar and azimuthal angles Ye and ()e are in general not equal to those determin
ing the field strength H within the flow region. 

The Eqs. (2. 7) permit the conclusion that Hy, Ht and Bx are constant throughout the 
flow. Thus these quantities are determined by the boundary conditions of continuity for the 
tangential components of the field strength and for the normal component of the magnetic 
induction. This gives three equations, 

(3.2) 

Ae He sin Yecos()e = ). Hsin ycos() + 4nnDsin VJ 1 cos (VJ 2 +0), 

He sin Yesin()e = H sin ysin(), 

Hecosye = Hcosy, 

Ae being the external magnetic permeability, VJ 1 and V'z depending on (J from (2.5) in accord
ance with (2.9) and n being the number concentration of particles defined in(2.4). The 
Eqs. (2.8) to (2.10) and (3.1) have been taken into account while deriving (3.2). 

Two different problems may be of interest.. A direct one lies in expressing H, y and 0 

4* 
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in terms of the presumed known quantities He, Ye and ()e and the flow variables e and c', 
a prime designating differentiation with respect to x. An inverse problems is to find the 
external field necessary for the realization of a given field inside the flow region. Both 
problems can be readily solved with the help of (3.2). In particular, one is able to regard 
hereafter 

(3.3) H = H(e, c'), y = y(e, c'), () = O(e, c'), 

as known functions depending in addition upon the external field parameters. 
By integrating the Eq. (2.6) one obtains 

(3.4) 
d2 c 

eX (e) dx2 = const. 

This allows e to be expressed as a function of c". 

Thus only c remains to be determined. It is possible to show with the help of the results 
in [2, 5] that there is an alternative relation for aii to that in (2.4) 

(3.5) 

V
0 being a unit vector in the vorticity direction coinciding with Z

0 for the plane flow under 
study. By making use of (2.9) and (3.5) one derives from the first equation (2.3) when the 
pressure gradient is constant and directed along - yo 

(3.6) 

d ( " de ) dp " ( 5 3 fJ ) - 11- = -- = -P 11 = fto 1 + --eS+ --eMcf>( y) 
dx dx dy ' 2 2 ' ' 

- 1 + [J2 J [ 4fJ2sin2y ]1'2} 
cp({J' y) - -2 -l1- _1- (1 + [J2)2 . 

The quantity [L here plays the role of an apparent suspension viscosity depending, in view 
of (2,5), (3.3) and (3.4), upon c' and c". A necessary condition for the existence of a plane 
flow follows from the second equation (2.3) after calculating a 31 on the basis of (2.9) 
and (3.5); this becomes 

(3.7) ~ ( eMsiD'I't COS'1'1 sin{lp, +0) ~:) = 0. 

Hence plane flow of the type considered is only possible under rather special conditions 
imposed on the flow and field variables. For instance, such a flow can be brought into 
existence when y = 0 or y = 1t /2 at any values of e and c' and when e = const, c' = const, 
y and () being arbitrary. 

Alternatively if (3. 7) does not hold, there is a velocity component normal to the pressure 
gradient. If even the velocity is collinear to the latter in some plane x = const, this is not 
the case for neighbouring parallel planes. Note that the secondary circulation in flows of 
magnetic suspensions was previously discussed in [9]. 

To gain an approximate idea of the character of regular ferrofluid flows it is worth 
analysing two particular cases, namely, Couette flow and Poiseuille flow with y = n/2 
and e constant. The Eq. (3. 7) then holds true. In the first case, Hand fJ happen to be uniform 
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so that aii and [l do not depend on x. After some calculation we obtain non-zero antisym
metric stresses 

(3.8) 

and from (3.6) an expression for~ in terms of {J and y. A representative dependence of~ 
on {J is plotted in Fig. 1 in which the magnetic suspension appears to be a shear-thinning 
medium. The relations in (3.8) resemble those derived earlier in [2, 5]. There is, however, 

"' ~ r-----------------------= 

f3 
FIG. 1. 

an essential distinction since the Eqs. (3.8) involve the local field which is different from 
the external field. The former is related to the latter one by the Eqs. (3.2) and it is easy to 
see that in general neither the magnitude nor the direction of H coincide with those of He. 
This enables us to conclude magnetic suspensions to be in every way an anisotropic media, 
that is in both hydrodynamic and electro-magnetic respects. On the one hand the shear 
stress is no longer parallel to the shear velocity and on the other the total effective magnetic 
permeability, including the macroscopic part due to the particle dipole alignment, is a tensor 
quantity. Note in this connection that magnetic suspensions do not represent quasi-New
tonian media in which there exists a linear tensor relation between the stresses and the 
rates of strain, in contrast to a suggestion in [10]. This is by no means strange because 
the reasoning in [10] applies apparently to suspensions with the same instantaneous micro
structure. That this is not the case in the present study can readily be seen from the above 
consideration: the suspension microstructure is assumed to be essentially dependent on 
the particle alignment related to the local magnetic field magnitude and direction. As evi
denced by the curve in Fig. 1 the apparent viscosity grows as {J increases or c' = 2v decreases 
and the suspension behaves like a shear-thinning pseudoplastic fluid. 

We turn further to the Poiseuille flow supposing e is constant and H~~ lies in the flow 

http://rcin.org.pl



584 Yu. A. BUYEVICH AND IRENE N. SHCHELCHKOVA 

plane (x, y) . Then equations in (3.6) yield (the parameter f3 has to be remembered to 
exceed unity for a regular flow with y = n/2) 

(3.9) 

so that the suspension is indistinguishable under the present circumstances from a Newto
nian fluid of constant viscosity. The same· conclusion, valid for a dilute suspension was 
previously made in [2] where a discussion of this phenomenon was presented. 

We bring this section to an end with a brief analysis of the internal field H when He 
is given. It follows from the third equation (3.2) that H lies in the flow plane as well as He. 
The other equations in (3 .2) permit H and () to be found. Two simple cases may be of 
special interest: sinOe = 0 and sinOe = 1. In the first case, when He is either parallel or 
antiparallel to X

0
, () = ()e and by introducing the quantities 

(3.10) 
A 

"'=y, 
e 

H 
m=

H' e 

one obtains the following equation form: 

(3.11) 

f3 
f3e =-' m 

4nnD 
r:xe=TH, 

e e 

If f3 e ~ "' this equation has a unique root satisfying the inequality "'- 1 ~ m ~ {3; 1 • In the 
opposite case there is no root of (3.11). The latter is quite natural since f3 then appears to be 
smaller than unity and the flow is singular in the sense that (2.11) must be used instead 
of (2.9). 

If ()e = n/2 , the() and m are calculated from 

(3.12) "'m(l- _2_)1/2 = r:xe[-1 - (1- _1 )1/2(1- _1 )1/2], 
m2 f3em2 m2 p;m2 

() = arc sin (m- 1), 

where the parameters (3.10) are used again. There is a unique root of the first equation 
in (3.12) with m > 1 and m > {3; 1 • The y-component of the internal field strength is evi
dently unchanged and coincides with He whereas the z-component differs from zero 
through the flow region and depends on f3e and, consequently, on the shear rate. 

Obviously, it is not difficult to consider regular flows of more complex geometry in 
a similar manner, taking into account the restrictions imposed by the Eqs. (3.4) and (3.7). 

4. Singular flows 

We now proceed to investigate flows of the singular type when the relations f3 < 1 
and y = n/2 hold simultaneously. It is easy to see that Ye is also equal to n/2 in this case, 
i.e. the applied external field is normal to the vorticity vector. As before, the quantities H 
and () can be looked upon as certain functions of c' and e defined by the Eqs. (3.2) in a form 
similar to (3.3). Analogously the Eq. (3.4) enables us to express e as a function of c" 
so that the problem is again reduced to determination of the suspension velocity c(x). 
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The Eqs. (2.4) and (2.11) show that only the components 

(4.1) 
3 de 

-O'tz = 0'21 = 2(!Mflofl>({J) dx, f/>({J) = fJF({J), 

of the antisymmetric .stress tensor do not vanish in the case under study. Then the second 
equation in (2.3) is identically satisfied and the first one takes the form (cf. (3.6)) 

dG = dp = -P 
dx dy ' 

(4.2) 

This equation governs flows of a non-Newtonian fluid whose viscosity is dependent on 
both c' and c". 

Accounting for this dependence leads to a rather laborious and cumbersome calcula
tion. In order to simplify the problem as much as possible while demonstrating the main 
flow properties, it is natural to treat by way of example a pure Poiseuille flow symmetric 
about the central plane x = 0 and to assume the pressure gradient to be sufficiently large. 
Then c" is also large and its dependence on x can approximately be neglected as compared 
with a similar dependence of c'. In other words, e can be regarded in the first approxi
mation as a constant quantity. Moreover, we assume an inequality 

(4.3) 

to hold. This gives an opportunity to set H approximately equal to He and to neglect 
the dependence of H upon both c' and c" while solving the Eq. (4.2). Thus, the fact that 
the parameter from (2.5) is inversely proportional to v = c' /2 is only significant in (4.2). 

4.1. General consideration 

In the vicinity of the symmetry plane x = 0 the shear rate is always small and tends 
to zero with x. The parameter fJ is therefore high in a flow core region and goes to infinity 
as x approaches zero. For c' smaller than a critical value c'_ corresponding to fJ = 1, the 
results obtained in the end of Sec. 3 are valid. Particularly, the suspension within the core 
displays Newtonian properties and its apparent viscosity jJ, is determined by (3.9). The 

a 
G 

~ 

c' 0 

FIG. 2 

b 

~ 

c~ c~ c' 
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second derivative c" and the volume concentration of particles are constant and equal 
to c~ and eo, respectively. 

In a peripheral region of the flow, c' is, however, large enough to make f3 smaller than 
unity. The dependence of G1 on c' does not change in this region from that at f3 > 1 but 
G2 undergoes an abrupt change and is now given by ([>({3) determined according to (2.11) 
and (4.1). Typical curves for both G1 and G2 as well as for their sum G are plotted in Fig. 2a. 
It is essential that the slope of the tangent to the curve G 2 ( c') at the point c ~ + 0 is 
negative and infinitely large. The curve G(c') has therefore a minimum at a certain value 
of c' exceeding c~, as shown in Fig. 2a. Apparently this requires a discontinuity surface within 
the flow when c' approaches c:_ from below. The condition of stress continuity at such 
a surface means that c' increases sharply from c:_ up to a value c~ which has the same value 
for G as c~. This is also illustrated in Fig. 2a. Note that there is no reason for either c 
or e to have a discontinuity at this surface. 

Within the framework of this paper the region of drastic change in the flow parame
ters is looked upon as a discontinuity surface of zero thickness. This is undoubtedly due 
to assuming the effect of the rotary Brownian motion to be negligible. In fact, the thickness 
of this region is finite and dictated by processes of the rotary Brownian diffusion, no 
matter how weak the latter, and can be in principle evaluated with the help of the tech
nique proposed in [5, 8]. 

A dependence of the apparent viscosity on c' corresponding to that of the effective 
stress G is plotted in Fig. 2b. Clearly, the Newtonian core is surrounded with a flow region 
where the suspension behaves like a shear-thinning media, the apparent viscosity tending 
in the limit c' -+ oo to the effective viscosity of a suspension of the same particles without 
the dipoles. 

Within the peripheral region, c" is larger than c~ in the core. Hence it follows that e 
evaluated in accordance with (3.4) is smaller than eo and depends on x outside the core, 
decreasing to a certain limiting value as x grows to infinity. Thus, there is an accumula
tion of particles in a central part of the flow. Let us emphasize that this is a new effect 
having nothing in common with the known segregation of particles of a suspension with 
no dipole interaction with an external field. 

All these conclusions obviously hold even in more complex situations when the Eq. (4.3) 
is invalid, e cannot be regarded as an approximately constant quantity, and the dependence 
of H on the flow parameters is strong and cannot be ignored. 

4.2. Examples 

Below we consider simple concrete examples in which He is either normal or parallel 
to the suspension velocity. At the beginning we assume He to be normal to the flow 
(()e = 0 or ()e = n). Then the Eqs. (2.11) and (3.2) lead to a conclusion that the field 
strength H is parallel to He and constant throughout the peripheral flow region lxl > x*, 
where an inequality f3 < 1 holds, i.e. 

(4.4) 
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The field strength H 0 within the core region - x* ~ x ~ X* is to be found with the help 
of equations similar to (3.10) and (3.11), the role of an external field being played in this 
case by H defined in (4.4). As a matter of fact, one obtains 

(4.5) [ ( 
fJ )2]1/2 

1 - mo = t:l.e 1 - mox e ' 

where the second equation defines m0 as a function of cxe and fle, the latter being expressed 
in terms of the external field parameters in accordance with (3.10). Thus H 0 is also pa
rallel to He but its modulus depends on a local value of the vorticity. At lxl = x* the 
quantity m0 equals unity so that the magnetic field strength varies continuously every
where, including the surfaces X = ± x*. 

Further, by solving (3.6) with ~ = p0 resulting from (3.9) at Q = eo, one obtains rela
tions for the fluid velocity and vorticity within the core 

(4.6) 
p 

V=--X 
2fJ.o ' 

where c0 is constant. 
The flow in the peripheral region can be determined by means of solving the non

linear equation (4.2), e and H being understood as functions of c' and c". In this particu
lar case H is constant and e is implicitly determined by a relation 

(4.7) 11 

eo = --:.--' 
Jlo 

p 

following from (3.4) and (4.6). Therefore (4.2) is a differential equation of the third order 
and three boundary conditions are needed. These conditions result from the continuity 
of c and e as well as from the condition of continuity of the effective tangential stress at 

lxl = x* 

(4.8) 
de , 
dx = c+, 

d 2c 
dx2 = --P.-o' 

p 

the quantity c~ being calculated from a relation 

(4.9) 

in compliance with the analysis in the previous subsecti.on. 
Conditions on external flow boundaries (e.g., c = 0 at x = ±h) enable us to find c(}. 

involved in the above formulae. At last, the quantity eo can be determined from a global 
balance equation for the suspended particles. For instance, either the total flux of parti
cles or the mean concentration of the flowing suspension may be given in practice and 
used to the end. This completes the consideration. 

Note that the coordinate x* can be found without the solving of (4.2), namely, it is 
clearly determined by a condition 

(4.10) 
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yielding, after accounting for (3.9), (4.5) and (4.6) 

(4.11) 

By comparing x from (4.11) with h one is able to derive a condition for a discontinuity 
surface to occur in a flow with given h, P, etc. 

Within the peripheral region the dipole vector T of each particle rotates in such a way 
that only r Y differs from zero. Within the core region all the particles are stably aligned 
along the same axis whose slope varies with x so that the axis coincides with the axis x at 
x = 0 and with the axis y at x = ±x*. 

If He is parallel to the flow velocity, then the 'boundary conditions for the magnetic 
field and the Eq. (2.11) for 't" give the following relations defining the field parameters 
within the peripheral region fJ < 1 : 

(4.12) 

where upper and lower signs pertain to ()e = n/2 andJ ()e = 3n/2, respectively. So the 
field H changes its slope gradually from that of He to a finite slope achieved at {3 = 1. 
Values of () and H at {3 = 1 determine a field that must be considered as an external field 
with respect to the field H 0 inside the flow core. The latter field can then easily be found 
by means of applying (3.2). 

The corresponding hydrodynamic problem is to be solved as before, but it is now 
more complicated because of the dependence on the flow vorticity of H and H 0 • 

A similar consideration is possible for a general superposition of the pure Couette and 
Poiseuille flows with the magnetic field arbitrarily oriented. The principal aspects of ferro
fluid flows, manifesting the rather unusual effects, however, remain unchanged. 
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